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Abstract

Purpose of the Review—The review highlights recent findings regarding the functions of 

mitochondria in adipocytes, providing an understanding of their central roles in regulating 

substrate metabolism, energy expenditure, disposal of reactive oxygen species (ROS), and in the 

pathophysiology of obesity and insulin resistance, as well as roles in the mechanisms that affect 

adipogenesis and mature adipocyte function.

Recent Findings—Nutrient excess leads to mitochondrial dysfunction, which in turn leads to 

obesity-related pathologies, in part due to the harmful effects of ROS. The recent recognition of 

“ectopic” brown adipose in humans suggests that this tissue may play an underappreciated role in 

the control of energy expenditure. Transcription factors, PGC-1α and PRDM16, which regulate 

brown adipogenesis, and members of the TGF–β superfamily that modulate this process may be 

important new targets for anti-obesity drugs.

Summary—Mitochondria play central roles in ATP production, energy expenditure, and disposal 

of ROS. Excessive energy substrates lead to mitochondrial dysfunction with consequential effects 

on lipid and glucose metabolism. Adipocytes help to maintain the appropriate balance between 

energy storage and expenditure and maintaining this balance requires normal mitochondrial 

function. Many adipokines, including members of the TGF-beta superfamily, and transcriptional 

co-activators, PGC-1α and PRDM16, are important regulators of this process.
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Introduction

Mitochondrial dysfunction contributes to the pathogenesis of metabolic disorders. Affected 

tissues include those that participate in nutrient metabolism, including adipose, liver and 

skeletal muscle. Abnormal mitochondrial function results in lipid accumulation and insulin 

resistance, as cells require a balance between mitochondrial ATP synthesis through oxidative 
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phosphorylation (OXPHOS), and dissipation of the proton gradient to minimize damage 

from reactive oxygen species (ROS). Growth and transcription factors that regulate 

mitochondrial gene expression contribute to the pathophysiology of obesity, insulin 

resistance and type-2 diabetes (T2D). Herein, we focus on factors linking mitochondrial 

dysfunction to obesity, with an emphasis on adipocytes and energy expenditure.

Roles of Mitochondria in adipocyte lipid metabolism

Mitochondrial biogenesis and activity increase dramatically during adipocyte differentiation, 

suggesting an important supportive role for this organelle [1]. Moreover, mitochondrial 

dysfunction in mature adipocytes has been linked to defects in fatty acid oxidation [2•], 

secretion of adipokines [3], and dysregulation of glucose homeostasis [4]. Reduction in the 

oxidative capacity of brown adipocytes results in impaired thermogenesis, and has been 

linked to diet-induced obesity [5••].

Several mitochondrial enzymes are essential in lipid metabolism, as mitochondria are the 

major site of fatty acid oxidation (FAO). Classically, negative energy balance results in 

enhanced lipolysis in white adipose tissues (WAT), providing non-esterified fatty acids 

(NEFA) as a substrate for FAO in liver and skeletal muscle, with associated insulin 

sensitization. In contrast, extended periods of nutrient excess result in NEFA accumulation, 

mitochondrial dysfunction and insulin resistance [6•]. Consistent with a mitochondrial role, 

primary mitochondrial disorders can also affect body fat storage leading to multiple 

symmetrical lipomatosis [7]. Inhibitors of mitochondrial respiration increase TG 

accumulation, and reduce FAO and glucose uptake in 3T3L1 pre-adipocytes [8], while mild 

mitochondrial uncoupling decreases the expression of transcription factors involved in 

adipocyte differentiation with subsequent reduction in TG accumulation [9•], suggesting that 

different levels of mitochondrial activity can have different effects on adipocyte lipid 

metabolism.

