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Abstract
Batch effects describe non-natural variations of, for example, large-scale genomic data

sets. If not corrected by suitable numerical algorithms, batch effects may seriously affect the

analysis of these datasets. The novel array platform independent software tool BEclear

enables researchers to identify those portions of the data that deviate statistically significant

from the remaining data and to replace these portions by typical values reconstructed from

neighboring data entries based on latent factor models. In contrast to other comparable

methods that often use some sort of global normalization of the data, BEclear avoids chang-

ing the apparently unaffected parts of the data. We tested the performance of this approach

on DNA methylation data for various tumor data sets taken from The Cancer Genome Atlas

and compared the results to those obtained with the existing algorithms ComBat, Surrogate

Variable Analysis, RUVm and Functional normalization. BEclear constantly performed at

par with or better than these methods. BEclear is available as an R package at the Biocon-

ductor project http://bioconductor.org/packages/release/bioc/html/BEclear.html.

Introduction
The well-known batch effect describes a non-biological experimental variation that may result,
in the case of genomic datasets, either from manufacturing problems of the diagnostic chips,
from imprecisely conducted experiments, or simply from mislabeling of samples. Often it is
very hard retrospectively to identify the exact cause of batch effects. In any case, batch effects
often severely affect the large-scale automatic processing of genomic datasets [1]. It is therefore
advisable to carefully check all data sets for the existence of batch effects and to adjust them if
needed before any downstream analysis is performed.

The most straightforward way to avoid issues resulting from batch effects is to leave out
from the analysis all seemingly affected batches of data or genes once they have been detected
[2]. Yet, this is often not desirable since this reduces the coverage of the studied item. Another,
certainly preferable, strategy is to always perform a sufficient number of replicate experiments.
This would likely help in detecting problems such as mislabeling of data and may also reduce
the effects of experimental mistakes if we assume that such mistakes occur at low frequencies.
However, performing replicate experiments may still not overcome the problem of a systematic
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bias in the data if this is due, for example, to manufacturing problems affecting a certain charge
of a diagnostic chip. Also, this is a costly option and is often not possible retrospectively.

In order to allow researchers to overcome problems resulting from batch effects, several
algorithms for detecting [3] and dealing [4] with batch effects have been presented [5, 6, 7].
Typically, these approaches use some sort of global normalization approach. On the one hand,
such approaches necessarily affect all data points in the complete dataset even though large
portions of the data may be perfectly alright. On the other hand, normalization methods may
not even be able to completely remove batch effect [8]. For example, even standard normaliza-
tion techniques, which are part of accepted pipelines for transforming raw signal intensities for
DNAmethylation probes into calculated β-values mapped to the genome, might still be suscep-
tible to batch effect S1 Fig).

Here, we present a novel approach for batch effect correction called BEclear. The numerical
approach behind this is of general nature and may be applied to practically any sort of numeri-
cal data. For example, we have used it in several studies to replace ambiguous values detected
with a DNA microarray from S. aureus samples [9, 10, 11]. The BEclear software presented
here was developed for processing epigenetic data for cytosine methylation in DNA samples.
Therefore, we will discuss the workflow and principles of the method on the example of DNA
methylation. First, the tool applies the well-known Kolmogorov-Smirnov test to identify sam-
ples and genes that deviate significantly from the remaining data. Second, the software exploits
a matrix approximation scheme termed latent factor models that is well-established e.g. in the
field of recovering images from partial or corrupted data [12, 13]. In this way, BEclear replaces
the batch affected entries by typical values observed for this gene in other, non-affected sam-
ples. We critically compared the performance of the method to the existing tools Combat,
SVA, Functional Normalization and RUVm. We emphasize that, in contrast to these other
methods, the BEclear correction is applied solely to the affected genes, leaving the data for
other members of the sample unchanged.

Materials and Methods

Analyzed data sets
To illustrate the performance of BEclear and for comparing it to other tools, DNA methylation
data for tumor and adjacent normal tissue for several cancer types were downloaded from The
Cancer Genome Atlas (TCGA) data portal [14]. In this study we considered array-based DNA
methylation data either at the so-called level 1 (raw signal intensities of probes for each partici-
pant's sample obtained by the HumanMethylation450 chip [15]) or at the level 3 (calculated β-
values mapped to the genome). Our batch effect detection and correction method BEclear was
established using level 3 data for breast invasive carcinoma (BRCA) with 745 tumor and 96
adjacent normal samples and then applied to other cancer types as well as to level 1 data.

