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Abstract

The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family has been well-studied in
Arabidopsis and play crucial roles in the diverse growth and development processes includ-
ing establishment and maintenance of boundary of developmental lateral organs. In this
study we identified and characterized 38 LBD genes in Lotus japonicus (LjLBD) and 57 LBD
genes in Medicago truncatula (MtLBD), both of which are model legume plants that have
some specific development features absent in Arabidopsis. The phylogenetic relationships,
their locations in the genome, genes structure and conserved motifs were examined. The
results revealed that all LjLBD and Mt{LBD genes could be distinctly divided into two clas-
ses: Class | and Il. The evolutionary analysis showed that Type | functional divergence with
some significantly site-specific shifts may be the main force for the divergence between
Class | and Class Il. In addition, the expression patterns of LjLBD genes uncovered the
diverse functions in plant development. Interestingly, we found that two LjLBD proteins that
were highly expressed during compound leaf and pulvinus development, can interact via
yeast two-hybrid assays. Taken together, our findings provide an evolutionary and genetic
foundation in further understanding the molecular basis of LBD gene family in general, spe-
cifically in L. japonicus and M. truncatula.

Introduction

LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a plant-specific transcription
factor family, possess a characteristic N-terminal LOB domain and play important roles in
many aspects of plant development. The LBD protein typically contains four highly conserved
cysteine (C) residues in a CX,CXsCX;C zinc finger-like motif (also called C block, where X
represents variable residues) that is suggested to play crucial role in DNA binding. In addition,
two other conserved features are found in the N-terminal half of the LBD: an invariant glycine
residue and a leucine-zipper-like sequence LXcLX;LX4L [1,2]. Usually, the LBD gene family
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can be divided into two classes (class I and II) based on conserved motif number and structural
features. Typically, class I members contain a CX,CXsCX;3C motif and a leucine-zipper-like
motif, while class I members contain only a CX,CXsCX;C motif. As transcription factors,
LBD proteins function in the nucleus and bind to the conserved nucleotide consensus sequence
GCGGCG. In addition, there is evidence that the interaction between LBD and bHLH proteins
can reduce the DNA-binding affinity of LBDs [3].

Studies show that LBD genes usually exhibit temporal or tissue-specific expression patterns
[1]. For example LBD genes are expressed in specialized regions such as the adaxial base of lat-
eral organs, shoot apical meristem and boundary between lateral organs, indicating their
important function in plant lateral organ development [4,5]. In Arabidopsis, LBD genes are
found to involve in various tissues development such as leaf development [6] and lateral root
initiation [7-9], as well as signaling transduction such as cytokinin [10] and gibberellin path-
ways [11]. Also, three LBD genes in Arabidopsis including AtLBD37, AtLBD38 and AtLBD39,
are implicated in anthocyanin biosynthesis and nitrate metabolism [12]. In other species, a
panel of LBD genes were also well studied and characterized. For instance, the maize Ramosa2
gene plays a role in regulation of inflorescence architecture [13]. Two maize LBD family genes
RTCS and RTCL cooperatively act in shoot-borne root formation [14]. The rice auxin-induc-
ible ARLI gene encodes a LBD protein that promotes adventitious root formation [15].

With the advent of high-throughput sequencing techniques, genome-wide identification
and characterization of LBD genes have been conducted in Arabidopsis [1], rice [16], maize
[17] and apple [18]. However, little is known about LBD genes in legumes to date. Legumes are
important crop plants that not only have the unique ability to fix nitrogen from the atmosphere,
but also are rich sources of protein and oil for the human diet. The genomes of many legume
plants have recently been sequenced, providing an opportunity for detailed characterization of
LBD genes in this important family of plants. Among legumes, Lotus japonicus and Medicago
truncatula are used as model legumes due to their short life cycles, self-fertility, and relatively
small diploid genome. In particular, these two species provide an excellent system for study of
some specific development features including compound leaf development, motor organ specifi-
cation, and root nodule formation that are absent in Arabidopsis. For example, ELPI (Elongated
Petiolulel; also called MtLBDI3 in this study) and SLP (Sleepless, also called LiLBDG6 in this
study) were isolated from M. truncatula and L. japonicus, respectively, and found that they are
involved in specification of so-called motor organ or pulvinus identity, uncovering a novel func-
tion for LBD genes in the determination of motor organs and the control of plant movement in
legumes [5]. In addition, three LBD genes (LjLOB1, LijLOB3 and LjLOB4) have been isolated
from L. japonicus, and their specific expression patterns strongly showed that LiLOBI and
LjLOB3 (also called LjLBD11 and LjLBDE6 in this study) might have important roles in determin-
ing compound leaf development, and that another gene LiLOB4 (also called LjLBD22 in this
study) may be involved in floral development [4]. Thus, investigation of LBD genes at genome-
wide level in legumes would likely provide new insights into the regulatory mechanisms of plant
growth and development, especially, motor organs and compound leaves development.

