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important features, this “floppiness” of IDPs provides them with an 
ability to be promiscuous binders and be involved in regulation and 
control of various signaling processes, being controlled themselves 
at multiple levels.4,5,21,22 Furthermore, intrinsically disordered 
protein regions  (IDPRs) are often targeted for posttranslational 
modifications (PTMs)23–26 and are known to be involved in a myriad of 
biological processes.4,5,16,18,20,27–32 Proteins that are involved in multiple 
functions and processes are sometimes referred to as “moonlighting” 
proteins, and many of these moonlighting proteins are shown to be 
either completely disordered or possess long IDPRs.33 Often, IDPs are 
specifically compartmentalized, e.g.,  IDPs and proteins with IDPRs 
in various nuclear membrane‑less organelles.34 Since cells in various 
cancers, not just of the prostate, grow and divide in an uncontrolled 
manner, it would be reasonable to assume that these moonlighting 
proteins with the multiple disordered regions have a significant role 
in many oncological processes. The validity of this hypothesis was 
demonstrated in earlier bioinformatics study where the majority of 
human cancer‑associated proteins (HCAP) were shown to contain long 
IDPRs (i.e., regions possessing ≥30 consecutive disordered residues).35 
More generally, a D2 (disorder in disorders) concept was introduced 
to emphasize that many proteins related to various human diseases 
such as cancer, neurodegeneration, diabetes, cardiovascular disease, 
and amyloidosis are intrinsically disordered.36

This two‑part study was dedicated to the analysis of the prevalence 
and functionality of disordered proteins in prostate cancer cells and to 
compare them to the abundance and functionality of IDPs in the human 
proteome as a whole. The present paper, which represents the first part 

INTRODUCTION
Prostate cancer is the most prevalent form of cancer in males. It is 
estimated that in 2016, it will account for 180 890 (21%) of new cancer 
cases. It is also estimated that 26 120 (8%) of all cancer deaths which 
will occur in the United States male population in the year 2016 will 
be caused by prostate cancer.1 Although there has been progress in the 
detection and treatment of prostate cancer, it is clear that more research 
is needed to make the diagnosis more reliable. The need for the constant 
improvement of the diagnostics tools is given, for example, by a recently 
established effect of obesity (measured in terms of the body mass index) 
on the predictive performance of the well‑established and widely used 
biomarker, prostate‑specific antigen (PSA), and PSA‑related markers 
for prostate cancer.2 These and similar facts alone should be sufficient to 
spark the scientific community’s interest in studying more on possible 
causes of this very common male disease. Sometimes, a new approach 
needs to be taken to further the advancements in biomedical research.

One of such approaches is considering roles of intrinsically 
disordered proteins, or IDPs, which are proteins that lack a stable 
secondary and tertiary structure and have been shown to constitute a 
noticeable part of any proteome of interest.3–15 At the primary sequence 
level, IDPs are characterized by noticeable compositional biases, 
being noticeably depleted in order‑promoting amino acids (Cys, Trp, 
Tyr, Phe, Ile, Leu, Val, and Asn) and being found to be enriched with 
disorder‑promoting residues (Pro, Arg, Gly, Gln, Ser, Glu, Lys, and 
Ala).3,16–18 This peculiar physicochemical nature of these proteins, 
therefore, does not favor spontaneous folding into well‑defined 
globular structures, and they, in turn, remain “floppy.”19,20 Among other 
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of this two‑part study, reports the results of the global bioinformatics 
analysis of the disorderedness of proteins that were previously shown to 
be associated with the prostate cancer pathogenesis and compares these 
proteins with the entire human proteome. The second part continues 
this analysis, being focused on more detailed characterization of the 
prostate cancer‑associated proteins from KEGG database.

MATERIALS AND METHODS
Acquisition of protein datasets
UniProt IDs of human proteins were obtained from the reviewed 
UniProt release 2015–09.37 From those, reviewed IDs without 
uncommon amino acid codes (J, X, O, U, B, and Z) and proteins shorter 
than 30 amino acids were removed. The remaining proteins totaled to 
20 120 and were considered as the human proteome set.

To obtain an experimentally validated dataset of proteins that were 
already shown to experimentally be involved in prostate cancer, we used 
results of a proteomic study that reported on the characterization of 
a total of 359 proteins, including 17 potential biomarkers of prostate 
cancer from prostatic cell lines, entered into the prostate cancer 
proteomics  (PCP) database  (http://ef.inbi.ras.ru).38 This database is 
described as a multilevel informational database that was created 
using the results of a proteomic study of human prostate carcinoma 
and benign hyperplasia tissues, and of some human‑cultured cell 
lines. Prostate cancer‑related proteins entered to this database were 
first separated by 2D electrophoresis and subsequently identified 
by mass‑spectrometry.38 Proteins are extensively annotated using 
data from published articles and existing databases and contain 
direct Internet links to the information in the NCBI and UniProt 
databases.38 Although this PCP website was originally designed in 
Russian, it can be toggled into English. The PCP database consists 
of 7 interrelated modules that contain proteomic data from different 
cell lines.38 The seven modules that were used in our analysis 
are prostate proteins  (hyperplasia, cancer), LNCAP  (IPG‑2DE), 
LNCAP (IEF‑2DE), proteins of Rhabdomyosarcoma A‑204, normal 
human myoblasts proteins, PC3, and BPH‑1. The gene names were 
retrieved from the PCP database, and then were used as identifiers to 
find corresponding human proteins in UniProtKB. Some gene product 
names could not be mapped to UniProt IDs and were not included in 
our analysis. Once these UniProt IDs were found, obvious duplicates 
were removed, which decreased this dataset to 291 proteins. Since 
the PCP dataset had 7 modules that were interrelated, there were 
many repeated UniProt IDs including those corresponding to various 
isoforms. Therefore, a series of programs were written to obtain the 
unique representatives for subsequent analysis. After parsing the files, a 
dataset consisted of 251 proteins was assembled. This dataset included 
196 reviewed UniProt proteins and 55 unreviewed TrEMBL proteins. 
The isoforms (designated with a dash and a number in their UniProt 
IDs) fell into the unreviewed category. Collectively, dataset containing 
196 UniProt‑reviewed proteins from the PCP database is referred to as 
the “Russian dataset” in our analysis and corresponding files.

An independent search of KEGG database resource (http://www.
genome.jp/kegg/)39 conducted in September 2015 provided us with 
a set of 48 proteins experimentally shown to be involved in prostate 
cancer. This dataset referred to as the “KEGG dataset” was used in a 
global analysis of abundance of intrinsic disorder in this set of prostate 
cancer‑related proteins described in section of Results. A new search 
of KEGG database conducted on May 28, 2016, gave 40 additional 
proteins with experimentally validated connection to prostate cancer. 
The resulting set of 88 proteins constituted the “extended KEGG 
dataset”, and proteins from these datasets were subjected to a more 

focused and detailed analysis of their predisposition for intrinsic 
disorder in the companion paper (Supplementary Table 1).

Proteins from Russian and KEGG datasets that were not found in 
the whole human proteome dataset were filtered out. For comparison 
purpose, a modified human proteome dataset was generated from 
which proteins included into Russian and KEGG datasets were 
excluded. Since transmembrane domains of membrane proteins 
are typically enriched in hydrophobic, order‑promoting residues, 
Russian, KEGG, and human proteome datasets were further divided 
into two categories: membrane and nonmembrane. Membrane 
and nonmembrane proteins were classified using the QuickGO 
gene association file  (gene_association.goa_human.gz, updated on 
September 14, 2015), and 41 Cellular Component Gene Ontology (GO) 
terms with ‘integral’ and ‘membrane’ on their names.40,41

Functional annotation using gene ontology (GO) terms
The GO terms for the human proteome were downloaded on September 
14, 2015, from QuickGO  (https://www.ebi.ac.uk/QuickGO/). The 
resulting file shows all of the biological processes  (P), molecular 
functions (F), and cellular component (C) for all of the human proteins 
in UniProt format. All of the GO terms that are specific for annotating 
the cellular component were downloaded from the Gene Ontology 
Consortium (http://www.geneontology.org).

Evaluation of intrinsic disorder propensity and disorder‑based 
functionality
Intrinsic disorder propensities of human proteins were evaluated using 
PONDR‑FIT, PONDR® VLXT, and PONDR® VSL2 algorithms.42–46 
For each protein, after obtaining an average disorder score by each 
predictor, all three predictor‑specific average scores were averaged 
again to generate a per‑protein intrinsic disorder score. The use 
of consensuses for evaluation of intrinsic disorder is motivated by 
empirical observations that this leads to an increase in the predictive 
performance compared to the use of a single predictor.47–49 The dataset 
average disorder scores (AVG scores) were then calculated for human 
membrane and nonmembrane proteins based on the corresponding 
per‑protein scores, and those AVG scores were used to prepare 
contingency tables.

The UniProt IDs in the set of human proteins were then used to 
match the disorder scores to the UniProt IDs of proteins in Russian 
and KEGG datasets to generate disorder scores for all of the proteins 
in our datasets. Since the human proteome disorder scores were 
only retrieved for the SwissProt reviewed human proteins, only the 
disorder propensities of the reviewed proteins in the Russian dataset 
were analyzed.

Contingency table constructions, statistical test, and common GO 
term search
Fisher’s exact test was used to find significance of the frequency (number 
of proteins) that were observed in the prostate cancer protein 
datasets  (Russian and KEGG) to have an average disorder score 
calculated based on scores all three disorder predictors (PONDR‑FIT, 
PONDR® VSL2, and PONDR® VLXT) greater than or equal to the AVG 
score of the entire human proteome. These data were used to construct 
the 2 × 2 contingency tables (Supplementary Table 1 represents an 
example of such a contingency table), so the subsequent statistical 
analyses can be performed.50 The null (H0) and research hypotheses (H1) 
shown below for both membrane and nonmembrane subsets of all 
datasets were tested using α = 0.01 as the statistical significance level.
H0: a/(a + b) ≤ c/(c + d)
H1: a/(a + b) > c/(c + d)
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IBM SPSS 22  software (IBM Corporation, USA) was used to 
perform the Fisher’s exact test whereas the R statistical package was 
used to create figures to present the data.

