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Abstract

Cancer metastasis is a multi-step, secondary tumor formation that is responsible for the vast 

majority of deaths in cancer patients. Animal models have served as one of the major tools for 

studying metastatic diseases. However, these metastasis models inherently lack the ability to 

decouple many of the key parameters that might contribute to cancer progression, and therefore 

ultimately limit detailed, mechanistic investigation of metastasis. Recently, organ-on-a-chip model 

systems have been developed for various tissue types with the potential to recapitulate major 

components of metastasis. Here, we discuss recent advances in in vitro biomimetic on-a-chip 

models for cancer metastasis.

Introduction

Cancer metastasis is the dissemination of a primary tumor to distant sites in the body, often 

resulting in the formation of many secondary tumor masses. The dissemination process often 

involves multiple steps, including tumor angiogenesis (the ingrowth of new capillary vessels 

that feed the growing tumor), intravasation (the migration of cancer cells into the blood 

stream), extravasation (attachment and escape of cancer cells out of the blood vessels at a 

distant site), and colonization at a distal tissue [1]. Even after primary tumor resections or a 

series of chemotherapeutic treatments, cancer metastasis can be lethal and is responsible for 

90% of deaths in cancer patients [2].

Animal models have served as one of the primary tools for studying cancer metastasis [3]. 

Through technologies such as green fluorescent protein (GFP) transgene expression [4] and 

the development of spontaneous [5], experimental [6], and transgenic mouse metastasis 

models [7], we have been able to not only track the cancer cells in vivo but also identify key 

genes for metastatic progression. Although these in vivo studies provide physiologically 

relevant perspectives on tumor pathology, the inability to isolate the many interacting 

parameters that probably participate in metastasis in animal models presents disadvantages 

in identifying clear mechanisms. Metastasis is a complex and dynamic process, influenced 
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by the multiple local tissue microenvironments the cancer cells experience as they transit 

through the body and involving cross-communication amongst several cell types [8]. These 

multiple parameters are intimately coordinated, which make it hard to study how each 

parameter contributes to metastasis using traditional in vivo models. Therefore, there has 

been a growing interest in developing biomimetic in vitro systems that can (1) recapitulate 

the key parameters that affect tumor progression (e.g., oxygen tension, nutrient gradients, 

and tissue stiffness) and (2) provide the flexibility to decouple these parameters in 

experimental settings.

For tuning certain physical conditions (e.g., oxygen tension, nutrient gradients, and tissue 

stiffness), in vitro models can be advantageous over in vivo models to study effects of these 

parameters. For example, oxygen tension and nutrient gradients are determined by the tissue 

location in the body, the metabolic needs of its parenchyma, and the vascular features, such 

as vessel density, network, and permeability. Manipulating and monitoring such parameters 

are therefore challenging in the in vivo setting. By contrast, tools such as hypoxia chambers 

and chemical inducers of hypoxia inducible factor (HIF) allow easier modulation of oxygen 

tension in the system and/or hypoxia-related gene expression. Composition of the cell 

culture media can also be optimized to create desired nutrient gradients. Tissue stiffness of 

tumor extracellular matrix (ECM) modulates tumor cell migration, aggressiveness, 

proliferation, chemotherapeutic response, and dormancy [2]. Artificially manipulating the 

stiffness and the composition of the tumor ECM in vivo is challenging. By contrast, we can 

easily tune the matrix stiffness and composition in vitro by manipulating crosslinking 

density and available cell attachment moieties in in vitro scaffolds.