In the present study, we identified and characterized the LBD gene family in L. japonicus
and M. truncatula on the genome-wide scale. In total, we found 38 putative LBD genes in L.
japonicus and 57 members in M. truncatula, respectively. Their motif distribution, evolution-
ary relationship and expression profiles were further characterized in detail. Importantly, we
found that two LBD members LiLBDI11 (LjLOBI) and LjLBD6 (LjLOB3, SLPI) were highly
expressed in compound leaf and can form complex by proteins interaction, implying that they
may work together in controlling compound leaf development in L. japonicus. These results
obtained from this study provide global information important for further understanding the
molecular functions of the LBD gene family in legumes.

PLOS ONE | DOI:10.1371/journal.pone.0161901 August 25, 2016 2/16



@’PLOS ‘ ONE

LBD Gene Family in Legume

Materials and Methods
Screening of LBD gene members

All Arabidopsis LBD proteins were retrieved from the DATF database (http://datf.cbi.pku.edu.
cn) based on the previous study [1]. All protein sequences of L. japonicus and M. truncatula
were downloaded from the database (http://www.plantgdb.org/LjGDB/) and Phytozome data-
base (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mtruncatula), respec-
tively. Using BLASTP program, all Arabidopsis LBD protein sequences were used as query
against corresponding protein database. The hits with a significant E-value (< 1E-3) and more
than 70% identity were collected and considered as candidate proteins. Subsequently, redun-
dant sequences or incomplete ORF sequences were removed from our gene set. Finally, all can-
didate proteins were further subjected to SMART (http://smart.embl-heidelberg.de/) and Pfam
(http://www.pfam.sanger.ac.uk/) to confirm the presence of LOB domain.

Chromosomal localization and gene structure analysis

To determine the distribution of LBD genes on chromosomes, position information of each
LBD gene was obtained from genome annotation file (downloaded from website: http://www.
plantgdb.org/LjGDB/ and http://www.jcvi.org/medicago/, respectively). A custom MATLAB
script was used to draw the location information of LBD genes in chromosome or scaffold.
According to the alignment between full-length CDS and corresponding gene sequence, exon-
intron organization for individual LBD gene was illustrated by using Gene structure display
server software (GSDS, http://gsds.cbi.pku.edu.cn/)

Phylogenetic tree, evolutionary analysis and conserved motifs

Multiple sequence alignment of amino acid sequences was carried out using Clustalx v2.1
(http://www.clustal.org/clustal2/), and phylogenetic trees were then generated using the neigh-
bor-joining (NJ) method with 10,000 bootstrap replicates in MEGAS5.0 [19]. The functional
divergence for classes or subclasses was estimated using the DIVERGE v3.0 package [20]. The
coefficients of type-I (6;) and type-II (8y;) functional divergence between any two classes were
estimated based on the ML algorithm. The Type-I functional divergence means that some sig-
nificantly site-specific changes mainly occurs between two classes. The Type-II means that
functional divergence between two classes were mainly due to some site-specific shifts in
amino acid properties. The coefficients of Type I or type II functional divergence with greater
than zero were considered significant. Additionally, to identify which sites are critical for func-
tional divergence between two classes, a site-specific posterior probability were predicted with
a cut-off value more than 0.9 to reduce possible false positives.

Besides, conserved motifs of each LBD protein were identified using MEME Suite (http://
meme-suite.org/) with parameters set: optimum width 6-200 amino acids and maximum num-
ber of motifs 15, and then visualized by MAST (Motif Alignment and Search Tool). In addi-
tion, the molecular weight (MW, Da) and isoelectric point (pI) of each protein were estimated
by online ExXPASy programs (http://www.expasy.org/tools/).