Similar approach was also used to find GO terms significantly 
associated with intrinsically disordered proteins in all datasets. Here, 
after categorization of the protein sets in contingency tables, Fisher’s 
exact test was performed to find GO terms significantly associated 
with proteins possessing per‑protein intrinsic disorder score greater 
than AVG score in Russian or KEGG datasets separately when those 
were compared with the whole human proteome. In these studies, 
membrane and nonmembrane proteins were treated separately. Fisher’s 
exact test P values were retained through Python 3 programming, and 
its module, scipy.

Next, significant GO terms were analyzed using AmiGo2.51 First, 
GO terms with P values smaller than 0.05 or 0.1 were obtained for 
KEGG or Russian dataset versus whole human proteome, separately. 
Those GO terms were uploaded to visualization server, and the 
resulting GO term maps were downloaded in the SVG format. These 
maps included significant GO terms specific for the protein in KEGG 
or Russian dataset and were used to find the intersection or common 
GO terms present in both datasets. Those intersection GO terms were 
analyzed using REVIGO.52

Evaluation of intrinsic disorder propensity and disorder‑based 
functionality
For prostate cancer‑related proteins from the KEGG dataset, we 
analyzed the per‑residue disorder propensities by PONDR‑FIT, 
PONDR® VLXT, PONDR® VSL2 algorithms,42–46 and by the PONDR® 
VL3 predictor that possesses high accuracy in finding long IDPRs.53 
We also used a consensus approach MobiDB,54,55 applied a binary 
disorder classifier charge‑hydropathy plot  (CH‑plot) that evaluates 
the predisposition of a given protein to be ordered or disordered as a 
whole,18,56 predicted potential disorder‑based binding sites using the 
ANCHOR algorithm,57,58 looked at the functional disorder using D2P2 
database,59 and analyzed interactivity of these proteins by STRING.60

The MobiDB database  (http://mobidb.bio.unipd.it/),54,55 that 
generates consensus disorder scores by aggregating the output 
from ten predictors, such as two versions of IUPred  (IUPred‑long 
and IUPred‑short),61 three versions of ESpritz  (ESpritz‑DisProt, 
ESpritz‑NMR, and ESpritz‑XRay),62 two versions of DisEMBL 
(DisEMBL‑465 and DisEMBL‑HL),63 JRONN,64 PONDR® VSL2B,46,65 
and GlobPlot.66

A CH‑plot represents an input protein as a point within the 2D 
graph where the mean Kate‑Doolittle hydrophobicity and the mean 
absolute net charge are used as the X‑ and Y‑coordinates, respectively. 
In the corresponding CH‑plot, fully structured proteins and fully 
disordered proteins can be separated by a boundary line. All proteins 
located above this boundary line are highly likely to be extended 
whereas proteins located below this line are likely to be compact.18,56

In addition to CH‑plot, another binary disorder predictor, 
cumulative distribution function  (CDF) analysis was used.56 It 
summarizes the per‑residue disorder predictions by plotting PONDR 
scores against their cumulative frequency, which allows ordered and 
disordered proteins to be distinguished on the basis of the distribution 
of prediction scores.56 At any given point on the CDF curve, the ordinate 
gives the proportion of residues with a PONDR score less than or equal 
to the abscissa. The optimal boundary that provided the most accurate 
order‑disorder classification was shown to represent seven points 
located in the 12th through 18th bins.56 Thus, in the CDF analysis, 
order‑disorder classification is based on whether a CDF curve of a 

given protein is above (ordered) or below (disordered) a majority of 
boundary points.56

Disorder evaluations together with important disorder‑related 
functional information were retrieved from the D2P2 database 
(http://d2p2.pro/),59 which is a database of predicted disorder for a 
large library of proteins from completely sequenced genomes.59 D2P2 
database uses outputs of IUPred,61 PONDR® VLXT,42 PrDOS,67 PONDR® 
VSL2B,46,65 PV2,59 and ESpritz.62 The database is further supplemented 
by data concerning location of various curated posttranslational 
modifications and predicted disorder‑based protein‑binding sites.

Additional functional information for these proteins was retrieved 
using Search Tool for the Retrieval of Interacting Genes; STRING, 
http://string‑db.org/, which based on predicted and experimentally 
validated information on the interaction partners of a protein of interest 
generates a network of predicted associations.60 In the corresponding 
network, the nodes correspond to proteins whereas the edges show 
predicted or known functional associations. Seven types of evidence 
are used to build the corresponding network where they are indicated 
by the differently colored lines: a green line represents neighborhood 
evidence; a red line  ‑  the presence of fusion evidence; a purple 
line ‑ experimental evidence; a blue line – co‑occurrence evidence; a 
light blue line ‑ database evidence; a yellow line – text mining evidence; 
and a black line – co‑expression evidence.60 In our analysis, the most 
stringent criteria were used for selection of interacting proteins by 
choosing the highest cutoff of 0.9 as the minimal required confidence 
level.

Finally, potential disorder‑based protein‑binding sites of prostate 
cancer‑related proteins from the KEGG dataset were identified by the 
ANCHOR algorithm.57,58 This algorithm utilizes the pair‑wise energy 
estimation approach originally used by IUPred.61,68 This approach 
acts on the hypothesis that long regions of disorder include localized 
potential‑binding sites which are not capable of folding on their own 
due to not being able to form enough favorable intrachain interactions, 
but can obtain the energy to stabilize via interaction with a globular 
protein partner.57,58

Evaluation of interactability of prostate cancer‑related proteins in 
the KEGG dataset
Interactability of human proteins related to prostate cancer from 
the KEGG dataset was further evaluated by the APID (Agile Protein 
Interactomes DataServer) web server  (http://apid.dep.usal.es).69 
APID has information on 90 379 distinct proteins from more than 
400 organisms (including Homo sapiens) and on the 678 441 singular 
protein‑protein interactions. For each protein–protein interaction (PPI), 
the server provides currently reported information about its 
experimental validation. For each protein, APID unifies PPIs found 
in five major primary databases of molecular interactions, such 
as BioGRID,70 Database of Interacting Proteins  (DIP),71 Human 
Protein Reference Database  (HPRD),72 IntAct,73 and the Molecular 
Interaction (MINT) database,74 as well as from the BioPlex (biophysical 
interactions of ORFeome‑based complexes)75 and from the protein 
databank (PDB) entries of protein complexes.76 This server provides 
a simple way to evaluate the interactability of individual proteins 
in a given dataset and also allows researchers to create a specific 
protein‑protein interaction network in which proteins from the 
query dataset are engaged. Of 88 prostate cancer‑related proteins 
in the KEGG dataset, APID was able to find protein‑protein‑related 
information on 87 proteins. No such information was available for 
the 3‑oxo‑5‑alpha‑steroid 4‑dehydrogenase 2 (SRD5A2, UniProt ID: 
P31213).
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RESULTS
Abundance of intrinsic disorder in Russian and KEGG datasets of 
prostate cancer‑related proteins
There were 20 120 proteins in the whole human proteome dataset used. 
This dataset was separated into membrane proteins and nonmembrane 
proteins:
•	 Membrane proteins: 5193
•	 Nonmembrane proteins: 14 927.

The Russian dataset included 196 unique proteins that were mined 
from the PCP database. This dataset was then separated into membrane 
proteins and nonmembrane proteins:
•	 Membrane proteins: 6
•	 Nonmembrane proteins: 190.

The KEGG dataset contained 48 proteins, 4 of which were classified 
as membrane and remaining 44 as nonmembrane proteins.

Peculiarities of distribution of disorder within the members of 
these six datasets are shown in Figure 1 in a form of DSFIT vs DSVSL2 
plots where DSFIT and DSVSL2 correspond to the mean disorder scores 
calculated for query proteins using PONDR‑FIT and PONDR® VSL2 
algorithms, respectively.

To avoid redundancy in the subsequent statistical analysis of GO 
terms, the membrane and nonmembrane subsets of the whole human 
proteome datasets were adjusted to exclude prostate cancer‑associated 
proteins. Supplementary Tables  2–5 show the resulting 2  ×  2 
contingency tables and the corresponding results are further shown 
in Figure 2 where they are depicted as a bar‑graph.

We recognize that the values of some cells in the 2 × 2 contingency 
tables (Supplementary Materials) are rather low, indicating that it is 
too risky to draw any solid statistical conclusions when there are not 
enough samples, especially when comparison is done between very 
small and very large samples. Furthermore, disorder propensities 
of proteins analyzed in this study were evaluated using a set of 
standard disorder predictors that are characterized by the accuracy 
of 80%–85%. This indicates that the confidence of conclusions 
outlined below (especially for the cases having very limited samples) 
is further influenced by the limited accuracy of predictors. Therefore, 
data presented below should be taken only as indication of potential 
tendencies in the disorder predisposition and not as the final 
statistically significant conclusions.

The average disorder scores between all three predictors (PONDR® 
VSL2, PONDR® VLXT, and PONDR‑FIT) were calculated for 
nonadjusted subsets of membrane and nonmembrane proteins in 
whole human proteome. These average disorder scores of 0.301 and 
0.437 for the membrane and nonmembrane dataset, respectively, were 
then used to perform the statistical analysis of the proportion of the 
disordered proteins in the KEGG and Russian datasets compared to the 
proportion of the disordered proteins in the entire human proteome.

The one‑sided Fisher’s exact test statistic value for the membrane 
proteins in Russian dataset is 0.363, and therefore, H0 cannot be rejected 
at the significance level of α = 0.01. This means that in the membrane 
subset of Russian dataset, the proportion of proteins that have 
per‑protein disorder scores ≥  to the AVG score is not significantly 
different from human membrane proteins that have per‑protein 
disorder scores ≥ to the AVG score.