Preprocessing of data
In a similar way as done in [2], data from TCGA were locally stored in a MySQL database and
then pre-processed. Tumor and adjacent normal data were considered separately to avoid
batch effects resulting from the data mixture. As a first cleaning step, we removed all entries
with missing β-values or missing gene names as well as entries with indistinct gene names. In
the next step, we kept only those probes that overlap with the promoter regions of genes. For
this we used annotations from the Eukaryotic Promoter Database EPDnew [16] as a reference
for the location of transcription start sites (TSS) for every human gene. Thus, HumanMethyla-
tion450 DNAmethylation probes were mapped to EPDnew data by gene name and chromo-
some, and only probes lying within 2000 bp up- or downstream of the annotated TSS
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(depending on the strand direction) were kept for further analysis. After this step, some genes
were still represented by multiple probes in a single sample file. When working with level-3
data, we assigned the mean β-value of all its respective entries to those genes. Finally, this gave
11154 gene– β-value pairs in tumor matched data and 11213 in adjacent normal.

Batch effect detection and correction method BEclear
Detection of batch affected samples. We used the batch identifier from the TCGA data

portal to assign every single sample to its respective batch. In order to find out whether the
data are affected by batch effects at the sample level, several standard visualization approaches
were applied separately to tumor and adjacent normal samples, namely box plots, density
plots, heat map together with hierarchical clustering, and principal component analysis (PCA).

Detection of batch effected genes (BE-genes). Genes within a batch that are likely
affected by batch effects were identified based on statistical analysis of batch medians. First, we
compared the distribution of every gene in one batch to its distribution in all other batches
using the nonparametric Kolmogorov-Smirnov (KS) test [17–20]. P-values returned by KS-test
were corrected by False Discovery Rate, FDR [21].Second, to consider only biologically relevant
differences in methylation levels, we identified the absolute difference between the median of
all β-values within a batch for a specific gene and the respective median of the same gene in all
other batches. We term this the median difference. Those genes that had a FDR-corrected sig-
nificance p-value below 0.01(KS-test) (test 1) and had a median difference larger than 0.05
(test 2) were considered as batch effected genes in a specific batch. Importantly, the list of BE-
genes differs for each batch.

Batch effect scoring (BE-score) and correction. After identifying single BE-genes we
scored the severeness of batch effect in single batches by a weighting-scheme where we grouped
each BE-gene into various bins. Each bin stands for a certain difference level between the
median in this batch and the median of the other batches. Bins standing for larger differences
then are weighted more strongly. Precisely, the BE-score was computed as:

BEscore ¼

X
i2mdifcat

ðNBEgenesi
� wiÞ

N
ð1Þ

Here N is the total number of genes in a current batch,mdifcat is the category of median dif-
ferences, NBEgenesi

is the number of BE-genes belonging to the i-thmdif category and wi is the

weight for the respectivemdif category. Weights were assigned in the following way:

1. ifmdif< 0.05, then weight = 0;

2. if 0.05�mdif< 0.1 weight = 1;

3. ifm × 0.1�mdif< (m + 1) × 0.1,.m belongs to N+

This scoring scheme considers the number of BE-genes in the batch as well as the magni-
tude of the deviation of the medians of BE-genes in one batch compared to all other batches.

Based on the BE-scores of all batches, we then identifiedusingtheDixon test from the "outli-
ers" R package [22] which batches have BE-scores that deviate significantly from the BE-scores
of the other batches (S1 Table). All such batches were flagged as batch effected batches and all
BE-gene entries in these affected batches were replaced by predicted values. Latent Factor Mod-
els (LFM) based on matrix factorization [12, 13]. The main advantage of this method is the
ability to incorporate both gene and sample preferences by taking into account the values of
neighbor entries when predicting a missing value. Assuming that the dataset is represented by
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them × nmatrix D with rank r, LFM iteratively constructs anm × rmatrix L and an r × n
matrix R such that matrix multiplication [LR]ij approximately equals to Dij for every unaffected
entry A. The Gradient descent optimization algorithm was used to minimize the global loss i.e.
the difference between [LR] and D. Once it converges, entries that were not batch effected were
preserved in the completed matrix Dcomp = [LR] from the original data matrix D, so that the
algorithm replaced only the matrix entries for BE-genes in the affected batches. In case if some
of the predicted entries lie below 0 or above 1, they were assigned values of 0 and 1,
respectively.