Such models have begun to focus on capturing various aspects of cancer cell migration, 

adhesion, and proliferation; and cancer cell interaction with other cells in two-dimensional 

(2D) and three-dimensional (3D) culture. Two-dimensional wound healing models provided 

gradient-independent migration of cancer cells [9]. Co-culture system in 2D/3D allowed 

study of cell-to-cell interaction and paracrine signaling [10]. Three-dimensional spheroid 

models showed tumor proliferation and survival [11]. While these simple in vitro models 

have helped identifying the basic machinery, recent advances in biomaterials and fabrication 

techniques [12] have led to the development of various organ-on-a-chip models [13] that 

provide more physiologically relevant platforms for modeling the tissue microenvironment, 

including proper gradients of cell types and their paracrine signals, matrices, vessel network, 

and flow [14]. For example, lung-on-a-chip and bone marrow-on-a-chip recapitulated many 

aspects of these organs’ properties in vitro [15,16]. Given that lungs and bones are 

vulnerable target organs for metastasis, these organ-on-a-chip models may serve as in vitro 
platforms to study organ invasion. In addition, our group and others have developed in vitro 
blood vessel models to mechanistically study angiogenesis [17,18••,19,20-22]. With 

advancements and appropriate combination of these systems, we believe biomimetic on-a-

chip models can become an imperative platform for studying tissue-specific cancer 

metastasis that can ultimately provide a better guidance for future clinical studies. In this 

review, we discuss advances in biomimetic on-a-chip models that have allowed us to begin 

to investigate key mechanisms of cancer metastasis (Figure 1).
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Models for tumor angiogenesis

Tumor angiogenesis is formation of new blood vessels in tumor stroma, originating from 

pre-existing blood vessels in the host [8]. Tumor blood vessels provide cancer cells with 

oxygen and nutrients, and more importantly, they serve as disseminating routes for 

metastasis [23]. Physiological angiogenesis includes angiogenic growth factor-induced 

receptor activation in endothelial cells (ECs), followed by basement membrane degradation 

by proteases secreted from the activated ECs. Proliferating ECs in the surrounding matrix 

form new sprouts, and these sprouts make loops to become a vascular lumen [23]. There 

have been on-a-chip models that recapitulate hallmarks of the angiogenesis, such as vascular 

sprouting [18••,24], network formation [20,21], perfused lumen formation [18••,19,21], and 

maturation [25,26]. For example, Nguyen et al. developed endothelial sprouting model 

system, which induced in vivo-like directed invasion of tip cells with filopodia-guided 

protrusions, apical–basal polarization of stalk cells, and lumen formation (Figure 2i) [18••]. 

Three dimensional vascular network formation was demonstrated in an in vitro 
vasculogenesis model by Alonzo et al. (Figure 2ii) [21]. They reported perfused human 

capillary networks, and claimed that soluble factors derived from normal human lung 

fibroblasts (NHLFs) are necessary to form a vascular network derived from endothelial 

colony forming cell-derived endothelial cells (ECFC-ECs) [21]. Functionally perfused 

neovessels are finally matured by coverage of pericytes and smooth muscle cells. Jeon et al. 
mixed mesenchymal stem cells (MSCs) and ECs in fibrin matrix, observed network 

formation under growth factor stimulation [25]. They tested vascular endothelial growth 

factor (VEGF), angiopoietin-1 (Ang-1), and transforming growth factor beta 1 (TGF-β1) in 

the platform (Figure 2iii). Compared to VEGF alone, VEGF and TGF-βl generated a non-

interconnected microvasculature; VEGF and Ang-1 promoted functional networks, showing 

α-SMA (alpha smooth muscle actin) positive cells [25]. The nature and function of the 

MSCs and α-SMA positive cells, and their mechanistic roles in vascular network formation 

and barrier function remain to be defined. Another recent paper by Kim et al. employed 

human placental pericytes, and showed pericyte coverage on their 3D microvascular network 

[26].

The examples above exhibit phenotypes of physiological angiogenesis. However, tumor 

angiogenesis is very different from normal angiogenesis: tumor vasculature is characterized 

by irregular sprouting, tortuous networks of capillaries, and leaky barrier properties [27]. 