Expression profiles of LBD genes in L. japonicus

The expression profiles of all LiLBD genes were investigated among different tissues or devel-
opmental stages using L. japonicus gene expression altas (LjGEA, http://ljgea.noble.org/v2/)
[21]. Briefly, probe ID of each LiLBD gene was firstly obtained by gene sequence BLASTN pro-
gram that is available at LjGEA website. If a given gene has more than one probe ID, we choose
the probe ID showing the best e-value and higher identity (S1 Table). Expression level of each
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gene was obtained from different tissues by normalizing probe count, and then a global gene
expression profiles were visualized by using MultiExperiment Viewer (MeV) software (v4.8.1).
Some LBD genes with high expression level in leaf were confirmed by quantitative RT-PCR
(qRT-PCR) with three independent biological replications.

Yeast Two-Hybird Assay

Yeast two-hybrid analysis was performed in Saccharomyces cerevisiae strain Y2H gold accord-
ing to the manufacturer’s instructions (http://www.clontech.com/). The full-length of LjLBD11
(LBD11-Fw: CCGGggatccATGAAGGGTTATGAACCACG; LBD11-Rv: CCGGgtcgacTCAAA
ATATATATGGGATTTGA) and LjLBD6 (LBD6-Fw: CCGGggatcc ATGGCATCATCAAGC
GCTTA; LBD6-Rv: CCGGgtcgacTCATAAATTACCTCCTCCTTCAC) were cloned into the
prey vector pGADT?7 or the bait vector pPGBKT?7. The yeast cells were co-transformed with the
prey vector and the bait vector using Yeast Transformation II Kit (The Epigenetics Compa-
ny™). Quadruple dropout medium (without adenine, histidine, leucine and trptophan) con-
taining 200 ng/ml Aureobasidin and 40 mg/ml x-a-gal was used to test the expression of
reported genes AURI-C and MELL.

Results
Identification and physical locations of LBD genes

A total of 45 candidate LBD genes were identified in L. japonicus genome based on an extensive
search. Unfortunately, seven LBD proteins were excluded due to the lack of typical LOB
domain or C motif (CX,CXsCX;C) in the N-terminus. Thus, we finally identified 38 LjLBD
candidate proteins in the L. Japonicus, ranging from 95 aa to 349 aa in length. The molecular
weight of LjLBD proteins varied from 10.36 kDa to 39.96 kDa, and protein pI ranged from 4.40
to 10.12 (see Table 1). For the better description in subsequent analyses, the 38 non-redundant
LBD genes in L. japonicus were designated LjLBDI-38 according to their positions from the
top to the bottom on the chromosomes or scaffolds (Table 1). In addition, we also identify 57
LBD proteins in M. truncatula (named MtLBD1-57) based on the same criteria and found simi-
lar protein lengths and molecular weights (S1 Table). The number of LBD genes in these two
model legumes was comparable to their homologs in other plants such as Arabidopsis (43
members) [1], rice (35 members) [16], maize (43 members) [17] and apple (58 members) [18].
Among the 38 LiLBD genes, most members (84.2%) were successfully located to the six
L. japonicus chromosomes, while the remaining members, LjLBD33-38, were localized to the
six scaffolds that were not assembled into chromosomes (S1 Fig). It is obvious that the number
of LiLBD genes on each chromosome was uneven. For instance, ten LiLBD members were
detected on chromosome 1 followed by seven members in chromosome 3 and six in chromo-
some 2, whereas the fewest were found on chromosome 6 (only 2 members). Within chromo-
somes 4 and 5, there were only three and four LjLBD genes, respectively. In Medicago
truncatula, the LBD genes were distributed unevenly among 8 chromosomes, and chromosome
2 contained the fewest LBD members (only 3 genes, S1 Fig).

Sequence alignment and phylogenetic analyses

To identify conserved amino acid residues of LBD proteins and classify LBD members into the
two classes as previously defined, we performed a sequence alignment using all of the LjLBD
and MtLBD proteins. As a result, we found that all LBD proteins including 38 LjLBD and 57
MtLBD had a completely conserved CX,CXsCX;C motif (a C block, see Fig 1). It should be
noted that the GAS block between the C block and the leucine zipper-like motif (LXgLX3LX¢L)
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Table 1. Information of LBD gene family identified in Lotus japonicus.