Method validation. During the detection of single batch effected genes in adjacent normal
BRCA data we tested different values formdif, p-value and different p-value adjustment meth-
ods. Formdif values larger than 0.1, only few genes (from 103 to 1465 BE-genes) were detected
as BE-genes. After removing them, the batch effect was still visually observed. On the other
hand, whenmdif was set to values in the order of 0.01, more than 82% of all genes were
detected as BE-genes. Thus,mdif in the order of 0.1 is a reasonable value. Next, we found that
different thresholds for the p-value did not have noticeable effects on the results. With a p-
value = 0.05, BEclear identified 5990 BE-genes and 5032 BE-genes for p-value = 0.001. Further-
more, three different p-value adjustment methods (FDR, Hommel and Bonferroni) yielded
similar numbers of BE-genes of around 5500 genes.

We note that due to the usage of the Kolmogorov—Smirnov test, BEclear might not detect
batch effect in batches containing fewer than 5 samples unless the batch effect is very strong as
in the case of Kidney renal clear cell carcinoma KIRC, where the KS-test was compensated by
largemdif values for BE-genes S7B Fig).Thus, we recommend a minimum number of 5 samples
for application of BEclear.

Computational aspects. The matrix completion method was assessed in terms of overall
accuracy and prediction time when applied to DNAmethylation data. For testing purposes we
used again the BRCA adjacent normal dataset. As a measure of accuracy, we computed the
average absolute deviation between known and predicted entries (beta-values) of the matrix.
Due to the fact that BEclear found 5.8% entries to be affected, testing was performed on 6% of
additional randomly selected entries. Generally, the time needed to perform LFM prediction
grows exponentially with the size of the data. For the BRCA dataset studied here (11213 genes
in 96 samples), this task could be infeasible without separating the initial matrix into blocks of
data and running LFM independently for every block. This approach also enables parallel exe-
cution on multi-core processors, what leads to significant savings in computation time.

We also analyzed how the size of the block of data to which LFM was applied affected the
prediction accuracy. This parameter was varied from 10 to 250 in increments of 5. In all cases
LFM yielded a similar accuracy that differed at most by 0.02 (S5 Fig).Note that in case when
the size of the block of data is too large, this significantly affects the computation time without
bringing an improvement in accuracy. On the other hand, a very small block size might not
incorporate gene preference since there might be some large batch with batch effect. Also, the
block could contain some inner part of that batch.

Results and Discussion

Batch effect detection and correction for BRCA data
We start by illustrating the performance of BEclear using DNAmethylation data for breast
cancer (BRCA) samples downloaded from the TCGA portal [14]. For simplicity, we start with
the analysis of level-3 data where methylation values are aggregated into one value per gene.
Below, we present an analogous analysis of breast cancer level-1 data with BEclear. In that case,
the notion of a batch-effected gene (that is used in the following) should be replaced by the
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notion of a batch-effected probe. S2 Fig shows box plots representing the distribution of β-val-
ues (proportion of methylatedCpG nucleotides ranging from 0 to 1) for all genes in BRCA sam-
ples both on a per-sample and a per-batch basis. These plots illustrate clearly that, in batch 136,
the distribution of β-values of genes is shifted to larger values than in the other batches. The
per sample plot (Fig 1A) shows that the difference in batch 136 is not due to only one sample
but exists in all but two samples from this batch. Also the tumor data (S2B Fig) of batch 136
show a general increase of β-values. However, the difference is not as large as in the adjacent
normal data, as seen in the per-sample plot, where only 15 out of 27 samples behave differently
compared to other batches. This batch effect in adjacent normal data is also well apparent in
the PCA, heatmap, and density plots (S3 Fig). Clearly, most samples from batch 136 tend to
cluster together (S3A and S3B Fig) and the density of this batch is less sharp and shifted com-
pared to other batches (S3C Fig).

This result observed by visual inspection was also confirmed by the BEclear method. For
adjacent normal data we identified the number of batch affected genes (BE-genes) in every
batch belonging to the respectivemdif categories for the difference of median values (S2
Table). For example, the distribution of β-values for the SPINK2 gene in batch 136 (S4 Fig) is
statistically significantly different from its distribution in all other batches (KS-test p-
value = 9.41�e-6). This dataset is clearly affected by a strong batch effect in batch 136 since
approximately 47% of all genes in this batch differ from their median β-value in the other
batches by more than 0.05 (BE-score = 0.605; p-value< 0.001 Dixon test for BE scores). The
batch effect in batch 136 in BRCA tumor data is not as drastic as in adjacent normal data but
still has a BE-score of 0.19 (S3 Table; p-value < 0.001 Dixon test for BE scores).BEclear
adjusted the methylation values of 6079 genes in13 batches in adjacent normal data and of
3587 genes in 31 batches in tumor data (Fig 1B) what successfully reduced the batch effect.

