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Abstract

Understanding allosteric mechanisms is essential for the physical control of molecular switches 

and downstream cellular responses. However, it is difficult to decode essential allosteric motions 

in a high-throughput scheme. A general two-pronged approach to performing automatic data 

reduction of simulation trajectories is presented here. The first step involves coarse-graining and 

identifying the most dynamic residue–residue contacts. The second step is performing principal 

component analysis of these contacts and extracting the large-scale collective motions expressed 

via these residue–residue contacts. We demonstrated the method using a protein complex of 

nuclear receptors. Using atomistic modeling and simulation, we examined the protein complex and 

a set of 18 glycine point mutations of residues that constitute the binding pocket of the ligand 

effector. The important motions that are responsible for the allostery are reported. In contrast to 

conventional induced-fit and lock-and-key binding mechanisms, a novel “frustrated-fit” binding 

mechanism of RXR for allosteric control was revealed.
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Many biomolecules, especially signaling proteins, may have more than one accessible 

conformational state under physiological conditions. The barrier(s) separating these states is 

not prohibitively high.3,4 Thus, these macromolecules are able to switch their conformations 

upon sensing environmental perturbations. There are a variety of such perturbations, such as 

interaction with another macromolecule,1,5 interaction with a ligand,6 solvent 

conditions7–10-(polarity and pH), physical environment11–15 (salt, pressure, temperature, and 

light), or post-translational modifications.13,16

The conformational changes induced by these perturbations serve important biological 

functions. The changes can be local (centered around a few residues) or global (extensive 

and convoluted, involving the rearrangement of the whole molecule). The amplitude of these 

changes can range from subtle root-mean-square deviation changes to partial unfolding. One 

of the most well-studied cases of conformational switches is allostery.1,17,18 A classic 

example of allostery involves the cooperative or anticooperative affinity of ligand binding 

pockets; i.e., binding of one ligand (effector) at one pocket may induce conformational 

changes that promote or inhibit the binding of the second ligand at a second pocket.19

Much success has been achieved in understanding allostery over the last century,20 but 

questions about the mechanistic action of allostery, especially on negative allostery, remain, 

i.e., how one ligand can negatively influence a remote binding or active site.21,22 Although 

there are textbook examples of thoroughly studied positive allosteric systems such as 

hemoglobin, negative allosteric regulation is infrequently reported. One possibility is that 

negative allostery is rarely used in nature’s design of biochemical pathways. Another reason 

could be that identifying negative allostery with conventional methods is difficult. Indeed, 

allosteric mechanisms can have a variety of themes, and a specific mechanism can be 

painstaking to decode.23 Given a particular state of a protein (or protein complex) that 

possesses multiple binding sites, can one predict whether the binding is cooperative or 

anticooperative? Do all negative (or positive) allosteric mechanisms share an underlying 

theme? Even more interestingly, some allosteric proteins (such as the one we will examine 

below) can display both positive or negative allostery, depending on the allosteric target. 

How do such molecular switches function? The answers to these questions could lead to 

future bioengineering and design of a new class of signaling proteins.

Several methods have been used to examine the intricate regulation and remote 

communication between binding sites.6,24–28 Most methods so far have focused on the 

changes of elements of allostery (such as residue nativeness or residue–residue contacts) at 

the “mean-field” level. Typically, a group of potentially important elements of allostery are 
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first identified either through experimental mutation or through computational study. Then, 

further analysis using network or phylogenetic tree-type classification is applied to 

reconnect these isolated elements.29 Because the process of identifying important elements 

is often performed and recorded independently, such as alanine scanning of individual 

residues, the connection between these isolated elements is ignored. What is missing from 

these approaches is the dynamic correlation between these elements. Indeed, as described by 

bioinformatics approaches, this aspect can be examined by analyzing the correlation 

between these elements, i.e., the coevolution of protein residues.27,30 Similarly, coarse-

grained models of proteins have been studied computationally to examine the local folding 

states (whether a residue is native or unfolded) and how the “melting” state of one residue 

affects another.24,25 In such models, the element of allostery is the physical status or 

chemical identity of each residue.

In this study, we address the mechanism of allostery from the viewpoint of contact events 

(between residues) collected from atomistic simulations. Thus, the elements of allostery are 

not the status of individual residues, but the status of contacts (residue–residue interactions). 