Gene identifier Gene name Genomic position Size(aa) MW(Da) pl
chr1.CM0001.80.r2.a LjLBD1 chr1:44897181-44897675 164 18162.3 6.25
chr1.CM0017.40.r2.m LjLBD2 chr1:39247040-39248087 316 34117.4 8.65
chr1.CM0088.550.r2.d LjLBD3 chr1:201658-202206 156 16733.2 8.3
chr1.CM0104.3290.r2.d LjLBD4 chr1:50334865-50335833 234 25236.3 7.86
chr1.CM0125.620.r2.d LjiLBD5 chr1:16763699-16764628 190 20829.9 9.03
chr1.CM0171.410.r2.m LjLBD6 chr1:3870813-3871385 190 20834.6 7.83
chr1.CM0375.610.r2.a LjiLBD7 chr1:56389849-56391175 205 22398.4 8.11
chr1.CM0375.630.r2.a LjLBD8 chr1:56398498-56399492 222 24576.6 6.49
chr1.CM1255.330.r2.m LjLBD9 chr1:31734423-31736630 184 20117.9 8.17
chr1.CM1255.380.r2.m LjLBD10 chr1:31764240-31767714 247 25610 8.41
chr2.CM0002.640.r2.m LjLBD11 chr2:37239732-37240286 184 20456.2 7.06
chr2.CM0008.840.r2.d LjLBD12 chr2:23416613-23417729 220 24392.4 5.59
chr2.CM0081.1790.r2.a LjLBD13 chr2:16470717-16471499 260 29606.1 7.97
chr2.CM0263.240.r2.m LjLBD14 chr2:15129929-15130414 161 17933.5 7.83
chr2.LjB15M17.20.r2.m LjLBD15 chr2:40232463-40234079 349 39956.8 7.06
chr2.LjT16G06.10.r2.d LjLBD16 chr2:28013987-28014913 308 33953.9 7.22
chr3.CM0049.340.r2.d LjLBD17 chr3:35912062—-35912889 275 31115.4 6.63
chr3.CM0135.10.r2.m LjLBD18 chr3:45395048-45395762 136 15523.8 8.15
chr3.CM0160.1010.r2.m LjLBD19 chr3:37974603-37975202 199 23215.5 7.83
chr3.CM0176.110.r2.m LjLBD20 chr3:3033466—-3038666 182 20201.9 8.38
chr3.CM0246.630.r2.m LjLBD21 chr3:30927790-30929651 203 22258.2 5.21
chr3.CM0649.90.r2.d LjLBD22 chr3:41206303-41206659 119 13314.6 8.69
chr3.CM1488.110.r2.d LjLBD23 chr3:1617981-1618478 165 18510.2 8.23
chr4.CM0128.420.r2.m LjLBD24 chr4:12578313-12579139 231 25041.4 8.42
chr4.CM0229.130.r2.m LjLBD25 chr4:11249399-11252380 174 19080.7 7.84
chr4.CM0432.3340.r2.d LjLBD26 chr4:8660066—8660599 177 19674 5.35
chr5.CM0200.2670.r2.d LjLBD27 chr5:33419174-33420445 199 21285 8
chr5.CM0494.160.r2.d LjLBD28 chr5:19260103—-19260417 104 11165.8 8.5
chr5.CM1667.70.r2.a LjLBD29 chr5:29053657-29055208 223 24304.9 7.34
chr5.LjT39A22.130.r2.a LjLBD30 chr5:31524745-31525388 130 14961 8.03
chr6.CM0738.260.r2.d LjLBD31 chr6:5288434-5290516 167 18616.1 5.14
chr6.LjB02K20.100.r2.m LjLBD32 chr6:5570935-5571474 179 20164 6.77
LjSGA_002536 LjLBD33 Scaffold:2417-6865 231 24409.8 7.73
LjSGA_010274 LjLBD34 Scaffold:3488-3787 99 11252.3 10.12
LjSGA_023437 LjLBD35 Scaffold:60-1891 251 27916.9 8.28
LjSGA_054888 LjLBD36 Scaffold:853-1140 95 10354.9 8.49
LjSGA_076325 LjLBD37 Scaffold:357-1193 278 30656 4.4
LjSGA_080276 LjLBD38 Scaffold:564—1165 199 22252.7 8.71