Batch effect scoring of other tumor types
Additionally we assessed six further cancer types that are well represented at the TCGA portal
in terms of batch effects (S1 Table). BEclear identified one further minor batch effect in tumor
samples of Kidney renal clear cell carcinoma (KIRC) with p-value<0.001 (Dixon test). A simi-
lar finding was recently reported in [5].As for BRCA data, TCGA provides many KIRC batches
but batch 32 is represented by only 2 samples (S7A Fig). Even though this batch doesn't contain
many BE-genes, the median differencemdif of those genes is quite large (S7B Fig), yielding a
BE-score of 0.185.

Comparison of BEclear against existing BE correction methods on real
data
Next, we compared BEclear against several well established methods for batch effect correction.
We note that the individual methods require different pre-knowledge about the data. BEclear,
Combat and FunNorm require knowledge of the batches, whereas SVA and RUVm require
that two classes of data exist (for example, tumor and normal samples). ComBat [4] is a part of
the Surrogate Variable Analysis package [6] in R [23]. It uses an empirical Bayes framework
based on a location (mean)/ scale (variance) model. The method adjusts the data so that all
batches have similar values of means and variances in all batches. Since DNA methylation data
generally do not follow a normal distribution, we opted for the nonparametric version of Com-
Bat to correct BRCA data. Before running the batch effect adjustment, batches 185 and 93 were
excluded from normal and tumor data, respectively, because ComBat is not able to handle
batches just containing a single sample.
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We separately corrected adjacent normal (S8A Fig) and tumor (S8B Fig) data using Com-
Bat. The tool was obviously able to remove the observed batch effect in batch 136 by equalizing
upper quartiles, medians and lower quartiles for every box in normal data. In contrast to the
adjacent normal data, the variation between the range of the boxes in tumor data is mostly
maintained compared to the original data whereas the formerly outstanding batch 136 is obvi-
ously corrected and boxes are shifted to a similar level compared to the other batches. Inspec-
tion of the number of BE-genes remaining after BE correction showed that both ComBat and
BEclear were able to remove batch effect and had a similar performance (S9 Fig).

In the course of this comparison we noticed the following differences between ComBat and
BEclear. As mentioned before, ComBat cannot handle batches that only contain a single sam-
ple and assumes as default that the data follow a normal distribution. As is typical for normali-
zation methods, ComBat adjusts all entries in the dataset even though not all of them are
affected by batch effect. Especially in the tumor data, which inherently contains more variation,
we speculate that the strict adjustment of the data by Combat might diminish biological varia-
tion. In contrast, BEclear leaves all unaffected parts of the data as is and only replaces the
entries of batch effected genes in certain batches by the predicted entry based on the gene and
samples preference. One artifact is that ComBat produces many values above 1 and below 0,
whereas β -values must be inside the interval [0;1] by definition (S10 Fig). For tumor data after
BE correction, ComBat produced 261 values above 1 and 6529 below 0. Some of these values
exceed the allowed interval by more than 0.15. In contrast, BEclear yielded only 32 for each
case and the maximum deviation was 0.06. In the case of adjacent normal data only few such
cases were observed (above 1: ComBat 0, BEclear 3; below 0: Combat 37, BEclear 0). It should
be mentioned that ComBat was originally designed to handle batch effects in gene expression

Fig 1. Box plots of adjacent normal breast cancer samples from TCGA (level 3 data—calculated β-
valuesmapped to the genome), per sample level (96 samples). A. before batch effect adjustment. The p-
value < 0.001 for BE-score of batch 136 (Dixon test)B. after applying BEclear method.

doi:10.1371/journal.pone.0159921.g001
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data where the value range is not restricted to stay between 0 and 1. In cases, where most of the
genes are unmethylated, ComBat will shift the data strongly towards 0 resulting in many
entries lying below 0 (S10B Fig). Such problems arise with BEclear much less often. We finally
eliminated this problem in BEclear by cutting values at 0 and 1.

Then, we compared BEclear against Surrogate Variable Analysis (SVA). When applying sva
and fsva R functions [6] to level 3 adjacent normal and tumor BRCA data, we noticed that SVA
was able to remove batch effect to a large extent still preserving variation in the data, in distinc-
tion to ComBat. Indeed, the adjustment done by SVA appears less effective or too cautious
than that of BEclear. Evidence for this provided by Fig 2 showing the number of genes that
stilled showed significant differences between batches (KS-test) after batch effect adjustment.
Here, adjustment by BEclear gave far less BE-genes than SVA.