On the other hand, the one‑sided Fisher’s exact test statistic value 
for the nonmembrane proteins from the Russian dataset is <0.001. 
Therefore, we reject H0 at the significance level of α = 0.01. From these 
data, we conclude that the fraction of the nonmembrane proteins that 
have per‑protein disorder scores exceeding the AVG score is significantly 
higher in the Russian dataset of prostate cancer‑associated proteins than 

in the human proteome. This indicates that proteins with high intrinsic 
disorder levels are found significantly more often in the nonmembrane 
Russian dataset than in the whole human proteome, suggesting that 
higher abundance of IDPs/IDPRs can be related to cancer development. 
This observation is in agreement with the results of earlier studies on 
the high abundance of intrinsic disorder in cancer‑related proteins.35

Figure 1: Abundance of intrinsic disorder in six datasets analyzed in this 
study  ‑  (a) human membrane  (red and blue circles) and nonmembrane 
proteins (pink and cyan circles); (b) human membrane (red and blue circles) 
and nonmembrane prostate cancer‑related proteins (pink and cyan circles) 
from Russian dataset;  (c) human membrane  (red and blue circles) and 
nonmembrane prostate cancer‑related proteins (pink and cyan circles) from 
KEGG‑dataset. Data for all these sets are shown in a form of proteins with 
per‑protein disorder score above (red and pink circles) or below AVG (blue 
and cyan circles). AVGs for nonmembrane and membrane proteins are shown 
as medium dashed dark green and short dashed dark gray lines.

c

b

a
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For the KEGG membrane proteins versus dataset of human 
membrane proteins, we cannot reject the H0 hypothesis at α = 0.05. 
Therefore, there is no statistically significant difference between the 
proportions of KEGG membrane proteins with the per‑protein disorder 
scores ≥ AVG and human membrane proteins with the per‑protein 
disorder scores  ≥ AVG. Similarly, for the KEGG nonmembrane 
proteins versus human nonmembrane proteins, we also cannot reject 
the Ho hypothesis at α = 0.05. Although this analysis revealed that the 
intrinsic disorder propensities of the prostate cancer‑related proteins 
in the KEGG dataset are not significantly different from the disorder 
predispositions of proteins in human proteome, we conducted more 
detailed disorder‑oriented analysis of proteins from the extended 
KEGG dataset to illustrate peculiarities of disorder distribution in 
these proteins and to see how IDPRs can be related to function and 
pathology (see Supplementary Materials).

Of the 17 potential biomarkers of prostate cancer outlined in 
Shishkin et al. paper,38 only 12 were included in the reviewed protein 
dataset analyzed in our study. All of these 12 potential biomarkers 
are in the nonmembrane subset members of which are characterized 
by the per‑protein disorder scores below the AVG disorder score. 
Furthermore, the well‑known prostate cancer biomarker PSA was also 
present in our set of nonmembrane prostate cancer‑related proteins 
characterized by the disorder scores below the AVG disorder score 
of human nonmembrane proteins. These observations suggest that 
potential biomarkers of prostate cancer are characterized by lower 
disorder levels than an average human protein.

Finding GO terms significantly associated with intrinsically 
disordered prostate cancer‑related proteins in the KEGG and Russian 
datasets
GO terms are based on three structured ontologies that are designed for 
consistent functional descriptions of proteins in a species‑independent 
manner. These terms show the relations of the query proteins to the 
biological processes they are involved in, the molecular functions they 
conduct, and the cellular components where they can be found at. 
Obviously, because GO terms are specifically designed as general terms 
of functional classification of proteins, these terms are applicable to any 
annotated protein (not only to proteins found in various pathologies 
but also to the normally functioning proteins). However, GO terms can 
also be used to find a correlation between protein intrinsic disorder 
and functionality. In fact, it has been shown in several previous studies 
that some GO terms are preferentially found to be associated with IDPs 
whereas other GO terms would be more suitable for characterization 
of ordered proteins. Our analysis was conducted to show that many 
of the GO terms ascribed to the IDPs associated with prostate cancer 
describe disorder‑related functions. This observation reemphasizes the 
importance of intrinsic disorder for these proteins.

GO term analysis using AmiGo251 did not produce noticeable 
number of disorder‑associated GO terms when the P value threshold 
of less than 0.05 was used. Since we wanted to see which functions can 
be assigned to the intrinsically disordered proteins related to prostate 
cancer, we decided to use a loosen P value threshold of less than 0.1 
to find disorder associated GO terms (Supplementary Table 6). One 
should keep in mind that although the use of the loosen P value (P < 0.1) 

Figure 2: Bar graphs presenting data from Supplementary Tables 2–5. These graphs represent analyzed datasets that were split up into the membrane and 
nonmembrane groups, in which each bar represents either data for the human proteome, or the Russian (PCP) dataset (a), or KEGG dataset (b) within their 
respective group. The red section of each bar represents the fraction of proteins that have per‑protein average disorder score ≥ AVG and the blue sections 
represent the fraction of proteins that have per‑protein average disorder score < AVG.

ba
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does not provide statistically significant data, the corresponding analysis 
generates a notable statistical trend that can be used to look for weakly 
significant correlations between intrinsic disorder and function. Among 
those GO terms with tentatively significant correlation to intrinsic 
disorder, four process‑oriented GO terms – GO: 0006915 (apoptotic 
process), GO: 0008219 (cell death), GO: 0012501 (programmed cell 
death), and GO: 0016265 (death) – were related with programmed 
cell death through REVIGO52 (Supplementary Figure 1a). Moreover, 
those four chosen GO terms showed a simple map through AmiGo2 
visualize tool (Supplementary Figure 1b).

Bioinformatics analysis of the prostate cancer‑related proteins in the 
KEGG dataset
To gain information on the disorder status of prostate cancer‑related 
proteins in the KEGG dataset and on the potential functional roles 
of their predicted IDPRs, we looked at them using a set of disorder 
predictors of PONDR family (PONDR‑FIT, PONDR® VSL2, PONDR® 
VL3, and PONDR® VLXT), a binary disorder predictor CH‑plot, 
a consensus disorder evaluating internet tools MobiDB and D2P2, 
a platform STRING for finding potential interaction partners of 
a protein of interest, and a tool for predicting the disorder‑based 
binding sites (ANCHOR). Some of these results are summarized in 
Supplementary Table 7 and Figure 3.

Figure 3 illustrates that disorder predictions generated for these 
KEGG proteins by PONDR‑FIT, PONDR® VSL2, and MobiDB in a form 
of per‑protein disorder scores (DSs) or the percentage of disordered 
residues  (per‑protein content of disordered residues, CDRs, for 
PONDR‑FIT and MobiDB) are generally agreed. Furthermore, from data 
shown in Supplementary Table 7, it is clearly seen that many proteins 
in this dataset are predicted to be moderately or highly disordered 
using the classification of proteins as highly ordered, moderately 
disordered, or highly disordered, if their CDR <10%, 10% ≤ CDR <30%, 
and CDR ≥30%, respectively.77 In fact, according to these criteria, the 

KEGG dataset includes 34 (38.6%), 38 (43.2%), and 16 (18.2%) highly 
disordered, moderately disordered, and highly ordered proteins, 
respectively. This suggests that almost 82% of prostate cancer‑related 
proteins in this dataset are very noticeably disordered.

Supplementary Table  7 shows that although the disorder 
propensities of these proteins are spread over a wide range (e.g., by 
PONDR‑FIT, from 3% of disordered residues in PI3K‑α to 100% of 
such residues in BAD), the vast majority of them possess sizable IDPRs 
containing at least 10 consecutive residues predicted to be disordered, 
with many of these proteins having several such regions. In fact, only 
eleven proteins from the KEGG dataset were shown not to have such 
regions, and the remaining 77 proteins possessed 293 IDPRs (i.e., on 
average, each of these 77 proteins is expected to contain 3.81 such 
regions).

Often, IDPRs contain local regions with a strong tendency 
to become ordered at interaction with specific binding partners. 
Therefore, these regions might undergo coupled folding and binding, 
as shown for many of them by the NMR studies.78–83 Furthermore, 
such local short segments of order located within long disordered 
regions were shown to often coincide with the potential‑binding 
sites.84 Therefore, a number of computational tools for finding such 
molecular recognition features (MoRFs) were developed (e.g., a tool for 
predicting short binding regions with high α‑helix‑forming propensity, 
α‑MoRFs85,86 or the more general ANCHOR algorithm for finding 
potential disorder‑based binding sites,57,58 which are termed below 
AIBS for ANCHOR‑identified binding sites). Curiously, in earlier 
studies, a systematic application of such computational tools indicated 
that α‑MoRFs are likely to play important roles in protein‑protein 
interactions involved in signaling events.85 Our analysis revealed that 
the majority of proteins in the KEGG dataset (71 of 88) are predicted 
to have at least one AIBS, and that many of these proteins are expected 
to have multiple such binding regions each (Supplementary Table 7). 
Furthermore, AIBSs are found in almost each KEGG proteins that 
have at least one disordered region, and many of these proteins 
are shown to contain multiple disorder‑based binding sites, with 
34 and 30 AIBSs being found in CREB‑binding protein  (Q92793) 
and histone acetyltransferase p300  (Q09472), respectively. In 
fact, we found 472 AIBSs in 71 human proteins associated with 
prostate cancer, suggesting that on average, each of these protein 
contains >6.6 disorder‑based binding sites. Supplementary Table 7 
also shows that the length of AIBSs is ranging from 6 to 150 residues, 
and the overall content of residues involved in the disorder‑based 
interactions ranges from 0% to 70.8%.

The presence of more than one AIBS in a protein suggests that 
many prostate cancer‑related proteins in the KEGG dataset commonly 
utilize disorder for their interactions with binding partners, and that 
these proteins are involved either in the polyvalent interactions using 
multiple binding sites to interact with one binding partner or in 
scaffolding‑like interactions using multiple binding sites to interact 
with multiple binding partners. The wide spread of lengths of identified 
AIBSs also suggests the presence of multiple disorder‑based binding 
mechanisms (ranging from local folding‑on‑binding of short regions 
to wrapping around binding mode to global binding‑induced folding 
of large regions).