doi:10.1371/journal.pone.0161901.t001

was also highly conserved in the LOB domain region (Fig 1). Based on the presence or absence
of the leucine zipper-like motif, we further identified 33 and 48 class I LBD members, 5 and 9
class II members in L. japonicus and M. truncatula, respectively. In addition, recent study evi-
denced that a valine (V) residue and a leucine (L) in the GAS block, and a glutamine (Q) resi-
due in the leucine-zipper-like motif is required for motor organ specification in pea [5]. These
amino acid resides were also highly conserved in L. japonicus and M. truncatula (Fig 1). Also,
an arginine (R) in GAS block region, which is very conserved in L. japonicus and M. truncatula
(Fig 1), mutated into cysteine (C) in L. japonicus can lead to the defect in motor organ [5].
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Fig 1. Amino acid sequence alignments of LOB domain region from Lotus japonicus and Medicago truncatula. The N-
terminal LOB domain includes cysteine C block, GAS block and leucine-zipper-like regions is displayed. The valine (V) and
leucine (L) residues required for motor organ specification in pea were denoted by red arrow and red frame. An arginine (R) in
the GAS block required for motor organ specification was denoted by red arrow.

doi:10.1371/journal,

pone.0161901.g001
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According to the protein sequence alignments, we investigated the evolutionary relation-
ships among LBD members from L. japonicus and M. truncatula. An un-rooted phylogenetic
tree was constructed using the neighbor-joining method with 10,000 bootstrap replicates. Two
distinct clusters were formed corresponding to the two classes in the LBD gene family with well
supported bootstrap values as shown in Fig 2, consistent with the classification described
above. Among class I, members could be further grouped into four sub-classes (Ia-Id), and
class II members were divided into two sub-classes (IIa and IIb). Although three members
(LjLBD15, 23 and MtLBD57) were not clustered into any subclass, we classified them into class
Id subclass due to the closest genetic distances. As shown in Fig 2, two known motor organ
determined genes (MtELP]I, also called MtLBD13 and LjSLP, also called LiLBD6) belonging to
the class Ia. In addition, we found three pairs of genes duplication in M. truncatula genome
including MtLBD7 and MtLBD16, MtLBD10 and MtLBD27, MtLBD19 and MtLBD23 [22].
The tree topology of LjLBD and MtLBD proteins was quite similar to the tree reported in Ara-
bidopsis and rice [23]. Moreover, counterparts between L. japonicus and M. truncatula were
clustered into all major clades and subclades, suggesting the functional conservation and simi-
larity of LBD proteins in these clusters.

To detect the evolutionary relationships in the LBD family between L. japonicus and Arabi-
dopsis, another un-rooted phylogenetic tree was constructed (S2 Fig). Similarly, LBD proteins
from L. japonicus and Arabidopsis were clustered into two main clades (corresponding to class
I and II), and each clade or subclade comprised members of both species, suggesting that
LLBD transcription factors were homologous with those in Arabidopsis. According to previ-
ously functional researches in Arabidopsis [23], five members from class I including AtLBD3
(ASL9), AtLBD12 (ASL5), AtLBD6 (ASL2), AtLBD36 (ASL1), AtLOB1 (ASL4) are involved in
lateral organ (leaf and flower) development. Three genes AtLBD16 (ASL18), AtLBD18 (ASL20)
and AtLBD29 (ASL16) participate in the auxin signal transduction cascade that leads to the for-
mation of lateral roots in Arabidopsis. As for the characterized class II LBD genes, three genes
AtLBD37 (ASL39), AtLBD38 (ASL40), AtLBD39 (ASL41) are involved in metabolism, acting as
repressors of anthocyanin synthesis and N availability signals in the plant. AtLBD37 (ASL40),
another class IT LBD gene, is reported to be downregulated by gibberellin and upregulated by
DELLA proteins [23]. The phylogenetic analysis indicated that the homologs in L. japonicus
may have a similar function as described above.

Functional divergence for classes and subclasses

To examine whether the functional divergence between classes or subclasses was underwent in
the conserved LOB domain region, we calculated the coefficients of Type-I (8;) and Type-II (8y)
functional divergence as described in materials and methods. As shown in Fig 3, we found that
the coefficient of Type-I functional divergence (6; = 0.42) between class I and class II was signifi-
cant greater than 0, but the Type-II coefficient 6;; was negative, suggesting that significant type I
functional divergence was underwent between these two classes. Moreover, we calculated the
posterior probability (Qy) value to detect the potential amino acid residues that occurred signifi-
cant changes between class I and IT members. We considered 0.9 as the Q, cutoff in this study
and found four sites including 23P, 42H, 57L and 99Q were markedly changed, in which these
four amino acid residues were highly conserved within class I but highly variable within class I
(see Fig 1). Within class I, the coefficients of both 8; and 0;; were significant between pairs Id/Ic,
Id/Ia, Id/Ib, Ic/Ia and Ic/Ib, suggesting that these subclasses, particularly Id/Ic, might have experi-
enced both Type-I and Type-II functional divergence. However, the functional divergence
between Ia and Ib may be caused by the Type-II functional divergence (Fig 3). Similarly, within
class I, Type-I and Type-II functional divergence were detected in the pair ITa/IIb (Fig 3).
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Conserved motifs and gene structure analyses