Uncoupling proteins

Mitochondrial respiration can be uncoupled by the controlled transfer of protons across the 

inner mitochondrial membrane, thereby dissipating the proton gradient to minimize the 

deleterious effects of ROS. The family of inner mitochondrial membrane uncoupling 

proteins (UCPs) plays important roles in thermogenesis in BAT and in regulating the 

disposal of mitochondrial ROS in other tissues [10]. UCP1 uncouples mitochondrial 

respiration from ATP production by causing protons to leak across the inner mitochondrial 

membrane, enabling energy dissipation in the form of heat, a process that is enhanced by 

NEFA and inhibited by purine nucleotides [10]. ROS that are normally generated by 

OXPHOS further activate UCPs, thereby dissipating the proton gradient and facilitating ROS 

disposal [11]. In this fashion, the deleterious effects of ROS can be delayed or even reversed.

Caloric intake and ROS: contributors to mitochondrial dysfunction

Mitochondrial oxidative dysfunction correlates with insulin resistance in skeletal muscle of 

obese and diabetic individuals [12•,13•]. This dysfunction correlates with reductions in 

mitochondrial numbers and size [14], and enzymatic oxidative capacity [15]. Reduced 

expression of OXPHOS genes and reduced oxygen consumption have also been observed in 
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obese individuals [16,17]. Adipocytes respond to metabolic challenges by altering the 

number, morphology and/or distribution of mitochondria within the cell, and by changing 

the metabolite, enzyme, and/or mitochondrial DNA (mtDNA) content.

Excessive caloric intake, increasing the mitochondrial substrate load, or mitochondrial 

dysfunction that precludes effective dissipation of the proton gradient can increase ROS 

production, causing cell damage, increased mutation rates of mtDNA, and apoptosis. High 

fat diet (HFD) and hyperglycemia increase ROS production in mouse adipocytes [18,19], 

and oxidative stress is increased in obese individuals and in adipose from genetically obese 

mice, causing abnormal adipokine production [20]. Addition of glucose or NEFAs to mature 

3T3L1 adipocytes reduces mitochondrial biogenesis and gene expression, and increases 

ROS, causing insulin resistance [2•]. Similarly, TNF-alpha-mediated ROS accumulation 

leads to insulin resistance in 3T3L1 pre-adipocytes [21]. ROS reduce oxygen consumption 

in adipocytes, and block fatty acid oxidation (FAO), resulting in lipid accumulation [22•]. 

Finally, insulin resistance is mitigated by mitochondrial antioxidants or overexpression of 

mitochondrial scavengers [23•]. Therefore, excessive energy substrates result in increased 

ROS production, which in turn has significant consequences on mitochondrial function and 

energy substrate metabolism.

Mitochondria: roles in white and brown adipose tissues

In mammals, there are two general types of adipose tissue-- Brown adipose tissue (BAT) 

dissipates energy through thermogenesis, whereas white adipose tissue (WAT) specializes in 

energy storage. Adipocytes are derived from a multipotent mesenchymal stem cell (MSC) 

residing in the stromal vascular fraction (SVF) of adipose tissues [24]. However, BAT and 

WAT adipocytes arise from different precursor cells. The differences in BAT and WAT 

functions in energy metabolism are due in part to differences in mitochondrial physiology.

White adipose tissues

In situations of energy demand, WAT releases NEFA into circulation as an energy substrate. 

During periods of nutrient excess, WAT lipogenic enzymes use energy substrates to produce 

TG for storage. Although not typically viewed as a thermogenic tissue, mitochondrial 

biogenesis and UCP1 expression in WAT increases after adrenergic stimulation due to cold 

exposure or by treatment with beta3-adrenoreceptor (ADBR3) agonists [25•]. These 

increases correlate with a reduction of diet-induced obesity [26]. Moreover, Adbr3 knockout 

mice have diminished BAT in white fat depots, indicating the importance of sympathetic 

input in this process [27]. Similar to rodents, ADBR3 has been detected in adult human 

WAT [28], and adrenergic stimulation can increase UCP1 expression [29]. Thus, the number 

of brown adipocytes within WAT varies, influenced by environmental factors.

Brown adipose tissues

Adipocytes within BAT depots share a common Myf5-positive precursor with myocytes 

[30,31]. In contrast, brown adipocytes residing within WAT depots are derived from a 

different precursor (Myf5-negative) and increase in number after adrenergic stimulation. 