We established that many of the proteins in the KEGG dataset 
are predicted to have noticeable amounts of intrinsic disorder. 
Furthermore, this analysis revealed that 14 of these proteins (P05019, 
P14625, P36402, P46527, Q00987, Q92934, Q99801, Q9UJU2, P38936, 
P07900, Q92569, P08238, Q9Y6K9, and Q02930) are expected to 

Figure 3:  3D representation of the results of evaluation of disorder levels in 
human prostate cancer‑related proteins from the extended KEGG dataset. 
Here, the percentages of residues in these proteins predicted to be disordered 
by PONDR‑FIT and PONDR® VSL2 are compared with the predicted 
percentages of disordered residues predicted by the MobiDB platform that 
aggregates the output from ten disorder predictors. The overall goal of this 
plot is to show the overall agreement between the outputs of different disorder 
predictors used in this study.
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be disordered as a whole according to the CH‑plot, i.e., are located 
above the boundary line separating compact and extended disordered 
proteins, and 16 more of these proteins, being located below this 
boundary, are found in its proximity (P04085, P04637, P25963, P60484, 
Q09472, Q92793, Q9NQB0, P62993, Q9Y243, P01127, Q9GZP0, 
P27986, O00459, Q9HCS4, Q96BA8, and P18848). Analogous 
analysis using another binary predictor, cumulative distribution 
function (CDF) plot (where proteins expected be disordered or ordered 
as a whole are found based on the position of their CDF curve relative 
to the boundary separating mostly ordered and disordered proteins), 
revealed that 39 are expected to be mostly disordered (O00716, P04085, 
P04637, P05019, P06400, P10275, P10415, P16220, P25963, P36402, 
P46527, P49841, Q00987, Q01094, Q07889, Q09472, Q12778, Q14209, 
Q92793, Q92934, Q99801, Q9NQB0, Q8WYR1, P38936, O43889, 
Q9UJU2, P01127, O00459, P15056, Q07890, Q04206, Q9Y6K9, 
Q9HCS4, Q02930, Q8TEY5, Q68CJ9, Q70SY1, Q96BA8, and P18848) 
since the majority of their CDF curves are located below the boundary, 
whereas the CDF curves of 11 additional proteins (O14920, P01308, 
P10398, P14625, P24864, P36507, Q02750, P07900, O15530, P27986, 
and Q92569) follows boundary almost exactly, suggesting that these 
proteins are definitely not ordered as whole, as their overall disorder 
status is “undecided”. It was pointed out that combined analysis of 
protein disorder status using CH‑plot and CDF analysis simultaneously 
can provide additional important information on the classification of 
protein disorder. This combined approach is known as the CH‑CDF 
analysis,87–89 and it is based on the presence of a principle difference 
between the sensitivity of the CH‑plot and the CDF analysis to different 
types of disorder. Here, the CH‑plot can discriminate proteins with 
substantial amount of extended disorder (random coils and pre‑molten 
globules) from proteins with compact conformations  (molten 
globule‑like and rigid well‑structured proteins) whereas the CDF 
analysis may discriminate all disordered conformations, including 
molten globules and mixed proteins containing both disordered 
and ordered regions, from rigid well‑folded proteins. Therefore, the 
CH‑CDF analysis represents a computational tool to discriminate 
proteins with extended disorder from potential molten globules 
and mixed proteins containing comparable amounts of ordered and 
disordered regions.87–89 Therefore, based on the combination of outputs 
of their CH‑plot and CDF analyses, proteins can be classified as follows: 
proteins predicted to be disordered by CH‑plots, but ordered by CDF; 
ordered proteins  (i.e., proteins predicted as ordered by both tools); 
putative molten globules or mixed proteins (i.e., proteins predicted 
to be disordered by CDF, but compact by CH‑plot); and proteins 
with extended disorder (i.e., proteins predicted to be disordered by 
both methods).87–89 Based on this classification, there are 13 prostate 
cancer‑associated proteins with extended disorder (P05019, P14625, 
P36402, P46527, Q00987, Q92934, Q99801, Q9UJU2, P38936, P07900, 
Q92569, Q9Y6K9, and Q02930) and there are at least 29 putative native 
molten globules or mixed proteins containing comparable amounts of 
ordered and disordered regions (O00716, P04085, P04637, P06400, 
P10275, P10415, P16220, P25963, P49841, Q01094, Q07889, Q09472, 
Q12778, Q14209, Q92793, Q9NQB0, Q8WYR1, O43889, P01127, 
O00459, P15056, Q07890, Q04206, Q9HCS4, Q8TEY5, Q68CJ9, 
Q70SY1, Q96BA8, and P18848).

Furthermore, our analysis not only indicated the disorder status 
of these 88 proteins but also showed that disorder is crucial for 
functionality of many of the prostate cancer‑related proteins. This 
conclusion follows from the analysis of the data generated for each 
protein in the KEGG dataset by the D2P2 that, in the visually attractive 

form, provides an access to the precomputed disorder predictions59 
generated by PONDR® VLXT,42 IUPred,61 PONDR® VSL2B,46,65 PrDOS,67 
ESpritz,62 and PV259 and also provides information on the curated cites 
of various posttranslational modifications and on the location of 
predicted potential disorder‑based binding sites. Our analysis clearly 
shows that many of human prostate cancer‑related proteins from the 
KEGG dataset are predicted to have disordered regions of various 
lengths, often possess numerous potential disorder‑based binding 
motifs (Supplementary Table 7) and contain multiple sites of various 
posttranslational modifications (PTMs). The finding that the IDPRs 
of these proteins have a multitude of PTMs is in agreement with the 
well‑known fact that phosphorylation23 and many other enzymatically 
catalyzed PTMs are preferentially located within the IDPRs.23–26

The interactivity of prostate cancer‑associated proteins from the 
KEGG dataset was further evaluated by the STRING computational 
platform that provides information on both experimentally validated 
and predicted interactions of query proteins.60 The corresponding 
STRING‑generated protein‑protein interaction  (PPI) networks of 
these proteins (data not shown) indicate that all KEGG proteins are 
predicted to have very well‑developed interactomes. This observation 
suggests that these proteins can serve as hubs in their functional PPI 
networks. These findings are in accord with earlier observations that 
intrinsic disorder plays an important role in functionality of hubs, 
defining their ability to be promiscuous binders engaged in interactions 
with a multitude of often unrelated partners.90–96 Furthermore, 
previous studies showed that many hubs are intrinsically disordered 
or contain functional IDPRs, and that the partners of ordered hubs 
are preferentially intrinsically disordered.90–96 It is likely that this 
binding promiscuity of the prostate cancer‑related proteins can be at 
least partially attributed to the fact that many of them have numerous 
AIBSs. Also, this astonishing capability of mostly ordered, hybrid, 
and mostly disordered proteins from the KEGG dataset to be heavily 
connected hubs represents a major hurdle for the development of drugs 
targeting these proteins.

DISCUSSION
Interaction network of prostate cancer‑related proteins
Results of the application of the APID server for evaluation of the 
interactivity of the 87 prostate cancer‑related proteins from the KEGG 
dataset (as it was mentioned, no protein‑protein interaction‑related 
information was available for the 3‑oxo‑5‑alpha‑steroid 4‑dehydrogenase 
2  [SRD5A2, UniProt ID: P31213]) clearly showed that each of 
these proteins is known to be engaged in multiple protein‑protein 
interactions  (PPIs)  (Supplementary Table  7). In fact, the number 
of PPIs ranges from 4 (TCF7L1 and INSRR) to >1,000 (e.g., p53, a 
393‑residue‑long protein for which the content of disordered residues 
predicted PONDR FIT (CDRFIT) is 54.96%, and EGFR with the length of 
1021 residues and CDRFIT of 9.1%, interact with 1072 and 1031 partners, 
respectively). In fact, 81 proteins in this dataset are able to interact with 
more than 10 partners each (Supplementary Table 7). This observation 
suggests that the vast majority of the prostate cancer‑related proteins 
from the KEGG dataset can be considered as hub proteins. Figure 4 
shows that the interactivity of these proteins is not correlated with 
their length (Figure 4a) or their intrinsic disorder content (Figure 4b), 
suggesting that these two features do not directly determine the ability 
of a prostate cancer‑related protein to be involved in many PPIs and 
to serve as a hub. The aforementioned lack of a correlation between 
the interactability of a given protein and its disorder content seems 
to be in contradiction with the claim that the ability of a protein to 
be engaged in many PPIs relies on intrinsic disorder. However, it is 
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known that some hub proteins can be entirely disordered, other hubs 
may contain both ordered and disordered regions, and still other hubs 
can be highly structured.97 However, the binding regions of the partner 
proteins of ordered hubs were found to be intrinsically disordered.98,99 
These observations suggested two primary mechanisms by which 
disorder is utilized in protein‑protein interaction networks, namely, 
one disordered region binding to many partners and many disordered 
region binding to one partner.91–94,97,100,101

As it follows from brief description of several highly disordered 
proteins related to prostate cancer, it is not uncommon to find 
them to be involved in interaction with each other. To understand 
how common this phenomenon is, we used the ability of the APID 
web server  (http://apid.dep.usal.es) to build a specific PPI network 
between proteins included in a query list.69 Figure 5 represents the 
results of application of this tool to prostate cancer‑related proteins 
from the KEGG dataset and shows that all proteins with known 
interactions are involved in the formation of a common interactive 
cluster, where each prostate cancer‑related protein interacts with at 
least one other prostate cancer‑related protein. Figure 5 shows results 
of this analysis in a form of a grid, where each node corresponds 
to a protein from the KEGG dataset, and where PPIs are shown as 
corresponding edges, thickness of which reflects the reliability of a 

given interaction. The resulting prostate cancer‑related interactome 
clearly shows that almost all proteins currently known to be related to 
the pathogenesis of this disease are talking to each other. Therefore, 
both internal (interactions with other prostate cancer‑related proteins) 
and external connectivities (interaction with other proteins) are high 
for many prostate cancer‑related proteins.

Functionality of intrinsic disorder in a major player, androgen 
receptor
Androgen receptor (AR, CDRFIT is 42.7%) is one of the steroid hormone 
receptors. AR is a 920 residue‑long ligand‑activated transcription 
factor controlling expression of various eukaryotic genes and affecting 
proliferation and differentiation of cells in target tissues. AR plays a 
key role in the development and progression of prostate cancer and 
contributes to the development of resistance to androgen deprivation 
leading to the formation of the castration‑resistant form of prostate 
cancer.102 There are several functional regions/domains in the AR. For 
example, the most AR transcriptional activity is due to the N‑terminal 
domain (NTD) transcriptional activation domain whereas interaction 
with DNA is attributed to the central DNA‑binding domain that 
contains 2 zinc‑finger motifs. Nuclear localization upon activation 
is driven by a short, flexible, hinge located after the DNA‑binding 
domain. Finally, interaction of AR with ligands is conducted through 
its C‑terminal ligand‑binding domain (LBD).

Structural information is available for the LBD (residues 659–920) 
and the N‑terminal peptide, AR20–30.