Finally, we compared BEclear to the recently presented method Functional normalization
that was designed specifically for the 450k methylation array [5, 24]. At first glance, Functional
normalization was indeed able to remove batch effect (S11A Fig). However, the density of
batch 136, the most affected group of samples, still differs from the density of other batches
(KS-test p-value = 4.03�e-4, S11B Fig). After batch effect correction, Functional normalization
still gave 1128 BE-genes (of which 755 belong to batch 136, the most affected batch) whereas
BEclear only left 223 BE-genes (20 from batch 136), respectively (Fig 2). Besides, almost half
(1353 out of 3804) of all human housekeeping genes[25] are affected by batch effect in the orig-
inal data (S12A Fig) what leads to an increase of the methylation level in the most affected
batch 136. Since the promoter regions of housekeeping genes should be generally

Fig 2. Comparison of BEclear, SVA and Functional normalization (minfi package) with respect to the number of BE-genes
still remaining after the correction of adjacent normal BRCA data. Batch affected genes are defined as genes with (1) median
difference above 5% of β-value distribution and (2) showing a statistically significant difference in this batch compared to all other
batches with (p-value� 0.01) according to the Kolmogorov-Smirnov test.

doi:10.1371/journal.pone.0159921.g002
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unmethylated, we studied their behavior in the adjacent normal BRCA data before batch effect
correction and after applying BEclear or functional normalization (S12 Fig). Especially focus-
ing on those 1353 batch affected housekeeping genes clearly showed that batch 136 is still
shifted slightly upwards after functional normalization what is not the case for BEclear where
all bars have approximately equal first, third quartiles and median.

Benchmarking of BEclear against existing BE correction methods using
simulated data
For a systematic comparison of batch effect correction methods, we generated synthetic data
sets with “known” batch effects as described in [26]. First, we determined the standard devia-
tion of the methylation value of each promoter probe in level 1 adjacent normal samples (sam-
ples belonging to batch 136 were excluded due to the existing batch effect).Then we randomly
selected 8000 promoter probes (approximately 10% of all promoter probes present on the
chip) and increased the methylation values of 4000 of these promoter probes by a specified
multiple of their specific standard deviation plus a noise term [27]. The original probe values
before introducing the synthetic batch effect were considered as our gold standard. Finally,
every method except RUVm [7] was applied to the simulated data and the values of the
adjusted probes were compared to the golden standard. This procedure was performed for dif-
ferent multiples of standard deviation, ranging from 1 to 10 (Fig 3).

When considering all 8000 probes including the 4000 shifted probes,BEclear gave a much
smaller total deviation between the methylation values of BEclear-adjusted probes and the origi-
nal gold standard value. We believe that this is the case because BEclear adjusts only batch
affected entries and keeps the other entries at their original values. When focusing on the values
of the 4000 probes that were synthetically shifted (batch affected), then the performance of
BEclear relative to the other methods depended on the magnitude of the introduced batch effect.
For small perturbations (of 1 SD or 2 SD) that are typical magnitudes in real situations, BEclear
performed comparably well as Combat and better than SVA and FunNorm (Fig 4). For perturba-
tions larger than 3 SD, BEclear gave larger total deviations than the other methods for the
affected probes.When we repeated the same experiment with only 1000 affected probes, then
BEclear had a similar behavior as SVA and FunNorm (S13 Fig). These can be explained by con-
sidering that BEclear bases its predictions on the values of neighboring cells. Thus, the larger the
fraction of corrected (i.e. not batch effected) probes is, the more accurate are the values of the pre-
dicted entries. Thus, the expected magnitude of batch effects and the expected fraction of affected
probes are crucial factors in selecting the appropriate method for correcting the batch effect.

For benchmarking against the RUVmmethod we considered the identities of differentially
methylated genes in breast tumor samples vs. normal samples. As gold standard reference, we
used the list of differentially methylated probes identified in the unaffected data using the limma
package [28]. Then, we designed a synthetic batch effect in a similar fashion as in Fig 4 and
applied BEclear, RUVm, FunNorm, ComBat, and SVA to this data. Then, again we identified
differentially methylated genes in this BE-adjusted data with limma and compared the results to
the original data. Fig 5 shows the accuracy defined as(TP + TN) / (TP + TN + FP + FN) for the
difference BE-adjustment methods. BEclear yielded a similar accuracy as RUVm and both
methods were more accurate compared to all others. Again, repeating this experiment for 1000
affected probes slightly increased the accuracy of BEclear compared to RUVm (S14 Fig).