These resident brown adipocytes arise through either differentiation of brown pre-adipocytes 

or through transdifferentiation of white adipocytes or their precursors (for excellent review 
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see [32•]). Brown adipocytes are thermogenic cells that play an important role in energy 

balance in rodents and humans. BAT thermogenesis is dependent on adrenergic stimulation 

of lipolysis and subsequent UCP1-dependent degradation of NEFA [33].

BAT and muscle mitochondria have similar metabolic profiles [34••]. The high oxidative 

capacity of both is due to their high mitochondrial density, expression of FAO enzymes and 

respiratory chain components. However BAT displays exclusive expression of UCP1. Under 

thermoneutral conditions UCP1 ablation in mice results in obesity and abolishes diet-

induced thermogenesis [5]**. Overexpression of UCP1 in WAT reduces weight gain in 

obesity-prone mice due in part to increased energy expenditure and decreased fatty acid 

synthesis [35]. Recently, ectopic BAT has been found in mouse skeletal muscle and UCP1 

mRNA levels were higher in this BAT in obesity-resistant mice than in obesity-prone mice 

[36]. Thus, although the number of brown adipocytes varies among different white fat depots 

and skeletal muscle, enhanced capacity for BAT recruitment and UCP1 expression may 

influence the susceptibility to obesity and indicates substantial heterogeneity and plasticity 

of BAT development. Human BAT is present in several areas, and its activity is stimulated 

by cold exposure, and inhibited by drugs that block beta-adrenergic signaling [37]. The 

amount and activity of human BAT is inversely correlated with age, glucose levels, body-

mass index (BMI) and percent body fat [38••,39•,40•,41•]. Thus, these cells may be 

important contributors to thermogenesis in healthy adults. Furthermore, BAT progenitors can 

also be found in human skeletal muscle and these progenitors can differentiate into mature 

brown adipocytes [42]. Thus, BAT may also play an important role in the susceptibility to 

obesity and in regulating energy expenditure in humans, processes that are indelibly linked 

to mitochondrial function.

Mitochondria and Adipocyte Transcription Factors

There is great interest in understanding the roles of mitochondria in the differentiation of 

adipocytes, as affecting the brown versus white adipocyte fate decision has enormous 

implications for the treatment of human obesity. Several transcription factors participate in 

adipogenesis, and are summarized in table 1. Of particular interest are the PPAR gamma 

coactivator family (PGC) and PRD1-BF-1-RIZ1 homologous domain containing protein 16 

(PRDM16), as they play major roles in mitochondrial biogenesis and function and in 

defining the characteristics of brown adipocytes.

Peroxisome proliferator activated receptor-gamma co-activator (PGC) family

The transcriptional co-activators PGC-1a and PGC-1b play important roles in the expression 

of genes involved in mitochondria biogenesis, fatty acid metabolism and lipid accumulation. 

Ablation of PGC1-α and -β in BAT pre-adipocytes impairs mitochondrial gene expression, 

density and respiration [43]. PGC-1α is reduced in adipose tissues of obese individuals [44], 

and in genetically-induced and diet-induced obese mice [45]. Thus, reduced PGC1 

expression correlates with the impaired mitochondrial function and increased lipid 

accumulation that is characteristic of human metabolic disorders.
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PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16)

PRDM16 is selectively expressed in brown adipocytes [46] and is a transcriptional co-

activator of PGC-1α and PGC-1β, increasing the expression of genes important for 

mitochondrial biogenesis, uncoupling, and OXPHOS [46,47]. Transgenic overexpression of 

PRDM16 in adipose increases mitochondrial gene expression in clusters of BAT-like cells 

within white adipose [46]. Also, PRDM16 interacts with C-terminal binding proteins, Ct-

BP1 and Ct-BP2, to repress white adipocyte genes [47], and reducing PRDM16 in brown 

adipocytes blocks mitochondrial gene expression and increases myogenic markers [48]. 

PRDM16 binding to C/EBP beta activates the BAT developmental program [49••]. Thus, 

PRDM16 is an important early regulator of brown adipogenesis, increasing mitochondrial 

biogenesis, oxygen consumption and uncoupling.

Adipokines and growth factors

White adipose also has a prominent endocrine role, producing adipokines and hormones that 

regulate energy homeostasis, some affecting mitochondrial function (for excellent review see 

[75]).