103 Analysis of the solution 
structure of AR NTD (residues 1–537) by circular dichroism revealed 
that this domain has a relatively limited amount of stable secondary 
structure.104 The lack of stable structure in NTD is further supported 
by the results of evaluation of disorder predisposition in this protein 
as shown in Supplementary Table 7. As typical for IDPs and hybrid 
proteins containing ordered domains and IDPRs, AR has several 
regions with compositional biases, such as Gln‑rich region (residues 
58–120), poly‑Gln regions  (residues 58–80, 86–91, and 195–199), 
a poly‑Pro region  (residues 374–383), and poly‑Ala and poly‑Gly 
regions (residues 398–404 and 451–473, respectively). There are four 
alternatively spliced isoforms of this protein, where in comparison 
with the canonical form, isoform 2 misses residues 1–532 and has a 
GPYGDMR → MILWLHS substitution at position 533–539; isoform 3 has 
a substitution ARKLKKLGNLKLQEEG → EKFRVGNCKHLKMTRP 
(residues 629–644) and misses region 645–920; finally, in 
the isoform 4, residues 649–920 are missing and region 630–648 
has a RKLKKLGNLKLQEEGEASS  →  AVVVSERILRVFGVSEWLP 
substitution. As follows from our analysis, the majority of regions 
affected by alternative splicing is predicted to be disordered.

CONCLUSIONS
This study shows that intrinsically disordered proteins and proteins 
with long disordered regions are commonly found in prostate cancer. 
Many of these proteins are predicted to be moderately or highly 
disordered using either the per‑protein disorder score  (DS) for 
classification of proteins as highly ordered  (DS  <0.1), moderately 
disordered  (0.1≤  DS  <0.3), and highly disordered  (DS  ≥0.3) or 
looking at the per‑protein content of disordered residues (CDRs), with 
proteins being classified as highly ordered, moderately disordered, 
or highly disordered, if their CDR  <10%, 10% ≤ CDR  <30%, and 
CDR  ≥30%, respectively. Functions of these proteins are regulated 
by various posttranslational modifications. Furthermore, many 
of these proteins are promiscuous binders and contain numerous 
disorder‑based binding sites. We also show that irrespectively of their 

Figure  4: Characterization of the interactability of prostate cancer‑related 
proteins from the extended KEGG dataset based on the results of their 
analysis by APID server. (a) Correlation between the number of PPIs found 
by APID for individual proteins and protein length. Note logarithmic scale of 
this plot. (b) Correlation between interactability (evaluated as the number of 
PPIs per 100 residues of a given protein) and intrinsic disorder (measured 
as PONDR FIT‑based content of predicted disordered residues in a query 
protein). Note semi‑logarithmic scale of this plot.

b
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disorder status (i.e., irrespectively of being mostly ordered, mixed, or 
mostly disordered), these proteins are characterized by an astonishing 
capability to be heavily connected hubs involved in a broad range of 
interactions. This binding promiscuity might represent a major hurdle 
for the development of drugs targeting these proteins.

Although our analysis revealed that potential biomarkers of 
prostate cancer are characterized by lower disorder levels than an 
average human protein, in our view, there is no contradiction between 
these observations and our discussion of the fact that IDPs and proteins 
with long disordered regions are commonly found in prostate cancer, 
where they might play a number of important roles. In fact, what we 
are showing is that intrinsically disordered regions are commonly 
present among prostate cancer‑related proteins. Furthermore, the fact 
that disorder might be more commonly found in the whole human 
proteome than in a set of proteins related to prostate cancer does not 
mean that IDPs are not important for progression of this disease. 
In addition to the information on how many IDPs are associated 
with prostate cancer, a very important consideration is who these 
cancer‑related IDPs are and what they do. For example, AR, PTEN, 
and p53 are known as major players in prostate cancer development 
(and, as a matter of fact, PTEN and p53 are involved in the development 
of many other pathological conditions). Loss of function of these three 
proteins (all of which have long disordered regions) contributes greatly 
to disease progression. Another example is given by NKX3.1, which 
is also a very disordered protein, whose loss is associated with the 
prostate cancer development. Therefore, we think that our data make 
an important contribution to the field by bringing attention to IDPs 
potentially related to prostate cancer.
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Non-redundant list of human proteins related to prostate cancer from “Russian” dataset. 
 
P32019, Q12907, P11021, P30533, Q9P2E9, P01033, P02787, P07288, Q16548, P07858, 
P09382, P07737, P04179, P04406, P68871, P15531, P22392, P02788, P06733, O75608, 
P13804, O75874, P60174, Q02252, P45880, P48735, Q03154, O43809, P14550, P21796, 
P15121, Q06830, P05164, P69905, P00558, P62937, P35228, P30084, P40939, P02768, 
P30041, P25787, P14174, Q99798, Q99714, P36952, P20618, Q9BUP3, P68371, P23284, 
P01009, P61457, P63261, P55084, P30044, Q9BPW8, P34897, P60709, P28838, P60981, 
P07954, P30101, P14618, P08758, Q9NR45, P04075, Q00796, P78371, O95994, O14933, 
P21291, P68104, P25398, Q13011, P49411, P49773, Q01469, P02766, P24752, P18669, 
P00367, P48047, P30042, P25705, P37802, P61088, P30040, Q16836, P00390, O75828, 
Q9BTZ2, P07355, O14818, P14854, O43678, Q9Y603, P50454, P00915, P04083, Q99497, 
P10809, P60903, P02794, Q15404, P23528, P61604, P02792, P30046, O60493, P30086, 
Q8N5N7, Q04760, Q00688, P07108, P17980, Q01995, P02675, P31949, P13693, P06703, 
P55072, P01857, P38117, P38646, Q9H4G4, P51570, P52597, P51911, P00441, Q7Z6V5, 
P54819, P62277, O00151, P31948, Q6DCA0, P62987, P31943, P01834, Q9UJ78, P02511, 
Q9NQ35, Q9HB71, P02647, P24844, O94776, P06702, Q9Y4L1, P20472, Q7LC44, P18206, 
Q9Y4X0, P04792, O60664, P22466, P11940, Q8N183, Q99878, Q32P51, P04908, P47813, 
P06899, Q96QV6, P02671, Q99879, Q16778, P62263, P62807, P68431, P17661, Q13526, 
P84243, O60841, P22626, P09651, P06748, P51991, P08670, Q9UII2, Q96AE4, Q96T37, 
Q9NX63, P02545, P09429, P06753, P07951, P09493, Q96T23, P67936, P23246, P63162, 
P38159, Q9H2D6, Q05682, P16949, P08123, Q96IZ7 
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Contingency tables  
Supplementary Table 1. Illustrative representation of the 2×2 contingency table to find 
significantly associated GO terms 

 
≥ AVG  

(Membrane- / Non-membrane) 
< AVG 

(Membrane- / Non-membrane) 

KEGG / Russian dataset a b 

Whole human proteome c d 
 

Supplementary Table 2. 2×2 contingency table of the membrane KEGG dataset and membrane 
proteins in whole human proteome (membrane AVG: 0.301) 

Number of Proteins ≥ Membrane AVG  < Membrane AVG 

KEGG dataset 2 2 

Whole human proteome 2210 2979 
 
 
Supplementary Table 3. 2×2 contingency table of the non-membrane KEGG dataset and non-
membrane proteins in whole human proteome (non-membrane AVG: 0.437). 

Number of Proteins ≥ Non-Membrane AVG  < Non-Membrane AVG 

KEGG dataset 17 27 

Whole human proteome 6555 8328 
 
 
Supplementary Table 4. 2×2 contingency table of the membrane Russian dataset and 
membrane proteins in whole human proteome 

Number of Proteins ≥ Membrane AVG  < Membrane AVG 

Russian dataset 4 2 

Whole human proteome 2208 2981 
 
 
Supplementary Table 5. 2×2 contingency table of the non-membrane Russian dataset and non-
membrane proteins in whole human proteome 

Number of Proteins ≥ Non-Membrane AVG  < Non-Membrane AVG 

Russian dataset 59 133 

Whole human proteome 6513 8222 
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Supplementary Table 6. Prostate cancer-related proteins from the KEGG and Russian datasets 
with disorder-associated common Gene Ontology terms 

p-value < 0.05 p-value < 0.1 
ID Category Name ID Category Name 

GO:0005575 C cellular_component GO:0003674 F molecular_function 
GO:0005623 C cell GO:0005575 C cellular_component 
GO:0006950 P response to stress GO:0005622 C intracellular 
GO:0008150 P biological_process GO:0005623 C cell 
GO:0044464 C cell part GO:0006915 P apoptotic process 
GO:0050896 P response to stimulus GO:0006950 P response to stress 

 

GO:0008150 P biological_process 
GO:0008219 P cell death 
GO:0009987 P cellular process 

GO:0012501 P programmed cell 
death 

GO:0016043 P cellular component 
organization 

GO:0016265 P death 
GO:0031982 C vesicle 
GO:0043226 C organelle 

GO:0043227 C membrane-bounded 
organelle 

GO:0043229 C intracellular 
organelle 

GO:0043231 C 
intracellular 

membrane-bounded 
organelle 

GO:0044422 C organelle part 
GO:0044424 C intracellular part 

GO:0044446 C intracellular 
organelle part 

GO:0044464 C cell part 

GO:0044699 P single-organism 
process 

GO:0044763 P single-organism 
cellular process 

GO:0050896 P response to stimulus 

GO:0071840 P 
cellular component 

organization or 
biogenesis 
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Supplementary Table 7. Characterization of human proteins involved in the prostate cancer pathway  

Protein UniProt 
ID 

Protein 
length 
(NAIBS)a 

PONDR-FIT  
(%)b 

MobiDB 
consensus 
(%)c 

Location (length) 
of long disordered 
regionsd 

Location (length) 
of AIBSse 

Nint
f 

BAD, Bcl2-associated 
agonist of cell death 

Q92934 168 
(4/70.8) 

100.00 84.54 1-105 (105) 
122-147 (27) 
158-168 (11) 

1-53 (53) 
57-80 (24) 
100-129 (30) 
146-157 (12) 

66 

CREB5; cyclic AMP-
responsive element 
binding protein 5 

Q02930 508 
(7/67.9) 

85.24 75.39 46-59 (14) 
86-393 (308) 
447-470 (24) 
479-508 (31) 