Conserved motifs and exon/intron structures could further explore the possible evolutionary
relationship of related LBD proteins. To identify the potential conserved motifs, all LBD pro-
teins from L. japonicus and M. truncatula were subjected to the MEME suite (Fig 4A). Totally,
we detected 15 high-confidence motifs (designed as motif 1-15) with significant p value

MtLBD48

91

65— |jLBD32
se - 99 — MtLBD24
53 LiLBD16

MtLBD20
MtLBD35

ClassI p

Fig 2. The phylogenetic tree of LBD proteins form Lotus japonicus and Medicago truncatula. The amino acid sequences of the LBD proteins
were aligned with Clustal X, and the phylogenetic tree was constructed using the neighbor-joining method of MEGA 5.0 software.

doi:10.1371/journal.pone.0161901.9002
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Fig 3. The functional divergence analysis between classes or subclasses. The estimated mean coefficients of Type-I (6) and type-II (811)
functional divergence based on the aligned LOB domain sequences from Lotus japonicus and Medicago truncatula.

doi:10.1371/journal.pone.0161901.9003

(p < 0.001), and the consensus sequence of motifs were listed in S2 Table. Of them, motif 2 was
embedded in the LOB domain that was present in all LBD proteins. Notably, the class I and class
II LBD proteins harbored distinct sets of motifs. For instance, all class I proteins possessed motifs
1-5, whereas class II proteins included motifs 1, 2, 6 and 9. Further, class II proteins were split
into two groups based on differential distribution of motifs 7, 13 and 8. Most of members from
class I shared common motifs. In addition, some motifs were nested in specific clades. For
instance, motifs 12 and 14 were shared by four members (MtLBD10, 27 and LjLBD11, 32) in
class Ia; motif 11 was uniquely found in six proteins (MtLBD20, 30, 34, 35, 36 and LjLBD13)
from class Id; motifs 7, 13, and 8 were specific to class Ila proteins. These findings suggest that
LBD proteins with the same motifs are likely to have similar functions in plant development.
Additionally, gene structure analysis showed that almost all of the LjLBD genes had either
one or two exons, except LiLBD15 with four exons (see Fig 4B). We found that 20 genes
included two exons, and 17 genes contained just one exon. Specifically, all LBD members in
class Ia and most class Id members were intronless. Interestingly, while inspecting the pattern
of intron insertion and splicing phase for those genes containing introns, we found that most
of class I members shared splicing phase 0 (splicing occurred after the third nucleotide of the
codon), whereas most of members from class II shared splicing phase 1 (splicing occurred after
the first nucleotide of the codon) except three members with phase 2 (splicing occurred after
the second nucleotide of the codon). Collectively, these results from conserved motifs and gene
structure analyses provided additional evidence to confirm our phylogeny-based groupings.

Expression profiles of LBD genes in L. japonicus

To gain insights in understanding the potential function of LBD genes in L. japonicus, we
investigated their expression patterns in various tissues/organs/developmental stages (Fig 5A).
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Fig 4. Distribution of conserved motifs and gene structure analysis of LBD gene family from Lotus japonicus and Medicago
truncatula. (A) Conserved motifs analysis by MEME suite. The colorful boxes represent the different motifs 1-15. (B) The exons and
introns splicing patterns. The green boxes and black lines represent the exon ans intron, respectively. The numbers indicate the intron
phase. The motifs and gene sizes are indicated at the bottom of the figure.