Adiponectin

Adiponectin affects glucose and lipid metabolism, food intake and insulin sensitivity and 

stimulates FAO and glucose uptake in skeletal muscle cells [76]. Adiponectin increases 

PGC-1a expression, mitochondrial biogenesis, and FAO in myocytes [77••], and TZD 

treatment increases adiponectin expression and enhances mitochondrial function in human 

skeletal muscle [78•]. Thus, adiponectin plays an important role in processes that regulate 

mitochondrial energy expenditure.

TGF-β superfamily

The BMP subgroup of the TGF-β superfamily plays important roles in adipocyte 

differentiation. Although BMP2, BMP4 and BMP7 all participate [79–81], only BMP7 

triggers the commitment to the brown adipocyte lineage [82]. BMP7 increases mitochondrial 

density and the expression of mitochondrial biogenesis genes through activation of p38 

MAPK and PGC-1α [82]. Moreover, Bmp7-null mice have a reduction in BAT, and 

overexpression of BMP7 increases BAT and energy expenditure resulting in reduced 

adiposity [82]. Thus, BMP2 and BMP4 are involved in commitment to the adipocyte 

lineage, whereas BMP7 is an important regulator of the brown versus white adipocyte fate 

decision, and proteins that regulate BMP signaling may also have important effects on 

adipocyte differentiation, and energy expenditure.

The growth differentiation factors (GDFs) comprise another division of the TGF-β 
superfamily. Gdf8 (myostatin)-null mice have increased muscle mass, are resistant to diet-

induced obesity, and have improved insulin sensitivity [83,84]. Systemic administration of 

soluble myostatin type II receptor, (ActRIIb), inhibits myostatin, reduces body fat, and 

improves insulin sensitivity in mice with diet-induced obesity [85•]. Transgenic mice that 

overexpress myostatin in adipose tissue or skeletal muscle also have reduced fat mass and 

improved insulin sensitivity [86,87], and systemic administration of myostatin induces a 
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cachexia-like syndrome, with reductions in muscle and fat mass [88]. Since decreased fat 

accumulation has been observed with myostatin deficiency and overexpression, more than 

one mechanism is likely to contribute to its effects on adiposity, possibly, in part, by 

modulating BMP signaling, as myostatin selectively inhibits BMP7 in vitro [80].

GDF3 expression in adipocytes is affected by age and diet [89•], and correlates with changes 

in body mass and adiposity [90]. Systemic GDF3 overexpression in mice augments normal 

fat accumulation under high fat diet (HFD) conditions, defining GDF3 as a pro-adipogenic 

cytokine [91]. In contrast, mice lacking Gdf3 accumulate less adipose under HFD 

conditions, due to increased basal metabolic rates [89,92]*. GDF3 binds BMP4 and inhibits 

BMP signaling [93,94•]. In adipose, GDF3 uses the activin type I receptor, Alk7, and the co-

receptor Cripto (Andersson et al PNAS 2008), and mice lacking Alk7 also have decreased 

diet-induced fat accumulation [92]. Therefore, GDF3 may affect adiposity by modulating 

BMP signaling or by activating the Alk7 receptor.

Activins comprise another branch of TGF-β superfamily. Activin B is expressed in human 

adipose and its expression correlates directly with obesity and with cholesterol and insulin 

levels [95]. Activin B blocks lipolysis and increases TG accumulation in 3T3L1 cells by 

downregulating mitochondrial lipase expression [96•]. Mice with an activin B insertion 

allele at the activin A locus, have reduced adiposity [97•], are resistant to diet-induced 

obesity, have improved insulin sensitivity, and markedly increased energy expenditure [97•] 

with corresponding increases in mitochondrial gene expression and increased mitochondrial 

oxygen consumption [97•]. Taken together, these results support an important role for activin 

signaling in adipose metabolism, mitochondrial function and energy homeostasis.