66-86 (21) 
99-183 (85) 
188-358 (171) 
362-370 (9) 
378-406 (29) 
421-444 (24) 
503-508 (6)     

65 

CREB1, cyclic AMP-
responsive element-
binding protein 1 

P16220 341 
(7/29.3) 

79.47 40.47 1-32 (32) 
40-50 (11) 
102-132 (33) 
138-171 (34) 
271-285 (15) 

32-44 (13) 
89-104 (16) 
128-145 (18) 
166-191 (26) 
265-270 (6) 
307-314 (8) 
329-341 (13)  

169 

FOXO1, Forkhead box 
protein O1 

Q12778 655 
(19/56.9) 

78.63 72.82 1-69 (69) 
74-101 (28) 
105-160 (56) 
199-210 (12) 
229-336 (107) 
385-450 (66) 
463-488 (26) 
498-569 (72) 
644-655 (12) 

1-32 (32) 
54-82 (29) 
88-118 (31) 
160-172 (13) 
182-196 (15) 
216-226 (11) 
258-280 (23) 
289-297 (9) 
306-314 (9) 
323-365 (43) 
371-388 (18) 
301-409 (8) 
447-469 (23) 
483-517 (35) 
528-545 (18) 
550-565 (16) 
570-592 (23) 
605-612 (8) 

68 

TCF7L1, transcription 
factor 7 like 1 

Q9HCS4 588 
(16/54.5) 

77.04 61.90 1-104 (104) 
161-183 (23) 
192-238 (47) 
316-344 (29) 
406-512 (107) 
524-546 (21) 

1-46 (46) 
53-74 (22) 
94-135 (42) 
146-159 (14) 
191-201 (11) 
234-252 (19) 
274-288 (15) 
349-371 (23) 
373-383 (11) 
407-415 (9) 
444-463 (20) 
470-494 (25) 
498-505 (8) 
511-529 (19) 
541-558 (18) 
566-583 (18) 

4 

p27Kip1 (CDKN1B), 
cyclin-dependent kinase 

P46527 198 
(8/58.6) 

76.77 90.40 1-37 (37) 
50-67 (18) 

1-8 (8) 
27-37 911) 

100 
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inhibitor 1B  81-198 (118) 59-67 (9) 
80-90 (11) 
98-105 (8) 
109-134 (26) 
140-157 (18) 
174-198 (35) 

LEF1, lymphoid 
enhancer-binding factor 
1 

Q9UJU2 399 
(8/62.7) 

74.4 66.92 1-104 (104) 
136-148 (13) 
161-201 (41) 
240-301 (62) 
369-399 (31) 

1-84 (84)          
99-121 (23)          
125-131 (7)          
142-165 (24)          
193-247 (55)          
258-269 (12)          
276-283 (8)          
300-336  (37) 

58 
 

IKBKG, inhibitor of 
kappa light polypeptide 
gene enhancer in B-
cells, kinase gamma 

Q9Y6K9 419 
(6/15.8) 

73.03 24.58 15-35 (21) 
171-190 (20) 
356-396 (41) 
 

1-15 (15)         
33-41 (9)          
230-242 (13)          
304-310 (7)          
372-380 (9)          
407-419 (13)          

440 

CREBBP, CREB-
binding protein 

Q92793 2,442 
(34/53.4) 

67.12 66.01 1-48 (48) 
51-246 (196) 
249-323 (75) 
441-591 (151) 
669-713 (45) 
726-1091 (366) 
1250-1276 (27) 
1551-1619 (69) 
1748-1769 (22) 
1854-2066 (213) 
2109-2442 (334) 

1-7 (7) 
17-102 (86) 
109-140 (32) 
145-164 (21) 
171-221 (51) 
232-247 (16) 
254-283 (30) 
295-314 (20) 
353-365 (13) 
479-500 (22) 
515-578 (64) 
599-613 (15) 
628-635 (8) 
649-662 (14) 
673-683 (11) 
707-768 (62) 
776-879 (104) 
881-898 (18) 
902-1004 (103) 
1017-1059 (43) 
1084-1102 (19) 
1121-1127 (7) 
1537-1551 (15) 
1616-1639 (24) 
1844-1851 (8) 
1857-1878 (22) 
1911-1943 (33) 
1952-2028 (77) 
2031-2054 (23) 
2060-2077 (18) 
2084-2114 (31) 
2132-2200 (69) 
2217-2353 (137) 
2361-2442 (82) 

386 

EP300, E1A binding 
protein p300, p300 
HAT, histone 
acetyltransferase p300 

Q09472 2,414 
(30/52.9) 

66.49 61.31 1-37 (37) 
84-170 (87) 
191-269 (79) 
282-334 (53) 
422-458 (37) 
478-569 (02) 

1-7 (7) 
18-135 (118) 
173-203 (31) 
212-226 (15) 
233-248 (16) 
264-295 (32) 

554 
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649-1054 (406) 
1213-1233 (21) 
1515-1582 (68) 
1715-1739 (25) 
1817-2044 (228) 
2093-2414 (322) 

314-323 (10) 
336-349 (14) 
456-479 (24) 
504-554 (51) 
578-592 (15) 
608-613 (6) 
627-642 (16) 
654-668 (15) 
687-834 (148) 
844-883 (39) 
890-988 (99) 
994-1010 (17) 
1018-1023 (7) 
1501-1515 (15) 
1579-1603 (25) 
1822-1848 (27) 
1881-1908 (28) 
1914-2063 (150) 
2111-2191 (81) 
2194-2314 (121) 
2324-2414 (91) 

NKX3-1, homeobox 
protein Nkx-3.1 

Q99801 234 
(3/50.4) 

63.67 59.40 1-133 (133) 1-46 (46) 
66-116 (51) 
129-149 (21) 

36 

CDKN1A, cyclin-
dependent kinase 
inhibitor 1 

P38936 164 
(5/36.0) 

62.2 65.9 1-17 (17) 
73-115 (43) 
117-164 (48) 

36-41 (6)         
68-79 (12)          
100-105 (6)          
109-123 (15)          
145-164 (20)      

284 

CREB3L2, cAMP 
responsive element 
binding protein 3-like 2 

Q70SY1 520 
(8/32.3) 

61.73 44.04 61-79 (19) 
120-139 (20) 
149-167 (19) 
195-265 (71) 
303-327 (25) 
433-452 (20) 

30-58 (29)          
76-88 (13)          
109-122 (14)          
138-153 (16)          
163-202 (40)          
217-232 (16)          
239-267 (29)          
273-283 (11)     

14 

CREB3L1, cAMP 
responsive element 
binding protein 3-like 1 

Q96BA8 519  
(9/32.4) 

60.89 42.77 69-112 (44) 
196-261 (66) 
300-312 (13) 
446-519 (74) 

53-61 (9)          
115-129 (15)          
142-168 (27)          
178-204 (27)          
230-264 (35)          
268-280 (13)          
424-435 (12)          
479-487 (9)          
499-519 (21)     

32 

MDM2, E3 ubiquitin-
protein ligase Mdm2 

Q00987 491 
(8/21.8) 

60.08 57.43 1-21 (21) 
112-193 (82) 
209-244 (36) 
251-295 (45) 
331-365 (35) 
370-428 (59) 

100-108 (9) 
189-208 (20) 
235-261 (27) 
273-284 (12) 
296-306 (11) 
322-329 (8) 
359-367 (9) 
399-409 (11) 

801 

TCF7, transcription 
factor 7 

P36402 384 
(7/61.7) 

59.63 71.88 1-115 (115) 
128-190 (63) 
230-271 (42) 
332-384 (53) 

1-31 (31) 
41-133 (93) 
156-167 (12) 
178-224 (47) 
272-305 (34) 

5 
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328-336 (9) 
374-384 (11)  

TCF7L2, Transcription 
factor 7-like 2 

Q9NQB0 619 
(13/46.2) 

59.13 58.97 1-96 (96) 
 

1-25 (25) 
36-52 (17) 
88-115 (28) 
145-162 (18) 
200-209 (10) 
243-265 (23) 
268-293 (26) 
308-317 (10) 
351-387 (37) 
446-452 (7) 
487-492 (6) 
531-585 (55) 
596-619 (24) 

54 

p53, cellular tumor 
antigen p53 

P04637 393 
(8/39.4) 

54.96 50.89 1-23 (23) 
33-97 (65) 
277-328 (52) 
346-393 (46) 

11-57 (47) 
106-115 (10) 
132-141 (10) 
232-239 (8) 
251-258 (8) 
265-277 (13) 
322-355 (34) 
363-387 (25)          

1072 

ATF4, activating 
transcription factor 4 

P18848 351 
(9/33.6) 
 

52.14 57.55 66-77 (12) 
131-149 (19) 
168-194 (27) 
207-315 (109) 

94-102 (9)         
115-127 (13)          
154-169 (16)          
177-187 (11)          
196-209 (14)          
219-230 (12)          
246-257 (12)          
267-284 (18)          
326-338 (13)        

79 

RELA, v-rel avian 
reticuloendotheliosis 
viral oncogene homolog 
A 

Q04206 551 
(12/38.5) 

49.36 37.93 39-64 (26) 
75-92 (18) 
273-348 (76) 
376-398 (23) 
414-437 (24) 
505-530 (26) 

1-11 (11)          
31-41 (11)          
62-76 (15)          
98-103 (6)          
110-118 (9)          
285-290 (6)          
305-317 (13)          
350-380 (31)          
398-414 (17)          
433-483 (51)          
492-504 (13)          
523-551 (29)          

397 

Transcription factor 
E2F2 

Q14209 437 
(10/33.6) 

49.20 43.48 1-26 (26) 
56-66 (11) 
109-130 (22) 
196-210 (15) 
301-389 (89) 

1-9 (9) 
37-47 (11) 
75-82 (8) 
135-145 (11) 
228-235 (8) 
248-256 (9) 
285-307 (23) 
319-331 (13) 
335-349 (15) 
364-403 (40) 

28 
 

Transcription factor 
E2F1 

Q01094 437 
(10/33.4) 

48.08 38.90 37-129 (93) 
299-356 (68) 

16-39 (24) 
57-71 (15) 
87-105 (19) 
132-143 (12) 
245-251 (7) 

