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Abstract

Excessive gestational weight gain (i.e., weight gain during pregnancy) is a significant public health 

concern, and has been the recent focus of novel, control systems-based interventions. This paper 

develops a control-oriented dynamical systems model based on a first-principles energy balance 

model from the literature, which is evaluated against participant data from a study targeted to 

obese and overweight pregnant women. The results indicate significant under-reporting of energy 

intake among the participant population. A series of approaches based on system identification and 

state estimation are developed in the paper to better understand and characterize the extent of 

under-reporting; these range from back-calculating energy intake from a closed-form of the energy 

balance model, to a constrained semi-physical identification approach that estimates the extent of 

systematic under-reporting in the presence of noise and possibly missing data. Additionally, we 

describe an adaptive algorithm based on Kalman filtering to estimate energy intake in real-time. 

The approaches are illustrated with data from both simulated and actual intervention participants.

I. Introduction

The high prevalence of obesity and excessive gestational weight gain are major contributors 

to adverse pregnancy and birth outcomes [1]. In 2009, the US Institute of Medicine (IOM) 

revised its recommendations for total and rate of weight gain for pregnant women by 

different categories of pre-pregnancy body mass index (BMI) [2]. A 2014 study shows that 

71% of overweight (OW; BMI ≥ 25 kg/m2) women and 61% of obese (OB; BMI ≥ 30 

kg/m2) women gained weight in excess of the IOM recommendations [3]. Gestational 

weight gain higher than the IOM recommendations substantially increases the risk of 
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gestational diabetes mellitus, preeclampsia, emergency cesarean delivery, and postpartum 

weight retention in pregnant women [3], [4]. Furthermore, infants of OW/OB mothers are 

more likely to be preterm, large for gestational age and have an increased risk of developing 

obesity from infancy to adulthood [1], [3]. Therefore, there exists a great need to develop 

interventions which can effectively help pregnant women maintain weight gain within IOM 

guidelines, and further improve maternal and infant health.

This work is motivated by the needs of an intervention, the Healthy Mom Zone study (HMZ; 

[5]) that is being conducted at Penn State University. The HMZ study aims to develop and 

validate an individually-tailored intensively adaptive intervention involving healthy eating, 

physical activity, goal-setting, self-monitoring, and other cognitive behavioral strategies to 

effectively manage weight gain in pregnancy. In prior work [6], a comprehensive dynamical 

systems model for a behavioral intervention to control gestational weight gain was proposed. 

This model relies on the integration of a first-principles energy balance (EB) model 

developed by Thomas et al. [7] with a dynamical behavioral model based on the Theory of 

Planned Behavior.

In this paper, we re-evaluate the EB model in the context of the initial HMZ pilot study, and 

develop some extensions. Specifically, we reformulate the original EB model as a 

parsimonious dynamical system with one output (maternal weight) and two inputs (energy 

intake (EI) and physical activity). This reformulated EB model is amenable to control 

analysis, and compensates for the limitations of the original EB model that did not explicitly 

include the impact of changes in physical activity on weight gain (or loss).

The effectiveness of the reformulated EB model is evaluated against the measured data of 

OW/OB pregnant women from the pilot study. Underreporting of EI is a commonly 

observed problem in weight interventions using self-reported data [8]. To understand the 

extent of underreporting, estimates of the true EI for a participant are back-calculated from a 

discretized, closed-form version of the reformulated EB model and compared with the self-

reported EI. A semi-physical identification approach based on quadratic programming (QP) 

that estimates the extent of systematic underreporting in a participant is also developed. This 

method is better able to cope with missing data, and also provides a statistical confidence 

interval of the estimates. Finally, we develop a recursive method based on Kalman filtering 

that could be used to sequentially estimate EI in real-time.