doi:10.1371/journal.pone.0161901.g004

Transcripts for all 38 LjLBD genes could be detected and about half of the genes displayed high
expression in at least one tissue tested. With the exception of LjLBD2 and LBD24 that were
highly transcribed in all tissues, the remaining LjLBD genes exhibited tissue/organ-specific
expression. Two class II genes (LiLBD3 and LjLBD27) were specifically expressed in root and
nodules; five genes (LjLBDI0, 12, 20, 33, 35) showed high transcript abundance throughout
pod and seed development. Also, we detected ten genes (LjLBDI, 2, 5, 6, 10, 11, 20, 24, 32

and 35) that were highly expressed in compound leaf and 14 members (LjLBDI, 2, 3, 5, 10,
15, 20, 25, 26, 27, 29, 31, 33, 35) that were highly expressed in root nodule. These genes repre-
sented candidate genes involved in compound leaf development or root nodule formation,
respectively, in which these two traits in L. japonicus are distinct phenotypic features from
Arabidopsis. In addition, we performed hierarchical clustering based on these expression data
to test whether the LBD members placed in same phylogenetic clade had similar expression
patterns. Unfortunately, the result showed no clade-specific expression pattern for all LiLBD
members.

One of main interests in this study is to identify potential LBD transcription factors involved
in compound leaf or motor organ development in L. japonicus. Thus, we selected a set of genes
that were highly expressed in leaf but not constitutively expressed, and examined their expres-
sion levels in stem, compound leaf and pulvinus using qRT-PCR technique. Results showed
that all selected four genes including LjLBD1,6,11 and 32 had high expression levels in leaf and
pulvinus tissue but were quite low expression in stem (Fig 5B), suggesting the potential roles in
compound leaf and pulvinus development.

The interaction of LjLBD11 and LjLBD6

Based on the expression analysis in this study and previous study [4], LiLBD6 and LjLBDI11
(responding to LiLOB3 and LjLOBI) had a strong expression at the bases of leaflet primordia
and considered likely to have roles in compound leaf development. Moreover, mutation of
LjLBDE6 results in loss of motor organs in L. Japonicus [5] that was in good agreement with it
expression in pulvinus (Fig 5). It is should be noted that LjLBD11 gene exhibited more high
expression level in compound leaf and pulvinus relative to LiLBD6. However, the functional
roles of LjLBD11 in compound development and motor organs formation remained unknown.
In addition, previous studies uncovered that LBD proteins can usually form the Homo- or
heter-dimerization through the leucine-zipper-like motif located at the C-terminus of the LBD
domain [3]. Therefore, we speculated that LjLBD6 and LjLBD11 might exert their function via
a protein complex. To test this, the protein interaction between LjLBD6 and LjLBD11 was per-
formed by yeast two-hybird experiment. The yeast strain was co-transformed with the indi-
cated combinations of LjLBD6 and LjLBD11 fused to the GAL4 activition domain (AD) and
GAL4 DNA-binding domain (BD), respectively. Among the clones grown on the dropout
medium lacking tryptophan, leucine, histidine and adenine, we found that clones containing
LjLBD6 and LjLBD11 showed growth (see Fig 6). This result showed that LjLBD11 protein can
interact with LjLBD6 protein, suggesting that the LjLBD11 may play a similar function of
LjLBD6 involved in compound leaf development or specification of motor organ identity, but
the detail biological function remains to be determined.
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Fig 5. Expression profiles of LBD genes in Lotus japonicus. (A) Heatmap showing LBD gene expression patterns in different tissues/organs/
development stages. The scale at the bottom represents log2 value. (B) Some genes highly expressed in leaf (the blue box) were confirmed by
quantitative RT-PCR. The expression level of stem sample was normalized to 1.

doi:10.1371/journal.pone.0161901.g005

Discussion

The plant-specific LBD (Lateral Organ Boundaries domain) transcription factors play critical
roles in the control of plant development, in particular in lateral organ development. The LBD
gene family has been extensively studied in diverse species [1,16-18] but very little is known in
legumes. Legumes are models for studying development of some specific features absent in
other model plants such as Arabidopsis, including compound leaves, motor organs, and root
nodules. Thus, studies on LBD genes in legumes would provide the basis for unraveling mecha-
nisms of plant development that are currently not understood.