Only in vivo intravital imaging, MRI, and in vivo image-based computer simulation have 

thus far reported these tumor-specific vasculatures [28-30]. Though underlying pathology 

could partially be explained by the overproduction of angiogenic growth factors, hypoxia, 

and abnormal ECM composition in the tumor microenvironment (TME) [27], detailed 

mechanisms have not been sufficiently well understood. Indeed, the process of generating 

angiogenesis-on-a-chip models provides the opportunity to understand the relative 

contributions and interactions of these factors required to recapitulate the unique 

characteristics of tumor angiogenesis. In this regard, providing relevant tumor angiogenesis 

models in vitro is a pivotal approach for understanding of the abnormality of tumor 

endothelium, tumor drug/particle delivery, tumor vascular mimicry, and hematogenous 

metastasis. However, modeling tumor angiogenesis is not a simple task. The in vitro tumor 
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angiogenesis models described here have not yet been reported to exhibit abnormalities for 

tumor vessels. One reason may be due to the differences in how these structures form in 
vitro versus in vivo: in vivo tumor angiogenesis usually occurs when the tumor develops to a 

certain size and stage, whereas in vitro cancer cells and HUVECs are directly mixed within 

devices does not recapitulate the time sequence of tumor angiogenesis. While these 

differences may limit the ability of current approaches to model certain complex steps of 

tumor development, their ability to nominally mimic the presence of vasculature and 

organization of tumor cells within a 3D environment may allow the system to recapitulate 

some aspects of the in vivo processes better than traditional culture approaches. As such, 

additional investigation is needed.

Models for tumor intravasation

Tumor intravasation is characterized by the migration of cancer cells through the basal 

membrane into a blood or lymphatic vessels near the tumor stroma [31,32]. Tumor 

intravasation can be triggered by oxygen tension, chemotactic gradient, ECM condition, 

impaired endothelial barrier function, and epithelial to mesenchymal transition (EMT) in 

cancer cells, etc. [8,33,34]. Despite this general notion, it is unclear which element is 

predominant for intravasation in certain types of cancer and which mechanisms govern the 

process under a specific treatment such as anti-angiogenic therapy. Developing in vitro 
models for intravasation will enhance our understanding of tumor intravasation in many 

different contexts.

The model systems for tumor intravasation contain tumor and vascular compartments, 

examining tumor cell migration into the vasculature. Such platforms could be based on 

microfluidic systems [35], transwells [36•], and pre-vascularized tumor spheroids [37••]. For 

example, Zervantonakis et al. demonstrated macrophage-mediated tumor intravasation in 

their microfluidic system that allowed them to study tumor and endothelium interface in 3D. 

They unveiled that tumor necrosis factor alpha (TNF-α) secreted by macrophages directly 

impairs endothelial barrier function and enhanced breast tumor intravasation (Figure 3ii) 

[35]. Similarly, Roh-Johnson et al. reported that direct contact between a macrophage, an 

EC, and a tumor cell plays a role in tumor transendothelial migration. In their transwell 

system, they showed that a direct contact of macrophages to the tumor cell activates RhoA in 

the tumor cell and induces invadopodium formation (Figure 3iii) [36•]. Their extending 

study on human tumor samples validated that this presence of the three cell types could 

serve as a marker for breast cancer metastasis [38]. This is a good example of synergy 

gained by using a biomimetic on-a-chip model and traditional models to understand 

metastatic diseases.

A recent study by Ehsan et al. reported that pre-vascularized tumor spheroids in vitro 
showed endothelial sprouting mimicking tumor angiogenesis. In the platform, hypoxia 

enhanced intravasation via Slug-dependent EMT signaling in the cancer cells (Figure 3i) 

[37••]. Hypoxia may contribute to tumor intravasation in other ways. For example, hypoxia 

induces ECM remodeling by HIF-1 regulated synthesis of ECM-modifying enzymes, which 

promote degradation of basement membrane and alignment of collagen fibers to facilitate 

tumor invasion to blood vasculatures [34], Further in vitro studies, examining hypoxia-
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mediated changes in ECM composition, alignment, stiffness, and cytokine production by 

cancer and stromal cells will make a significant progress in our understanding of tumor 

intravasation.