Co-methylation and differential methylation analysis
Co-methylation analysis of gene pairs was performed in the same manner as in our previous
work [2] on BRCA data before and after applying BEclear, in order to investigate the impact of
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batch effect on the amount of artifacts. Since the data are already preprocessed and contain
promoter region methylation, only pairwise Pearson correlation and 3 step filtering needed to
be computed. As the number of tumor samples significantly exceeds the number of adjacent
normal samples, only samples coming from the same participants were considered for the
combined dataset. Matching them by TCGA barcodes resulted in 190 samples all together. In
our previous study, we excluded all batch affected genes from the analysis [2]. This had the
undesired effect of removing about one quarter of all genes. Here, this filtering step could be
avoided. S4 Table lists the number of pairs of genes with correlation higher than 0.75 or lower
than -0.75 for the original data and for the BE-adjusted data. Clearly, batch effects are responsi-
ble not only for generating false associations between genes with respect to their methylation
levels in different samples, but also for losing a large portion of expected relationships. This
behavior doesn't depend on the data type and can be observed in tumor, adjacent normal and
combined samples.

Finally, differential methylation analysis between tumor and normal samples was carried
out by applying KS-test [17–20] and Significance analysis of microarrays SAM [29, 30] for
190 combined adjacent normal and tumor samples. We emphasize that the point of this anal-
ysis is not to advocate BEclear as a novel or better method to perform differential methylation
analysis. Instead, this section is meant to illustrate the problems resulting in differential
methylation analysis if batch effects are not corrected. The KS-test returned the list of genes

Fig 3. Comparison of BEclear, SVA, ComBat and Functional normalization using simulated batch effect.On the x-axis, we
quantify the magnitude of the introduced batch effect perturbation in terms of multiples of the standard deviation of the data. As a
measure of performance, the y-axis shows the total absolute difference of level 1 β-value between gold standard data and corrected
entries for 8000 probes in 13 batches.

doi:10.1371/journal.pone.0159921.g003
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whose distribution in normal samples differs from the distribution in tumor samples with p-
value below 0.01. To verify this list, SAM was applied independently and only genes returned
by both methods were considered for further analysis. In this way two lists of differentially
methylated genes were generated—one list for data without batch effect correction and
another list for data after applying BEclear. These lists contain 6147 and 6672 genes, respec-
tively. 616 genes of the second list were not contained in the first list meaning that they were
only identified to be differentially methylated after batch effect adjusting. This latter group of
genes contained many genes which are known to play an important role during cancer devel-
opment or even have been associated with breast cancer before: NRG4, TUBB, LPL, BRD2,
MYB, RAP2C, SIRT7,MAZ, HRAS, TXN, PPM1D, TP53I3, PARK7, TP63 [31–45]. Impor-
tantly, these genes would not have been identified to be differentially methylated based on
the original data.

Finally, we tested our BEclear method on raw adjacent normal data from the HumanMethy-
lation450 chip without initial preprocessing. In this case, it was searching for batch affected
CpGs instead of BE-genes and included both types of probes—from the promoter region and
other regions of the gene. It was able to detect and adjust batch effect in the same batch 136
with BE-score = 1.47 (Dixon test p-value < 0.001). Thus we recommend to use BEclear after
applying dedicated normalization methods in order to assess batch effect; and in the case of its
presence—to adjust it.

Fig 4. Comparison of BEclear, SVA, ComBat, and Functional normalization using simulated batch effect (compare Fig 3). As
a measure of performance we used the total absolute difference between gold standard data and corrected entries for 4000 batch
affected probes in batch 136.

doi:10.1371/journal.pone.0159921.g004
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Recommended use of BEclear
In this paragraph, we summarize the results from comparing BEclear to the alternative tools
SVA, Combat, Functional normalization and RUVm.(1) The first and main advantage of
BEclear over all other methods is that BEclear preserves the original measurements to the high-
est possible extent. Only entries for the batch affected genes in the distorted samples are
adjusted by BEclear; all other data points of non-affected genes and also of the batch affected
genes in the non-distorted samples are kept at their original values. In our view, this strategy is
beneficial whenever the researcher cares about the absolute values of the data entries, not only
about relative trends between them. In contrast, all other methods use some sort of normaliza-
tion and modify the values of essentially all data points. (2) Only ComBat and BEclear can han-
dle data where all samples belong to one class. This helps, for example, in adjusting tumor data
that is not accompanied by corresponding adjacent normal samples. Furthermore, BEclear can
handle single sample batches whereas this option is not available for ComBat. (3)In contrast to
Functional normalization and RUVm, the three methods BEclear, SVA and ComBat are plat-
form independent and can be applied to different levels of data ranging from raw signals to
mapped and aggregated β-values. Yet, we showed that SVA and ComBatdid not reach the
same level of performance in differential methylation analysis as BEclear and RUVm. (4)
RUVm can only correct batch effects in the context of differential methylation analysis. This is
not the case for BEclear, SVA and ComBat. (5) BEclear outperformed all other methods on the

Fig 5. Comparison of RUVm, BEclear, SVA, ComBat, and Functional normalization using simulated batch effect. For all
methods the list of differentially methylated genes (DMG) was obtained and then compared to the list of DMG for gold standard data.
Here batch affect was introduced to 4000 probes.

doi:10.1371/journal.pone.0159921.g005
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simulated data in terms of accuracy for batch effects ofless than two standard deviations in
magnitude (which is typically the case).