28 
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250-265 (6) 
281-305 (25) 
325-332 (8) 
345-365 (21) 
376-384 (9) 

Transcription factor 
E2F3 

O00716 465 
(6/28.8) 

48.17 40.00 67-180 (114) 
350-396 (47) 
402-419 (18) 
 

95-122 (28) 
132-161 (30) 
180-195 (16) 
333-253 (21) 
386-407 (22) 
421-437 (17)  

155 

IGF1, insulin-like 
growth factor I 

P05019 195 
(2/13.8) 

47.69 51.28 77-87 (11) 
113-195 (83) 

166-177 (12) 
181-195 (15)          

20 

PDGFB, platelet-
derived growth factor 
subunit B 

P01127 241 
(2/12.4) 

47.30 33.20 50-65 (16) 
67-76 (10) 
188-241 (61) 

208-216 (9) 
221-241 (21) 

84 

CREB3L3, cAMP 
responsive element 
binding protein 3-like 3 

Q68CJ9 461 
(11/35.6) 

46.85 41.87 51-120 (70) 
124-139 (16) 
251-268 (18) 
369-414 (46) 
442-461 (20) 

20-36 (17)          
60-93 (34)          
121-127 (7)          
140-157 (18)          
178-186 (9)          
198-204 (7)          
356-364 (9)          
367-376 (10)          
399-412 (14)          
416-445 (30)          
453-461 (9) 

15 

AR, androgen receptor P10275 919 
(12/28.1) 

42.66 35.80 1-18 (18)  
31-167 (137) 
183-227 (45) 
293-312 (20) 
368-388 (21) 
415-433 (19) 
445-479 (35) 
635-659 (25) 

1-59 (59) 
94-112 (19) 
118-150 (33) 
155-194 (40) 
236-252 (17) 
264-273 (10) 
342-351 (10) 
356-368 (13) 
391-412 (22) 
429-447 (19) 
476-481 (6) 
495-504 (10)          

353 

CREB3L4, cAMP 
responsive element 
binding protein 3-like 4 

Q8TEY5 395 
(8/23.8) 
 

39.24 35.95 43-59 (17) 
81-109 (29) 
221-241 (21) 
318-345 (27) 
351-395 (45) 

1-13 (13) 
20-31 (12) 
65-81 (17) 
110-121 (12) 
135-143 (9) 
180-188 (9) 
368-377 (10) 
384-395 (12)          

6 

PIK3R5, 
phosphoinositide 3-
kinase regulatory 
subunit 5 

Q8WYR1 880  
(7/13.6) 

36.7 29.2 312-349 (38) 
351-370 (20) 
386-418 (33) 
437-515 (79) 
563-603 (41) 
783-793 (11) 
838-858 (21) 

339-364 (26)          
371-387 (17)          
420-435 (16)          
451-463 (13)          
485-495 (11)          
516-536 (21)          
547-562 (16)        

8 

NFKBIA, NF-kappa-B 
inhibitor alpha 

P25963 317 
(3/9.8) 

35.65 26.81 1-42 (42) 
52-67 (16) 
280-298 (19) 

1-6 (6) 
76-64 (9) 
302-317 (16) 

203 

PIK3R2, 
phosphoinositide-3-

O00459 728 
(12/) 

34.07 27.65 81-120 (40) 
140-153 (14) 

29-43 (15)          
70-84 (15)          

148 
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kinase regulatory 
subunit 2 

189-213 (25) 
251-285 (35) 
289-324 (36) 
544-560 (17) 
714-728 (15) 

109-118 (10)          
122-136 (15)          
169-183 (15)          
218-231 (14)          
241-256 (16)          
277-298 (22)          
312-320 (9)          
325-335 (11)          
395-400 (6)          
574-581 (8)          

BRAF, B-Raf proto-
oncogene, 
serine/threonine kinase 

P15056 766 
(8/17.1) 

34.07 31.07 1-40 (41) 
110-132 (23) 
141-156 (16) 
305-455 (151) 

16-21 (6)          
46-67 (22)          
78-86 (9)          
130-135 (6)          
326-332 (7)          
339-347 (9)          
356-419 (64)          
467-474 (8)     

83 
 

PDGF-1 (PDGFA), 
platelet-derived growth 
factor subunit A 

P04085 211  
(0/0) 

33.18 28.44 61-82 (22) 
181-211 (31) 

N.P.g 19 

CREB3, cyclic AMP-
responsive element-
binding protein 3 

O43889 395 
(2/4.6) 

31.1 12.9 120-131 (12) 
182-196 (15) 
 

11-17 (7)          
105-115 (11)          

158 

ARAF, Proto-oncogene 
A-Raf, 
serine/threonine-protein 
kinase A-Raf 

P10398 606  
(2/11.4) 

29.37 29.04 1-17 (17) 
156-224 (69) 
231-294 (64) 
579-595 (17) 

193-247 (55) 
290-303 (14)   

94 

PIK3R1, 
phosphoinositide-3-
kinase regulatory 
subunit 1 

P27986 712 
(8/8.3) 

28.37 12.57 78-112 (35) 
301-322 (22) 
608-631 (24) 

7-12 (6)          
26-43 (18)          
69-79 (11)          
112-119 (8)          
131-136 (6)          
331-336 (6)          
580-585 (6)          
657-662 (6)   

356 

PIK3R3, 
phosphoinositide-3-
kinase regulatory 
subunit 3 

Q92569 461 
(3/5.4) 

28.42 6.29 39-53 (15) 23-31 (9)          
218-226 (9)          
257-263 (7)   

142 

RB1, retinoblastoma-
associated protein 

P06400 928 
(7/10.6) 

28.02 25.32 1-48 (48) 
246-261 (16) 
348-367 (20) 
577-590 (14) 
609-635 (27) 
775-786 (12) 
816-827 (12) 
859-928 (70) 

7-20 (14) 
41-49 (9) 
57-64 (8) 
830-840 (11) 
844-860 (17) 
872-881 (10) 
891-919 (29)    

315 

BCL2, B-cell 
CLL/lymphoma 2, 
apoptosis regulator Bcl-
2 

P10415 239 
(2/10.9) 

27.20 25.52 39-87 (49) 13-32 (20) 
46-51 (6) 

137 

SOS1, Son of sevenless 
homolog 1 

Q07889 1,333 
(8/16.7) 

26.86 26.48 656-665 (10) 
744-757 (14) 
1019-1120 (102) 
1125-1333 (209) 

1005-1014 (10) 
1027-1037 (11) 
1058-1070 (13) 
1094-1146 (53) 
1166-1181 (16) 
1188-1205 (18) 
1218-1254 (37) 

82 
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1269-1333 (65) 
CCNE1, G1/S-specific 
cyclin-E1 

P24864 410  
(5/11.2) 

26.59 22.93 1-45 (46) 
78-87 (10) 
377-410 (34) 

21-26 (6) 
31-42 (12) 
64-74 (11) 
370-379 (10) 
389-395 (7) 

83 

PDPK1, 3-
phosphoinositide-
dependent protein 
kinase 1 

O15530 556 
(4/11.3) 

26.4 18.4 1-10 (10) 
24-82 (59) 
389-412 (24) 

1-29 (29)          
48-53 (6)          
82-98 (17)          
376-386 (11)          

92 

MAP2K1, dual 
specificity mitogen-
activated protein kinase 
kinase 1 

Q02750 393 
(4/7.9) 

24.7 17.6 1-28 (28) 
281-303 (23) 
383-393 (11) 

8-16 (9)          
30-36 (7)          
272-279 (8)          
310-316 (7)    

121 

GSK3B, GSK3β, 
glycogen synthase 
kinase-3 beta 

P49841 420 
(7/15.0) 

24.05 22.38 1-54 (54) 
382-420 (39) 

9-17 (9) 
21-26 (6) 
316-321 (6) 
333-341 (8) 
358-366 (9) 
371-388 (17) 
411-417 (7) 

343 

RAF1, Raf-1 proto-
oncogene, 
serine/threonine kinase 

P04049 648 
(3/6.3) 

23.92 26.54 39-55 (17) 
218-335 (118) 
636-648 (13) 

262-289 (28)          
291-296 (6)          
340-346 (7)   

231 

SOS2, SOS Ras/Rho 
guanine nucleotide 
exchange factor 2 

Q07890 1,332 
(10/13.7) 

23.87 23.12 742-757 (16) 
1017-1064 (48) 
1075-1100 (26) 
1140-1332 (193) 

460-465 (6)          
1003-1012 (10)          
1030-1035 (6)          
1063-1074 (12)          
1098-1141 (44)          
1155-1168 (14)          
1188-1200 (13)          
1223-1255 (33)          
1270-1285 (16)          
1302-1329 (28)     

29 

MAP2K2, dual 
specificity mitogen-
activated protein kinase 
kinase 2 

P36507 400 
(5/14.0) 

22.75 18.50 1-10 (10) 
13-34 (22) 
282-311 (30) 

1-16 (16) 
251-250 (10) 
315-325 (11) 
342-351 (10) 
379-387 (9) 

55 

Enpl (HSP90B1), 
endoplasmin 

P14625 803 
(4/10.2) 

22.29 17.81 30-50 (21) 
286-326 (41) 
598-608 (11) 
747-803 (57) 

331-338 (8) 
646-651 (6) 
711-753 (43) 
779-803 (24) 

188 

HSP90AA1, heat shock 
protein HSP 90-alpha 

P07900 732 
(3/4.9) 

21.90 23.2 1-18 (18) 
166-181 (16) 
223-288 (66) 
547-565 (19) 
698-732 (35) 

208-223 (16)          
594-602 (9)          
688-698 (11)          

892 

HSP90AB1, heat shock 
protein 90kDa alpha 
family class B member 
1 

P08238 724 
(3/4.8) 

21.82 20.99 218-278 (61) 
239-255 (17) 
693-724 (32) 

205-218 (14)          
585-594 (10)          
681-691 (11)          

694 

FGFR1, fibroblast 
growth factor receptor 1 

P11362 822 
(8/9.6) 

20.32 18.98 23-33 (11) 
80-89 (10) 
105-160 (56) 
777-822 (46) 

93-106 (14)          
110-122 (13)          
150-155 (6)          
165-177 (13)          
208-216 (9)          
754-760 (7)          
766-773 (8)          