In addition to blood vessels, intravasation via lymphatic vessels is also an important model 

to be further developed in in vitro on-a-chip models. Tumor lymphatic vessels are formed by 

tumor secreted lymphangiogenic growth factors and are central routes for most carcinoma 

metastasis [8,32]. Tumor lymphatic vessels recruit cancer cells via several chemokine axes 

[39-41], promote angiogenesis and tumor growth by expressing growth factors [41,42]. 

Tumor invasion into lymphatic vessels is relatively under-investigated compared to the 

tumor invasion into blood vessels, and therefore on-a-chip models studying the interaction of 

tumor-lymphatic system would be of great interest as well.

Models for tumor extravasation

Cancer cells entering blood stream are referred to as circulating tumor cells (CTCs) [43]. 

CTCs in the blood stream finally lodge at secondary organs, mediated by capillaries in the 

organs. After the CTCs adhere to the endothelium, they transmigrate through the 

endothelium, which is referred to as tumor extravasation [44]. Extravasated tumor cells must 

adapt themselves in the new organ microenvironment to survive and form micrometastases 

[1]. According to Steven Paget’s ‘seed and soil’ hypothesis, each organ has its unique 

environment, so that different cancer types may prefer to seeding themselves in a certain 

type of organ microenvironments [45]. This hypothesis has been supported by clinical 

observations: for examples, prostate cancer prefers to metastasize to bone; head and neck 

cancer often results in metastases in cervical lymph nodes and salivary glands, but not the 

brain despite a spatial proximity [8]. Despite these observations, underlying mechanisms 

determining these organ-specific preferences are not well understood.

Organ-on-a-chip systems can mimic organ microenvironments in vitro by organizing organ 

parenchymal or stromal cells, and posing diverse biochemical and physical cues. The 

systems therefore potentially serve as pre-metastatic organ in vitro to unveil mechanisms of 

organ-specific metastasis. There have been organ-on-a-chip systems based on transwells 

[46•], capillary bed platforms [47••], and vascular channel microfluidic devices [48] to study 

organotypic metastasis.

A transwell approach has been used for modeling brain metastases. Tominaga et al. modeled 

blood–brain barrier (BBB) in transwells by employing brain ECs, brain pericytes and 

astrocytes (Figure 4ii) [46•]. This model showed that breast cancer cell derived extracellular 

vesicles (EVs) break down the BBB through the change in actin dynamic of the ECs in vitro, 

and the cancer cell derived EVs also promoted brain metastasis in vivo [46•].

Bone microenvironment was mimicked in a capillary bed platform to study breast cancer 

seeding to the bone (Figure 4i) [47••]. Bone is one of the most vulnerable organs for 

metastasis in breast or prostate cancer. The device developed by Jeon et al., featured a fibrin 

gel compartment next to microfluidic channels, where ECs, osteoblasts, and bone-marrow 

derived MSCs formed perfusable capillary beds in a bone mimicking microenvironment. As 
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a control group, they also prepared muscle mimicking microenvironment by using myoblast 

cell line, C2C12. Breast tumor cells exhibited better extravasation in the bone mimicking 

environment than in a muscle mimicking one; and the anti-metastatic mechanism in the 

muscle microenvironment involved secretion of adenosine by the muscle cells [47••].

Bersini et al. recapitulated bone metastasis using vascular channel microfluidic devices [48]. 

Their 3D device included an endothelial channel and surrounding collagen 1 matrix 

embedded with osteoblasts and MSCs. Tumor cells were introduced inside the endothelial 

channel, and the extravasation of tumor cells was observed. The system revealed the 

extravasation was mediated by the CXCL5–CXCR2 axis. These bone mimicking models 

need to be explored further in prostate cancer or other bone metastatic cancer to investigate 

whether there are general mechanisms or molecular targets for bone metastasis.