Conclusions

Mitochondria control ATP production, energy expenditure, and disposal of ROS. Excessive 

energy substrates lead to mitochondrial dysfunction and abnormal lipid and glucose 

metabolism. Adipocyte differentiation involves changes in the abundance, morphology and 

organization of mitochondria, and abnormalities of these processes disrupt the balance 

between energy storage and expenditure. Brown adipose is an important regulator of 

thermogenesis and energy balance in humans. Adiponectin and members of the TGF-beta 

superfamily play roles in regulating brown and white adipogenesis, as well as transcriptional 

co-activators, PGC-1α and PRDM16. All are potential pharmacotherapeutic targets to treat 

metabolic disorders such as obesity, diabetes and insulin resistance.
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TABLE 1

ADIPOCYTE TRANSCRIPTION FACTORS: EFFECTS ON MITOCHONDRIA, ADIPOSITY AND 

INSULIN RESPONSE

GENE ADIPOCYTE
EFFECTS

MITOCHONDRIAL
RELATIONSHIPS

ADIPOSE &
INSULIN
RESPONSE

REFERENCE

CREB -stimulates
 adipogenesis
 (3T3-L1 cells)

-activated by mitochondrial
 dysfunction
-triggers TG accumulation
 (3T3-L1 cells)
-increases mitochondrial
 biogenesis and gene
 expression

-activated in
 obesity
-induces IR*

[50–53•]

C/EBPα -induces adipo-
 genesis (3T3-L1)
-involved in BAT-
 WAT different-
 tiation in vivo

expression increases
mitochondrial biogenesis
and gene expression in BAT
in a PPARγ-dependent
manner

-C/EBPα
 deficiency
 induces IR

[54–58]

C/EBPβ -increases adipo-
 genesis (3T3-L1)
 -involved in BAT-
 WAT differentiation
 (in vivo)
-interacts with
 PRDM16 in BAT

-expression increases
 mitochondrial biogenesis
 and gene expression in
 WAT

-lack of C/EBPβ
 protects against
 diet-induced
 obesity

[49,59–62]

C/EBPδ -involved in BAT-
 WAT differentiation
 in vivo

-expression increases
 mitochondrial biogenesis
 and gene expression

-SNPs associated
 with altered lipid
 metabolism

[59,63]

PPARα -dispensable for
 adipogenesis (in
 vitro and in vivo)

-expression increases
 mitochondrial gene expres-
 sion in a PGC-1α-dependent
 manner

-PPARα
 deficiency is
 associated with
 late onset and
 diet-induced
 obesity

[64,65]

PPARγ -increases adipo-
 genesis (3T3-L1)
-involved in BAT-
 WAT differentiation
 in vivo
-interacts with
 PRDM16 in BAT

-expression increases mito-
 chondrial biogenesis and
 gene expression
-promotes NEFA uptake and
 TG accumulation in WAT

sequence variants
are associated with
obesity and IR

[1,46,66–68]

PPARδ -co-repressor of
 PPARα and PPARγ
 -involved in BAT-
 WAT differentiation
in vivo

-expression increases
 mitochondrial biogenesis
 and gene expression

-lack of PPARδ
 increases suscep-
 tibility to obesity
-overexpression
 in adipose tis-
 sue reduces
 diet-induced
 obesity by stim-
 ulating thermo-
 genesis

[69–71]

PGC1α -involved in BAT-
 WAT differentiation
-Interacts with
 PRDM16 in BAT

-expression increases
 mitochondrial biogenesis
 and gene expression

- PGC1α def.
 increases body fat
-Obesity reduces
 PGC1α expression
-polymorphisms
 associated with
 obesity

[4,44,45,72]

PGC1β -involved in BAT-
 WAT differentiation
-interacts with
 PRDM16 in BAT

- expression increases
  mitochondrial biogenesis
  and gene expression

-hypomorphic
 mutation causes
 mitochondrial
 dysfunction
-sequence variants
 are associated

[43,73,74]
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GENE ADIPOCYTE
EFFECTS

MITOCHONDRIAL
RELATIONSHIPS

ADIPOSE &
INSULIN
RESPONSE

REFERENCE

 with obesity

PRDM16 -involved in BAT-
 WAT differentiation

-expression increases
 mitochondrial biogenesis

NA [46–49]
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