In this study, we identified 38 and 57 putative LBD transcription factors in L. japonicus and
M. truncatula respectively, both of which are important model plants in legumes. Compared
with other plants, L. japonicus and M. truncatula apparently harbored more LBD members in
its genome, probably due to genome duplication that resulted in gene family expansion during
evolution. All LBD proteins identified in this study contained a highly conserved CX,CXsCX;C
zinc finger-like domain, implying its structural and functional necessity. Among class I mem-
bers, most proteins contained an additional motif (LXLX3LX4L) in the C-terminus, which has
been demonstrated to function in protein-protein interaction [2]. Interestingly, analysis of con-
served motifs outside the LOB domain found that members of the two classes (class I and II)
harbored different motifs. The phylogenetic tree of LBD transcription factors from L. japoni-
cus, M. truncatula and Arabidopsis was distinctly split into two clusters, corresponding to class
I and class IT members. Gene structure and motif analyses further supported phylogenetic tree
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Fig 6. Interaction between LjLBD11 and LjLBD6 protein by yeast two-hybird assay. pGBKT7-53 in
combination with pGADT7-T was used as a positive control and pGBKT7-Lam with pGADT7-T was used as
negative control. Yeast grew on DDO medium to select for both the bait and prey proteins (left). QDO/X/A media
allow the growth of only positively interacting clones (right).

doi:10.1371/journal.pone.0161901.9g006

analysis similar to the previous reports in Arabidopsis, rice, maize and apple [17,18,23], indicat-
ing that the LBD gene family may be highly conserved among species. In addition, functional
divergence analysis showed that significant type I functional divergence was detected between
classes I and II, and four amino acid residues with site-specific changes in evolutionary rates
may have a main contribution.

To understand the functions of LBD genes in L. japonicus, we examined their expression
profiles in different tissues/organ/developmental stages. For example, AtLBD37 (AT5G67420),
AtLBD38 (AT3G49940) and AtLBD39 (AT4G37540) function in the regulation of plant basic
metabolism in Arabidopsis [12], and their homologous gene LiLBD24 in L. japonicus exhibited
constitutive expression, suggesting that it may also have a basic function in plant growth and
development. For three genes (LjLBD7, LiLBD8 and LjLBD28) with relatively high expression
in root, their homologs in Arabidopsis (AtLBD16, AtLBD18 and AtLBD29) represent a set of
auxin-regulated genes that also display root-specific expression [7,8,9], strongly implying that
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these three genes may be involved in lateral root formation in L. japonicus. The LiLBD2 was
expressed in all tissues tested in this study, while its homolog AfLBD40 is reported to respond
to gibberellin [11]. Arabidopsis AtLBD30 is thought to regulate embryogenesis and floral devel-
opment, and its homologs LiLBD10 and LjLBD33 were had abundant transcripts in flower and
seed developmental stages [24,25], suggesting that they probably have similar functions. In
addition, we noticed that both LjLBD11 and LjLBD6 were strongly expressed in compound
leaf, in good agreement with previous results from RNA in situ hybridization. Previous study
showed that LjLBD6 may play a conserved role in genetic determinant of motor organ identity
in legumes [5]. By the Yeast two-hybrid experiment, we further found that LjLBD6 can interact
with LjLBDI11 at the protein level, indicating that LjLBD11 protein may have similar important
function in the control of compound leaf development and determination of motor organ iden-
tity. Due to the lack of a LjLBD11 mutant in L. japonicus, the detailed function of LiLBD11
gene remains unknown, but worth further inquiry using other methods such as siRNA-medi-
ated silencing.

In summary, the current study defined in detail the LBD gene family in legumes based on
genome sequences. The gene structure, conserved motif, and phylogenetic analyses indicated
that the functions of LBD genes are likely conserved among angiosperms. In addition, our
results indicate that the Type I functional divergence with some site-specific shifts may be the
main force for between class I and II. Importantly, The expression patterns of LiLBD11 and its
interaction with LjLBD6 provided the molecular basis for the mechanisms underlying LjLBD11
gene in compound leaf development, motor organ specification in L. japonicus, even more gen-
erally in legumes.

Supporting Information

S1 Fig. The chromosomal distribution of the LBD gene family in Lotus japonicus and Medi-
cago truncatula. The chromosome number is indicated at the bottom of each chromosome.
Genes without intron are marked with red asterisk. Segmental duplication genes in M. trunca-
tula are linked by red dash lines.

(TIF)

$2 Fig. The phylogenetic analysis of LBD members from Lotus japonicus and Arabidopsis.
The amino acid sequences of the LBD proteins were aligned with Clustal X, and the phyloge-
netic tree was constructed using the neighbor-joining method of MEGA 5.0 software. The red
clade represents the Class II members. The LBD proteins in bracket meant that they have been
investigated in other studies.

(TIF)

S1 Table. Information of LBD gene family identified in Medicago truncatula.
(DOCX)

$2 Table. Motif sequences identified by MEME tools.
(DOCX)
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