The focus will be the dynamic correlation between the contact events, i.e., when residues i 
and j form a contact, whether residues k and l also form a contact. We first construct 

atomistic models and obtain simulation trajectories. We then extract the discrete contact 

degrees of freedom (DOFs) from simulation snapshots via coarse-graining and identify the 

important dynamic contacts. Finally, a statistical method (principal component analysis) is 

applied to these contact DOFs to identify the allosteric mechanism.

The method developed here is applied to a heterodimeric nuclear receptor (NR) complex. 

The nuclear receptor superfamily is a well-known group of signaling proteins that is 

responsible for sensing the presence of important small molecules for the downstream events 

of transcription. As the common subunit of heterodimers of the NR superfamily, 

promiscuous protein retinoid X receptor (RXR) displays essential allosteric regulation of 

other members in the superfamily. Previous experimental studies showed that the ligand 

binding status of RXR influences the ligand binding status of the thyroid hormone receptor 

(TR),31 the constitutive androstane receptor (CAR),32 and the liver X receptor (LXR).33 For 

instance, the TR–RXR heterodimer can achieve full activity only upon binding of the 3,3′,5-

triiodo-L-thyronine (T3) ligand to TR, and transactivation levels drop in the presence of the 

RXR ligand 9-cis-retinoic acid (9C), a clear case of negative cooperativity between the two 

binding sites.31 On the other hand, RXR positively regulates the binding activity of CAR. 

Thus, how this promiscuous protein RXR can have different functions is quite intriguing. An 

illustration of the TR–RXR complex (ligand binding domains) is shown in Figure 1. Below, 

we will report how binding of 9C will induce the release of T3. We also will report an 

interesting “frustrated fit” between the binding pocket and its endogenous ligand, 9C.

SYSTEMS AND METHODS

Atomistic Modeling of the TR–RXR Complex and Glycine Scanning

Besides directly investigating the system of the wild-type protein complex TR(T3)–

RXR(9C), a series of single-residue glycine mutants were constructed to enhance the 

sampling of conformational space. Traditionally, alanine scanning is used as a technique to 
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determine the contributions of individual amino acids to a protein’s structure, function, and 

binding activity.34 Alanine is an ideal residue for minimizing native residue–residue 

interactions for experimental methods, as it is relatively inert and has minimal steric and 

electrostatic impact.35 In this study, a more drastic glycine mutation is used to scan the 

binding pocket. Glycine residues are completely devoid of side chains, and thus eliminate 

most residue–ligand contact interactions. As this is a perturbation study with the native 

structure as the initial state, the results are not impacted by potential ill effects (such as 

protein instability encountered in experiments) because they are not shown in a relatively 

short-time all-atom simulation.

As listed in Figure 1 and Table S1 of the Supporting Information, the 18 residues selected to 

be scanned form the binding site of RXR and can potentially form direct interactions with 

ligand 9-cis-retinoic acid (9C). The selection was made by directly inspecting the crystal 

structure and representative snapshots of the simulation of the wild-type protein. This set of 

18 glycine mutants can perturb interactions between RXR and its ligand, 9C. These side 

chain-deleting mutants provide an ensemble of perturbed ligand-docked (holo) structures 

that are closer to the configurations of apo systems. Note, however, this particular residue–

ligand interaction may not be completely removed by these point mutants. For example, in 

mutant A327G, glycine still can hold a backbone hydrogen bond with the carboxyl end of 

ligand 9C.

We also reason that, rather than comparing the snapshots from one long-time simulation of 

the wild type alone, an ensemble of glycine mutants will sample the representative populated 

configurations more efficiently in a given short time. Here we demonstrate that this 

perturbation scheme provides an important ensemble of configurations and utilizes them to 

detect the allosteric mechanism. Furthermore, statistical analysis of this perturbative 

ensemble of structures reveals important allosteric information about ligand binding and 

ligand crosstalk. In our design of the simulation procedure, we did not use the traditional 

method of directly studying the apo form (void of 9C) versus the ligand-bound form of the 

complex. The concern is that there is no crystal structure of the apo form. The structural 

changes between the apo form and the holo form are known to be drastic. If we start the 

simulation from the holo form of the structure with the ligand completely removed, it would 

take an unrealistic time for the system to reach the relaxed apo form. Rather, we focus on a 

set of more subtle perturbations of the holo form and perform short-time simulations. Thus, 

this scheme has the potential of being developed into a high-throughput method.