Beyond the examples above, recently developed organ-on- a-chip models need to be further 

explored for their utility in metastasis research. For example, on-a-chip models for bone 

marrow [16], lung [15], liver [49], and brain [50] could be combined with capillary bed or 

vascular channel models to serve as novel platforms for organ metastasis. These models 

could serve as in vitro pre-metastatic organ platforms, for example to screen anti-metastatic 

drug agents as well as to study disease mechanisms.

Conclusions

In vitro organ-on-a-chip models for metastasis have just started gaining attention, and there 

are numerous topics still to be explored using these models. Several challenges still need to 

be addressed for on-chip platforms before they can be widely adopted. Many of the current 

models utilize purified collagen and/or fibrin from non-human sources as their ECM, which 

often contains residual growth factors and undefined components. Not only do these ECM 

sources make it challenging to decouple and manipulate biochemical parameters of the 

cellular microenvironment (cell adhesion peptide density, for example), they also lack 

physiological fibrillar structure and stiffness that are observed in in vivo TME. Development 

of highly controllable biomimetic synthetic materials or better sources of in vivo matrix 

would therefore significantly enhance our ability to make the in vitro models physiologically 

relevant. In addition, as the on-chip platforms are becoming more and more complex, the 

point at which an organ mimicry is both ‘functional enough’ for clinical relevance and 

‘simple enough’ for practical experimentation remains to be defined. Given that human 

cancer is enormously complex and variable even between patients (e.g., with different 

outcomes often observed in the same tumor types depending on disease status, location, and 

the patient’s age or genetic background), it is unreasonable to expect to model every facet of 

human cancer metastasis in vitro. Therefore, identifying the universal key aspects of 

pathology and deducing what is ‘enough’ for an in vitro on-chip model would help set 

feasible engineering goals and measures of success. Despite more than 100 year of history of 

molecular biology, animal studies, and genetics in cancer metastasis, defeating it has not yet 

been accomplished. Successful interconnection between the biomimetic organ-on-a-chip 

models and traditional models will promise better understanding and curing malignant 

metastatic diseases.
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Figure 1. 
Schematic of the metastic process. (i) Vascularization of growing tumor, Soluble growth 

factors and cytokines released from cancer cells activate endothelial cells (yellow), resulting 

in pericyte (green) detachment, basement membrane degradation, and endothelial sprouting. 

(ii) Intravasation of invasive cancer cells. Cancer cells expressing invasive phenotypes 

(purple) squeeze through the endothelial cells and enter the circulation. (iii) Circulating 

tumor cells (CTCs) traveling to a distant tissue. (iv) Extravasation of CTCs and colonization. 

Various factors induce CTCs to adhere to the vascular wall of a distant organ and enter its 

stroma. If the microenvironment is suitable for the cancer cells, they proliferate and colonize 

the organ, Figure not drawn to scale.
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Figure 2. 
3D models for angiogenesis. (i) Formation of endothelial sprouts and perfusable neovessels 

in a 3D microfluidic device. (a) Device schematic. Two parallel channels are in a 3D 

collagen matrix, One channel is coated with ECs and the other channel is perfused with 

angiogenic factors. (b) Mature sprouts stained for laminin (red), and (c) cross-section of 

sprouts. Scale bars are 25 μm. (d) Neovessels perfused with 3-μm red fluoescent beads. 