108 
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812-820 (9)      
NFKB1, nuclear factor 
NF-kappa-B p105 
subunit 

P19838 968 
(5/6.7) 

20.25 20.14 1-10 (11) 
66-78 (13) 
359-405 (47) 
420-453 (34) 
463-480 (18) 
892-924 (33) 
946-968 (23) 

369-374 (6) 
403-421 (19) 
454-463 (10) 
781-787 (7) 
931-953 (23) 

590 

PTEN, 
phosphatidylinositol 
3,4,5-trisphosphate 3-
phosphatase and dual-
specificity protein 
phosphatase PTEN 

P60484 403  
(2/5.5) 

19.60 16.63 351-403 (53) 336-350 (15) 
397-403 (7) 

241 

IKBKB, inhibitor of 
nuclear factor kappa-B 
kinase subunit beta 

O14920 756 
(4/5.7) 

18.78 13.10 1-9 (10) 
400-409 (10) 
549-562 (14) 
572-586 (15) 
666-706 (41) 

384-392 (9) 
655-664 (10) 
709-723 (15) 
734-742 (9) 

195 

PDGFC, platelet-
derived growth factor 
subunit C 

Q9NRA1 345  
(0/0) 

18.60 11.88 20-31 (12) 
33-46 (14) 
 

N.P. 8 

AKT3, RAC-gamma 
serine/threonine-protein 
kinase 

Q9Y243 479 
(2/4.2) 

17.1 16.7 109-140 (32) 
445-479 (35) 

72-82 (11)          
469-477 (9)   

34 

TGFA, transforming 
growth factor alpha 

P01135 160  
(0/0) 

16.88 5.00 N.P. N.P. 18 

BCL-1 (CCND1), 
G1/S-specific cyclin-
D1 

P24385 295 
(0/0) 

16.61 13.90 258-295 (38) N.P. 124 

Insulin P01308 110  
(0/0) 

16.36 0.91 N.P. N.P. 27 

AKT1, RAC-alpha 
serine/threonine-protein 
kinase 

P31749 480 
(3/6.0) 

16.33 19.38 111-140 (30) 
424-433 (10) 
449-480 (32) 

73-84 (12) 
441-447 (7) 
471-480 (10) 

366 

CCNE2, G1/S-specific 
cyclin-E2 

O96020 404 
(2/3.7) 

16.10 16.58 1-49 (49) 
387-404 (18) 

1-9 (9) 
26-31 (6) 

21 

CASP9, Caspase-9 P55211 416 
(2/3.1) 

15.11 13.46 117-133 (17) 
294-321 (28) 
 

71-77 (7) 
281-286 (6) 

59 

CTNB1, Catenin beta-1 P35222 781 
(8/14.7) 

14.98 18.18 17-27 (11) 
30-59 (30) 
547-557 (11) 
709-724 (16) 
727-773 (47) 
 

1-14 (14) 
22-38 (17) 
60-75 (16) 
96-101 (6) 
133-140 (8) 
695-702 (8) 
719-739 (12) 
748-781 (34) 

452 

FGFR2, fibroblast 
growth factor receptor 2 

P21802 821 
(4/4.3) 

14.25 14.01 31-45 (15) 
142-156 (15) 
405-414 (10) 
429-450 (22) 
776-821 (46) 

117-126 (10)          
171-178 (8)          
488-498 (11)          
756-761 (6)          
 

92 

IGF1R, insulin-like 
growth factor 1 receptor 

P08069 1,367 
(8/6.6) 

14.05 11.85 1-10 (10) 
466-483 (18) 
737-768 (32) 
1284-1367 (84) 

521-527 (7) 
720-732 (13) 
793-803 (11) 
815-823 (9) 
862-867 (6) 
1308-1316 (9) 

112 
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1330-1352 (23) 
1356-1367 (12)         

PDGFRB; platelet 
derived growth factor 
receptor beta 

P09619 1,106 
(5/8.5) 

13.47 13.56 66-78 (13) 
422-438 (15) 
463-477 (15) 
701-712 (12) 
1019-1106 (88) 
 
 

447-452 (6)          
1003-1013 (11)          
1017-1027 (11)          
1035-1066 (32)          
1073-1106 (34)     

133 

PDGFD, platelet-
derived growth factor 
subunit D 

Q9GZP0 370 
(0/0) 

11.89 5.95 190-200 (11) N.P. 20 

MAPK3, Mitogen-
activated protein kinase 
3 

P27361 379 
(0/0) 

11.87 9.23 1-27 (27) 
 

N.P. 276 

PDGFRA, PDGFR-α 
(CD140α), platelet-
derived growth factor 
receptor alpha 

P16234 1,089 
(4/5.0) 

11.11 9.27 61-71 (11) 
1017-1089 (73) 

133-139 (7) 
1013-1025 (13) 
1052-1061 (10) 
1066-1089 (24) 

61 

AKT2, RAC-beta 
serine/threonine-protein 
kinase 

P31751 481 
(1/2.5) 

11.02 10.81 41-50 (10) 
113-137 (25) 

73-84 (12) 75 

INSRR, insulin 
receptor-related 
receptor 

P14616 1,297 
(3/3.3) 

10.72 12.10 462-477 (16) 
664-696 (33) 
732-762 (31) 
1074-1087 (14) 
1265-1297 (33) 

707-730 (24) 
799-805 (7) 
1253-1264 (12) 

4 

PIK3CG, 
phosphatidylinositol-
4,5-bisphosphate 3-
kinase catalytic subunit 
gamma 

P48736 1,102 
(1/1.2) 

10.71 8.44 21-31 (11) 
440-455 (16) 
490-510 (21) 
528-547 (20) 

516-528 (13) 40 

EGFR, epidermal 
growth factor receptor 

P00533 1,210 
(6/9.7) 

9.1 12.4 1024-1038 (15) 
1070-1082 (13) 
1094-1139 (46) 
1157-1181 (25) 
1201-1210 (10) 

1016-1023 (8) 
1048-1069 (22) 
1080-1095 (16) 
1105-1112 (8) 
1132-1180 (49) 
1197-1210 (14) 
   
 

1031 

GSTP1, glutathione S-
transferase pi 1 

P09211 210 
(0/0) 

9.05 4.29 N.P. N.P. 61 

GRB2, growth factor 
receptor-bound protein 
2 

P62993 212  
(0/0) 

9.0 3.7 N.P. N.P. 998 

MTOR, mechanistic 
target of rapamycin, 
serine/ threonine-
protein kinase mTOR 

P42345 2,549 
(4/1.3) 

8.9 8.0 1-18 (18) 
910-930 (21) 
1815-1866 (52) 
2437-2491 (55) 

19-27 (9)          
263-272 (10)          
298-304 (7)          
1748-1754 (7)   

175 

HRAS (p21ras), Harvey 
rat sarcoma viral 
oncogene homolog  

P01112 189 
(1/3.2) 

8.47 9.52 170-181 (12) 78-83 (6) 165 

SRD5A2, 3-oxo-5-
alpha-steroid 4-
dehydrogenase 2 

P31213 254 
(0/0) 

8.27 3.54 N.P. N.P. N.P. 

MAPK1, mitogen-
activated protein kinase 
1 

P28482 360 
(0/0) 

8.1 5.3 N.P. N.P. 329 

PK3CD, O00329 1,044 7.76 6.99 285-313 (29) N.P. 22 
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phosphatidylinositol-
4,5-bisphosphate 3-
kinase catalytic subunit 
delta 

(0/0) 404-414 (11) 
448-461 (14) 
 

IKKA (CHUK), 
inhibitor of nuclear 
factor kappa-B kinase 
subunit alpha 

O15111 745 
(2/2.6) 

7.38 6.31 1-15 (16) 713-723 (11) 
738-745 (8)  

186 

CDK2, cyclin-
dependent kinase 2 

P24941 298  
(0/0) 

7.05 4.36 N.P. N.P. 710 

EGF, pro-epidermal 
growth factor 

P01133 1,207 
(4/5.4) 

6.96 11.18 1062-1094 (33) 
1108-1136 (29) 
1168-1207 (40) 

1093-1104 (12) 
1135-1155 (20) 
1157-1172 (16) 
1181-1197 (17) 

26 

KRAS, Kirsten rat 
sarcoma viral oncogene 
homolog 

P01116 189 
(1/3.7) 

6.34 1.06 N.P. 78-84 (7) 95 

NRAS, neuroblastoma 
RAS viral (v-ras) 
oncogene homolog 

P01111 189 
(0/0) 

3.70 5.29 172-178 (7) N.P. 72 

PIK3CB, PI3K-β, 
phosphatidylinositol 
4,5-bisphosphate 3-
kinase catalytic subunit 
beta isoform 

P42338 1,070 
(0/0) 

3.36 2.06 N.P. N.P. 53 

PIK3CA, PI3K-α, 
phosphatidylinositol 
4,5-bisphosphate 3-
kinase catalytic subunit 
alpha isoform 

P42336 1,068 
(0/0) 

3.00 2.06 N.P. N.P. 101 

PSA, prostate-specific 
antigen or KLK3, 
kallikrein related 
peptidase 3  

P07288 261  
(0/0) 

2.68 1.53 N.P. N.P. 20 

 
a NAIBS (A/B) represents the number of potential disorder-based binding sites identified by the ANCHOR algorithm 
(A) and the percentage of residues involved in disorder-based interactions (B).  
b Content of disordered residues (i.e., residues with the disorder propensity 0.5) in a protein based on the PONDR-
FIT disorder prediction.  
c Content of predicted disordered residues in a protein based on the MobiDB consensus score.  
d Information on long disordered regions (i.e., disordered regions of at least 10 residues) was obtained based on the 
MobiDB consensus profile.  
e AIBSs are potential disorder-based binding sites identified by the ANCHOR algorithm.  
f Nint, number of interactions as found using the Agile Protein Interactomes DataServer 
(http://cicblade.dep.usal.es:8080/APID/init.action). 
g N.P, not present. This annotation is used for proteins that do not have predicted AIBSs or long disordered regions. 

  



Supplementary Figure 1: Functions of intrinsically disordered proteins related to prostate cancer. (a) REVIGO analysis of the cellular process GO terms with 
P < 0.1. (b) AmiGo2 result for all GO terms with P value less than 0.1. Highlighted are the programmed cell death‑related cellular process GO terms.
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