The paper is organized as follows. Section II presents an overview of the reformulated 

dynamical EB model based on the Thomas et al. EB model [7]. Section III evaluates the 

prediction of gestational weight gain from the reformulated EB model using participant data, 

ultimately leading to a semi-physical estimation approach to estimating the true EI from the 

self-reported EI. In Section IV, the adaptive algorithm based on Kalman filtering to estimate 

EI in real-time is developed and tested against the data from actual participants. Section V 

gives a summary of our conclusions.
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II. Modeling overview

A. Review of Thomas et al. Energy Balance Model

The EB model to predict gestational weight gain (GWG) based on gestational energy intake 

(EI) and energy expenditure (EE) relies on the principle of energy conservation, which can 

be expressed as,

(1)

where ES(t) is the energy stored at time t; the parameter g = 0.03 is the nutrient partitioning 

constant. This two-compartment model describes the maternal body weight (W) by the sum 

of fat free mass (FFM) and fat mass (FM).

(2)

Expansion of the ES term into the sum of the instantaneous weight change of the two 

components of FM and FFM, multiplied by their respective energy densities λFM and λFFM, 

leads to the final differential equation of the EB model as follows,

(3)

where λFM = 9500 kcal/kg, λFFM = 771 kcal/kg.

B. Reformulated Energy Balance Model

As noted in [9], the Thomas et al. model estimates the EE as a monolithic quantity. This 

means that the model does not break down into the different elements of EE. EE is 

commonly divided into three components: PA, resting metabolic rate (RMR), and thermic 

effect of food (TEF) [10]. As a result, the EE value cannot be adjusted if an individual has 

higher level of PA due to interventions, for example. Here, modifications are made.

TEF is usually expressed as a percentage of EI, ranging from 4.0% to 17.1% due to different 

diets [11]. Regardless of intake nutrients, we assume it to be approximately 7% of daily EI 
as measured in [12]. In this initial analysis, we will consider RMR constant during gestation, 

which leads to,

(4)

where rTEF = 0.07. Substituting (4) and (2) into (3) gives,

(5)
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Instead of keeping two differential terms in (5), FFM can be manipulated to relate to W so 

that the derivative is only with respect to W and the equations become much easier to solve. 

To begin with, FFM can be considered to be the sum of total body water (TBW), total body 

protein (TBP), and mass that stays constant during gestation (written as CM); this latter 

quantity includes bone mass. This leads to,

(6)

where CM = FFM (0) − TBW (0) − TBP (0).

TBW and TBP are linear functions of simultaneously measured W based on a participant’s 

BMI (see Table I), which can be expressed in a generalized form as,

(7a)

(7b)

where aW, bW, aP, bP are the coefficients of the corresponding functions. Substituting (7) 

into (6) leads to,

(8)

which if substituted into (5) gives the differential equation expressed in terms of the 

derivative of W as,

(9)

where

(10a)

(10b)

K1 and K2 are both in kg/kcal/day. Equation (9) forms the basis of the work presented in this 

paper, from which we are able to predict the system output W using the explicitly 
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measurable inputs EI and PA. When written in deviation variables and using Laplace 

transforms, (9) gives,

(11)

As seen here, the reformulated EB model for GWG can be represented in terms of a simple 

sum of integrators, with K1 and K2 (the system gain coefficients) corresponding to each of 

the two inputs. Table II shows the values of K1 and K2 categorized by BMI.

III. Semi-physical identification for batch data

A. EI Estimation Using Closed-Form EB model

Using the EB model in (9), simulations are run with the measured data from the pilot study. 

In the pilot study, EI, PA and W of 22 OW/OB pregnant women were measured for 6 weeks. 

Participant EI is obtained from self-reports using a dietary intake phone app (MyFitnessPal). 

The measurements of PA are obtained using a wrist-worn commercial monitor (Jawbone 

UP). Because EI measurements are not obtained daily, there will be missing data. For any 

missing data in the system variables, linear interpolation is used to impute the missing days 

so that simulations can be performed. RMR was not measured in the pilot study, but will be 

measured and objectively assessed over pregnancy in the full trial. In this paper, we consider 

RMR constant during gestation, defined at baseline for each participant. The baseline RMR 
is calculated using the quadratic regression formula proposed by Thomas et al. [13], which 

fits Butte et al.’s data [14] as shown below:

(12)

Wb is the maternal weight at baseline of the intervention, expressed in kg.