Scale bar is 100 μm. (ii) Human capillary network formation, confirmed by CD31 staining, 

depends on interstitial flow-driven communication between endothelial colony forming cell-

derived endothelial cells (ECFC-ECs) and normal human lung fibrolast (NHLF). (a,b) Vessel 

networks developed when ECFC-Ecs and NHLFs were co-cultured regardless of the 

direction of the interstitial flow. (c,d) In the absence of NHLFs, ECFC-ECs failed to form 

vessel networks in any directional flow, (e) Vessel network is formed when the interstitial 

flow direction allows for ECFC-ECs to be exposed to NHLF soluble factors. (f) No 

significant vessel network formation occurred when the interstitial flow direction was 

arranged to restrict ECFC-ECs exposure to NHLF soluble factors. (iii) Generation of 

microvascular network in the presence of bone marrow derived MSCs and HUVEC under 

growth factor stimulation. Scale bars are 200 μm.

(i) Reproduced from [18••] with permission from the National Academy of Sciences; (ii) 

reproduced from [21] with permission from the Royal Society of Chemistry; (iii) reproduced 

from [25] with permission from the Royal Society of Chemistry.
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Figure 3. 
Models for tumor intravasation. (i) Prevascularized tumor (PVT) spheroid model, (a) 

Schematic of the PVT spheroid model. EC (A1) and tumor cell (A2) spheroids were co-

cultured with fibroblasts (A4) in 3D fibrin matrix (A3), (b) PVT spheroid shows radial EC 

sprouting (CD31, red) from the prevascularized tumor (EGFP-transfected SW620, colon) 

spheroid. Scale bar is 100 μm. (c) Decreased oxygen tension increases intravasation of the 

SW620 cells. Scale bar is 100 μm. (ii) Microfluidic tumor-vascular interface model, (a) 

Schematic of the device. EC channel (green), tumor channel (red). Scale bar is 2 mm. (b) 

Fibrosarcoma cells (HT1080, red) invade through the ECM toward EC (green). Scale bar is 

300 μm. (c) Macrophages enable tumor intravasation though TNF-α signaling, (d) Enhanced 

tumor intravasation is endothelial permeability dependent. (iii) Transwell in vitro model for 

tumor intravasation. (a) Schematic of the transendothelial migration of cancer cells in the 
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presence of macrophages. (b) A representative image of apical section of the transwell, (c) 

RhoA activity in cancer cells in the absence of direct contact of macrophages, (d) RhoA 

activity in cancer cells with or without direct contact of macrophage, (e) RhoA activity in 

cancer calls in direct contact of macrophages, (f) Tumor invasion with or without direct 

contact with macrophage. Scale bars (a,b) are 10 μm. (i) Reproduced from [37••] with 

permission from the Royal Society of Chemistry; (ii) reproduced from [34] with permission 

from the National Academy of Sciences; (iii) reproduced from [36•] with permission from 

the Nature Publishing Group.
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Figure 4. 
Models for tumor extravasation. (i) Breast tumor extravasation in the bone-mimicking 

microenvironment (BMi). (a) Schematic of the microfluidic device. ECs, MSCs, and 

osteoblasts (OBs) were initially seeded in fibrin gel. After formation of vascularized BMi, 

cancer cells (CC) were added to the side channels. (b) Cancer cell (red) extravasation 

through HUVEC (green) network in the BMi. (c) Cancer cell extravasation enhanced by 

osteocells. Myoblasts, C2C12, were used as a control. (ii) Breast tumor extravasation in the 

brain microenvironment. (a) Schematic of the in vitro model of blood–brain barrier (BBB). 

(b) Tumor extravasation in the presence of extracellular vesicles (EVs) from different tumor 

cells (D3H1: primary tumor cells, D3H2LN: lymph node metastases, BMD2a and 2b: brain 

metastases). Brain metastases derived EVs enhanced breast tumor extravasation. (c) 

Bioluminescence images of D3H2LN and BMD2a derived EVs injected mice (negative 

control, N.C.). BMD2a-derived EVs promoted brain metastasis in vivo. (i) Reproduced from 

[47••] with permission from the National Academy of Sciences and (ii) reproduced from 

[46•] with permission from the Nature Publishing Group.
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