BEclear applies rigorous statistics to detect whether or not individual batches in the input
data are affected by batch effects. The appropriate measure to decide this is the BEscore value
computed by the program. Depending on the purpose of the experiment, BEclear can be either
used alone or combined with other post processing methods.

Conclusions
We have compared BEclear against other well established methods for batch effect adjustment.
Depending on the metrics used and the strength of batch effect, BEclear either outperformed
other methods or performed comparably well. As the other methods all use some form of nor-
malization, they affect all data entries. Such normalization approaches may be most appropri-
ate to correct for technical variations (or errors) where all probes on an array are affected in a
more or less similar way. In contrast, BEclear adjusts only those portions of the data that were
identified to differ significantly from the other batches. This strategy may be useful, for exam-
ple, to process data from diagnostic chips showing some inhomogeneity or ambiguity in certain
areas/entries. Thus, we suggest BEclear as a novel method to control batch effects in the data
remaining after application of standard normalization techniques.

Supporting Information
S1 Fig. Per sample boxplot of adjacent normal BRCA data from TCGA, level 1 data. This
stands for DNA methylation raw signal intensities of probes for each participant's sample.
Batch effect is clearly present in batch 136 since the distribution of β-values in these samples
significantly deviates from the other samples. This illustrates that the background correction
technique applied by themethylumi package when processing level 1 data into level 3 data did
not remove the batch effect in the batch 136.
(PNG)

S2 Fig. Box plots of breast cancer samples from TCGA (level 3 data). A. Adjacent normal
samples per batch level (13 batches). B. Tumor samples, per batch level (32 batches). C. Subset
of tumor samples for batch 136 and surrounding batches, per sample level. All these plots illus-
trate clearly that batch 136 is affected by batch effect in both tumor and adjacent normal sam-
ples.
(TIFF)

S3 Fig. Visual inspection of batch effect in adjacent normal breast invasive carcinoma data
from TCGA (level 3 data). A. The heatmap demonstrates that all but two samples from batch
136 form a cluster that splits off from the other samples at the top of the hierarchy. B. Plotting
the first two Principle Components and projecting samples on them clearly distinguishes sam-
ples from batch 136 from the rest. C. The density plot of every batch shows that the β-values in
batch 136 have a different distribution than in the other batches.
(TIFF)

S4 Fig. Per batch boxplot of the β-values for gene SPINK2 in adjacent normal breast inva-
sive carcinoma data from TCGA (level 3). For this gene, we identified the largest difference of
0.428 between the median of batch 136 and the median of the other batches.
(PNG)

S5 Fig. Accuracy assessment of the Latent Factor Model.Here, we investigated the impact of
the block size on the overall accuracy of LFMmatrix completion. Four parameters were
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computed: mean, median, minimal and maximum difference between actual and predicted β-
value entries. The size of the block of the data, to which LFM was applied, was varied from 10
to 250. Larger block sizes increase the frequency of large β-value differences (green curve).
Overall, LFM shows good prediction accuracy in a wide range of data block sizes whereby the
median of the difference remains in the range of 0.01 and the mean stays around 0.02.
(PNG)

S6 Fig. Results of batch effect correction of breast cancer data from TCGA using BEclear.
A. Per batch boxplot of corrected adjacent normal data. B. Per batch boxplot of corrected
tumor data. C. Density plot and D. PCA plot of corrected adjacent normal data. In the per
batch boxplot of corrected normal data (S6A Fig) batch 136 does not stand out explicitly any-
more. This is also confirmed by the per sample boxplot (Fig 1B from main text). Even though
the tumor dataset had a smaller batch effect than adjacent normal samples, it was successfully
adjusted and now the bar corresponding to batch 136 is in a similar range compared to other
batches (S6B Fig). Additionally, S6C and S6D Fig confirm the positive effect of BEclear on nor-
mal data. The corrected data of batch 136 is now positioned next to all other batches. However,
it is also apparent that a certain variation between samples remains since BEclear adjusted only
the methylation values of BE-genes.
(TIFF)