Simulation results of the selected two participants are presented in Fig. 1, where it can be 

seen that the predicted W using the self-reported EI (drawn in blue) lies below the measured 

W (drawn in black), with discrepancies accumulating along the 6 weeks. Similar biases in 

weight prediction are also observed for most other participants. While these can be 

explained in part from the imputation of missing data, the more significant explanation for 

this variance is as a result of under-reported EI. Literature consistently demonstrates that a 

large number of subjects under-report EI [8], [15]. A 2012 study found that up to 45% of 

pregnant women could potentially be under-reporting their daily EI, with having a BMI in 

the overweight/obese category being the main predictor of EI under-reporting [16].

To test this hypothesis, we back-calculate EI using the reformulated EB model, the 

measurements of W, PA, and the values of RMR, τTEF, K1 and K2 from Table II. 

Numerically approximating the derivative term in (9) using the 2nd order centered difference 

formula leads to the expression of the estimated EI (EIest) as shown below,
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(13)

The variables are indexed by k with k = 1, 2, …, N corresponding to day 1 to day N. T is the 

sampling time, in this case, T = 1 day. The noise in W is small relative to the total W; 

however the extent of this noise can significantly affect the numerical calculation of the rate 

of weight gain per day. Consequently, a five-day moving average filter is used to preprocess 

(i.e., smooth) the measured W before a “true” daily EI is estimated from (13). As shown in 

Fig. 1, the backtracked EI (drawn in red) is generally higher than the reported EI 
measurements (drawn in blue). The difference between the back-calculated EI and the self-

reported EI is quantified using the mean error (ME) and its standard deviation (SD). The ME 
± SD of the EI estimate for participant A is 787 ± 617 kcal; the ME±SD for participant B is 

353 ± 1025 kcal. It is also noticed that the predicted W using the back-calculated EI follows 

closely with the measured W, which also proves the accuracy of the EI back-calculation 

from this method.

B. Constrained Semi-Physical Identification Approach

To further understand the portion of EI that is systematically under-reported, we propose a 

simple linear formula to describe the relationship between true EI (EItrue) and reported EI 
(EIrept); this follows according to (14).

(14)

The random portion of the EI report is treated as a noise signal added to EIrept,

(15)

where  is the self-reported EI measurement signal. In order to relate EIrept in (14) to 

the EB model, the EB model is discretized. Using a 1st order forward difference 

approximation to discretize (9) leads to,

(16)

where (for T = 1 day)

(17)

Combining (14) with (16) leads to,
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(18)

where θ1 = K1α, θ2 = K2, θ3 = K1γ + K2RMR. Equation (18) directly relates the reported 

EI to the output of EB model.

In real life conditions, the measurement of GWG is corrupted by noise, which is expressed 

as,

(19)

GWGmeas is the measurement of GWG, and nGWG is the random measurement noise. A 

regression problem can be formulated based on (18) as shown below,

(20)

where Z ∈ ℝN is the vector of output measurements, R ∈ ℝN × 3 is the regressor that stores 

input measurements, θ ∈ ℝ3 is the parameter vector that needs to be estimated, and k1, k2,

…, kN are the days at which the measurements of all three variables (inputs EI, PA; output 

GWG) are available. The data flow for this liner regression model is illustrated in the block 

diagram in Fig. 2.

The regression formula per (20) uses only available data and eliminates the need for 

imputation. To identify the parameter vector θ, a least squares cost function is considered:

(21)

Constraints for each coefficient can be imposed based on prior knowledge of the sign of the 

system gains K1 > 0, K2 < 0 and the coefficient α > 0. The solution to (21) is accomplished 

based on quadratic programming (QP). The problem statement is formulated as follows,

(22)
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where H = 2RT R, f = (−2ZT R)T, .

The solution to the QP problem in (22) gives the estimates of θ, from which α and γ, the 

coefficients used to model the under-reported EI in (14) can be calculated. This leads to the 

estimate of EI from the self-reported  as shown below,

(23)

where “hat” denotes the estimate. The standard errors of the estimated coefficients for this 

linear regression model are calculated by bootstrapping the residuals between the estimated 

and measured GWG.