S7 Fig. DNAmethylation data for kidney renal clear cell carcinoma tumor samples, KIRC,
from TCGA. A. Per sample boxplot. Batch 32, which contains only two samples, has a batch
effect score equal to 0.185 signaling that its data should be corrected. B. Number of genes
belonging to different categories of median differences (mdif) between genes in the current
batch and the same gene in all other batches (as described in section 2.3.3. “Batch effect scor-
ing” in the main text).
(TIFF)

S8 Fig. Correction of batch effect in BRCA data from TCGA using the tool ComBat. The
previously observed batch effect in batch 136 was corrected both in A. adjacent normal and B.
tumor data.
(TIFF)

S9 Fig. Comparison of original TCGA data, data adjusted by ComBat, and data adjusted by
our correction method BEclear. Shown are the number of batch effected genes in single
batches from A. BRCA adjacent normal and B. BRCA tumor data.
(TIFF)

S10 Fig. Comparison of the tools ComBat and BEclear with respect to the number of
wrongly predicted entries with incorrect β-values below 0 or above 1.Note that BEclear sets
these values eventually to 0 and 1. A. Boxplot of entries with values larger than one in the breast
cancer tumor data from TCGA adjusted either by ComBat or by BEclear. B. The same as in A
showing the number of values below 0. C. Boxplot of values below 0 in adjacent normal data
after correction by ComBat.
(TIFF)

S11 Fig. Results of batch effect adjustment of breast cancer adjacent normal data from
TCGA using the tool Functional normalization. A. Per sample boxplot B. Density plot. Func-
tional normalization was able to adjust the batch effect equally well as BEclear since S11A Fig
looks very similar to what was obtained after BEclear correction (S6B Fig).
(TIFF)
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S12 Fig. Boxplots of 1353 batch affected housekeeping genes in adjacent normal breast
invasive carcinoma data from TCGAA. before any batch effect adjustment B. after functional
normalization C. after batch effect correction with BEclear. The most affected batch is marked
in red.
(TIFF)

S13 Fig. Comparison of BEclear, SVA, ComBat and Functional normalization using simu-
lated batch effect (compare section 3.4 in the main text and Fig 4. In contrast to the main
section, here only 1000 samples were perturbed). As a measure of performance we used the
total absolute difference of the β-values between gold standard data and corrected entries for
1000 batch affected probes (out of 8000 probes).
(PNG)

S14 Fig. Comparison of RUVm, BEclear, SVA, ComBat and Functional normalization
using simulated batch effect (compare Fig 5 in the main text.Here, only 1000 probes were
perturbed instead of 4000). For all methods the list of differentially methylated genes (DMG)
was obtained and then compared to the list of DMG for gold standard data. Here batch affect
was introduced to 1000 probes (out of 8000). The x-axis indicates for the magnitude of the
introduced batch effect.
(PNG)

S1 Table. BE scoring of DNAmethylation data for 7 different cancer types from the TCGA
portal. Cancer types and batches which were identified to have a batch effect are marked in
bold. This table contains the description of cancer types, batch identifiers obtained from the
TCGA portal and the batch effect score (see Eq (1) main text). Only those batches with BE-
score over 0.01 are listed here since, generally, every batch has some extremely small non-zero
BE-scores. This is due to some variation in a few genes and only in rare cases the BE-score for a
batch is exactly zero. All the batches belonging to LUSC have a BE-score in the range of (0;
0.01) because not more than 97 genes in a single batch behave differently compared to other
batches. The Dixon test yielded p-values for testing whether the BE-score of one of the batches
differs significantly from the others in the same cancer type. Note that Dixon test is applied to
a set of batches for one condition, not to a single batch. Hence, the reported p-value belongs to
the respective set of batches. Note also that the Dixon test should not be considered alone but
with BE-score threshold = 0.1, since it is prone to finding significant deviations of BE-scores if
they are close to 0, as in the case for UCEC (adjacent normal samples) and THCA (adjacent
normal and tumor samples) data.
(DOCX)

S2 Table. BE scoring of batches in BRCA adjacent normal data from TCGA. The median
difference counts the number of genes for which the median DNA methylation in this batch
differs from its median in all other batches by a value falling into the respective intervals speci-
fied at the top. The BEscore is computed according to Eq (1) in the main text.
(DOCX)

S3 Table. BE scoring of batches in BRCA tumor data from TCGA (similar to S1 Table).
(DOCX)

S4 Table. Results of co-methylation analysis. Listed are the number of highly co-methylated
pairs of genes (Pearson correlation higher than 0.75 or lower than -0.75) for three different
types of data after batch effect adjustment with BEclear and before.
(DOCX)
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