This estimation method is evaluated in simulations using a hypothetical participant first. The 

results are shown in Fig. 3. For this simulated participant, we fix the values of α, γ, EIrept, 

PA, and the statistics of the random noises nGWG, nEI, from which the θ1–3, GWG, 

GWGmeas,  and EItrue for that participant can be calculated to form the regression 

model. From the model, the true EI can be estimated using the QP algorithm and compared 

with the assumed values. It can be seen from the results in Fig. 3 that EIest are on average 

higher than the self-reported EI, but remain close to the true EI values.

In Fig. 4, the results calculated from two intervention participants are presented. As with the 

back-calculation examples from Section III.A, a five-day moving average filter is used for 

GWGmeas prior to applying the semi-physical estimation procedure. EIest for participant A is 

consistently higher than the self-reported EI by an ME ± SD of 900 ± 355 kcal. Participant 

B, meanwhile, has an ME ± SD of 528 ± 519 kcal.

IV. Kalman Filtering Approach for EI Estimation

In this section, we develop a recursive method based on Kalman filtering (KF) to 

sequentially estimate EI in real-time. In this method, the variable we aim to estimate, i.e., EI 
in this application, is viewed as the “state” of a system. We treat this “state” invariant in time 

but affected by noise, which leads to the state equation expressed as,

(24)

where the random variable w(k) represents the process noise. The discretized EB model 

equation in (16) is used as the measurement equation but with PA and RMR as system 

inputs. If the state of this system is denoted by x = [EI], the input by u = [PA, RMR]T and 

the output y = [GWG] respectively, we can write the dynamics of this discrete system by 

coupling (24) with (16) as,
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(25a)

(25b)

where A = I, B = 0, C = [K1], and D = [K2, K2]. The random variable v(k) represents the 

measurement noise.

In the described system equations, both the model prediction and the measurement are 

subject to noise. We assume these two noise terms, w(k) and v(k) are i.i.d. over time, zero 

mean Gaussian with variance ϑ2 and σ2 respectively, that is, w(k) ~ N(0, ϑ2) and v(k) ~ 

N(0, σ2) for all k.

The recursive Kalman filtering algorithm is described in detail below, where “hat” denotes 

the estimate, P the error covariance, and K the Kalman gain.

1. Initialize:

Set , P(0|0) = I. EI0 is the initial value of EI, calculated using 

the quadratic regression formula [17] as shown below,

(26)

2. Predict:

3. Update:

where Q(k + 1) is the covariance for process noise w(k + 1) with Q(k + 1) 

= ϑ2; R(k + 1) is the covariance for measurement noise v(k + 1) with R(k 
+ 1) = σ2.

For performance evaluation, we use the Root Mean Square Error (RMSE) as the metric, 

which is defined as,
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(27)

Tspan = 1 when calculating the running RMSE.

To test the performance of the algorithm, we create the input data, output data, as well as 

noise with known statistics for a hypothetical participant, similar to what was done in 

Section III. The simulation result using the hypothetical data is presented in Fig. 5, where Q 
= ϑ2 = 10000, R = σ2 = 0.1. It can be seen that the EI “adapts” from a given initial value and 

keeps tracking the true EI closely despite the presence of noise during the KF algorithm. The 

algorithm also produces better weight gain predictions than the noise corrupted 

measurements.

The results of the two simulations using actual participant data are presented in Fig. 6, where 

Q = ϑ2 = 100000, R = σ2 = 0.2 are set for both participants. It can be seen that the estimates 

of the true EI using this algorithm lie above the self-reported measures of EI, which is 

consistent with what we find using the two estimation approaches presented in the preceding 

sections. From the simulation result, the ME±SD of the EI estimate is 1111 ± 568 kcal for 

participant A, and 198 ± 784 kcal for participant B.

V. CONCLUSIONS

In this work, a control-oriented energy balance model for gestational weight gain has been 

developed, starting from the first-principles model of Thomas et al. [7]. The reformulated 

EB model can be used in the design and analysis of adaptive interventions to manage 

gestational weight gain, and lends itself to system identification. The model supports the 

development of methods for estimating underreporting of energy intake, a problem that is 

common in weight interventions relying on self-reports. An initial estimate of 

underreporting of EI is generated by back-calculating EI from measurements of W and PA 
using the discretized EB model equation. This leads to the formulation of a semi-physical 

identification problem using batch data that can be used to estimate systematic 

underreporting of EI in the presence of noise and despite missing data; statistical confidence 

bounds generated by bootstrapping are also presented. Finally, an adaptive algorithm based 

on Kalman filtering for real-time estimation of EI is developed; the results obtained are 

observed to be comparable with those from semi-physical identification. The filtering 

approach can also be applied to estimate other system variables whose measurements may 

be missing or may be imprecise, for example, RMR. All three methods are illustrated with 

participant data from an on-going study. Future efforts consist of generalizing some model 

assumptions, as well as incorporating dynamic change in RMR during both modeling and 

estimation. The variation in the extent of underreporting during different gestational 

trimesters needs also to be studied further.
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Fig. 1. 
Simulations of the reformulated EB model using self-reported and back-calculated EI from 

two representative intervention participants. BMI: body mass index; GA: gestational age at 

baseline.
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Fig. 2. 
Block diagram of the linear regression model.
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Fig. 3. 
A hypothetical case for EI estimation using the semiphysical identification approach. Here, 

nEI ~ N(0, 4002), nGWG ~ N(0, 0.12); α = 1.1, γ = 400. Error bars represent the 95% 

confidence interval calculated using bootstrp in MATLAB®.
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Fig. 4. 
The results of estimating the true EI from self-reported EI for two intervention participants 

using the proposed semi-physical identification approach. Error bars represent the 95% 

confidence interval.
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Fig. 5. 
The performance of the KF algorithm illustrated using a hypothetical participant. The RMSE 
stands for Root Mean Square Error.
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Fig. 6. 
Performance of the KF algorithm evaluated using two actual intervention participants.
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TABLE I

Tabulation of linear functions of total body water (TBW) and total body protein (TBP) with respect to 

maternal weight (W). TBP and W are expressed in kg, TBW in liters.

BMI Category (kg/m2) Weight Range (kg) TBW Function TBP Function

Low BMI (≤ 19.8)

W ≤ 52

0.489W + 3.875

−0.04762W +9.28

52 < W ≤ 57.7 0.105263W + 1.33

W > 57.7 0.075472W + 3.05

Normal BMI (19.8–26)

W ≤ 60.2

0.4836W + 2.853

−0.667W + 47.533

60.2 < W ≤ 65.1 0.0204W + 6.17    

W > 65.1 0.0724W + 3.05    

High BMI (≥ 26)

W ≤ 81.8

0.503W + 4.885

      −0.03226W + 10.4387

81.8 < W ≤ 85.8 0.1W − 0.38          

W > 85.8       0.098765W + 0.27407
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TABLE II

System gain parameters for energy intake (K1) and physical activity (K2) for low, normal and high BMI.

BMI Category (kg/m2) Weight Range (kg) Gain K1 (kg/kcal/day) Gain K2 (kg/kcal/day)

Low BMI (≤ 19.8)

W ≤ 52 1.59 × 10−4 −1.77 × 10−4

52 < W ≤ 57.7 2.09 × 10−4 −2.32 × 10−4

W > 57.7 1.97 × 10−4 −2.19 × 10−4

Normal BMI (19.8–26)

W ≤ 60.2 0.81 × 10−4 −0.90 × 10−4

60.2 < W ≤ 65.1 1.76 × 10−4 −1.96 × 10−4

W > 65.1 1.94 × 10−4 −2.15 × 10−4

High BMI (≥ 26)

W ≤ 81.8 1.67 × 10−4 −1.85 × 10−4

81.8 < W ≤ 85.8 2.12 × 10−4 −2.36 × 10−4

W > 85.8 2.12 × 10−4 −2.35 × 10−4
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