Simulation Setup

The starting structure for each of the 19 protein complexes was constructed from Protein 

Data Bank (PDB) entry 3UVV22 via the xleap module of AMBER 10.36 The force fields for 

protein and water are AMBER ff99SB37 and TIP3P, respectively. Besides solvent, there are 

four separate entities in each system: protein TR (internal index 1–259, corresponding to 

standard residue index 147–405), protein RXR (internal index 260–491, corresponding to 

standard index 227–458), ligand T3 (3,3′,5-triiodo-L-thyronine, internal index 492), and 

ligand 9C (9-cis-retinoic acid, internal index 493). We use the standard residue index below 

unless otherwise specified.
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Nuclear receptors have a common fold, the so-called α-helical sandwich,38,39 which is 

mostly constructed from 11 or 12 helices. The loop (residues 195–202) that connects the 

first two helices of TR and the corresponding loop for RXR (residues 247–260) were 

missing in the reported PDB structure; these regions were modeled via ModLoop.40 Ligands 

T3 and 9C were modeled using the antechamber module of AMBER 10.36 The charges of 

the ligands were obtained from previous results41 or from ab initio calculations.42

The size of each system is roughly that of the wild type (61625 atoms, including 17 sodium 

ions and 17906 waters). Note that each system size can vary slightly because of glycine 

mutation, but all the systems have a box size of ~88 Å × 98 Å × 94 Å. The energy-

minimized wild-type complex was used as the starting structure for every mutant studied 

here. From this structure, 18 single-point glycine mutant complexes were constructed with 

the xleap module.

For each system, minimization, heating, and equilibration (for approximately 1 ns) were 

conducted and followed by a 20 ns NPT production run at 1 bar and 300 K using 

NAMD2.7.43 The Langevin thermostat was used to regulate temperature; long-range 

interactions were treated using the particle mesh Ewald method,44 and all bonds involving 

hydrogen atoms were constrained using the SHAKE45 algorithm. A 2 fs time step was used 

for the simulation with snapshots taken and trajectories generated every 1 ps, producing 

20000 snapshots for each system (and a total of 380000 snapshots). These snapshots, 

containing Cartesian coordinates of all the atoms, are the starting data sets for expressing the 

conformations in terms of contact degrees of freedom.

From the simulation snapshots, we have applied the computer program CAMERRA 

(Computation of Allosteric Mechanism by Evaluating Residue–Residue Associations) to 

perform the analysis of the allosteric motions that we report below. CAMERRA with sample 

data and results is available upon request.

RESULTS AND DISCUSSION

Selecting Important Contact Degrees of Freedom for Principal Component Analysis

To simplify the multidimensionality of the configurational space and to extract the allosteric 

motion, a data reduction scheme is desired to locate important degrees of freedom (DOFs). 

Often, principal component analysis is used for such tasks using biological systems.46 

Traditionally, Cartesian coordinates are used as the inputs for principal component analysis 

(PCA) in biomolecular simulations.47 PCs of Cartesian coordinates resemble soft 

“vibrational” modes of atom positions. However, protein motion is extremely complex,2 and 

expressing structural data in other formats, such as internal DOFs48 and contact DOFs,16,49 

can have some advantage, depending on the type of motions (such as backbone rotation, 

vibration, and folding). In the case described in this work, allostery will be examined from 

the viewpoint of residue–residue interaction. Thus, the PC modes reported here correspond 

to the vibrational motion of contacts (contact forming and breaking). Residue–residue 

contact DOFs are convenient for describing large-scale motions of proteins such as protein 

folding,1 and these can be an efficient way of coarse-graining atomistic information about 

large biomolecular systems, as well.
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First, certain DOFs are removed from the system to produce coarse-grained representations 

of the residue level contact interactions. Here, each snapshot, initially expressed as the 

Cartesian coordinates of all the atoms, is condensed down to the information that indicates 

whether there is any direct contact between residues. We use discrete uij values of 1 and 0 to 

indicate whether contacts are formed. A contact is deemed to be formed between two 

residues when the distance between any atoms of said residues is less than 4.2 Å; in this 

case, uij = 1. Otherwise, uij = 0.

A protein (complex) of N residues has residue–residue contacts on the order of O(N2), 

which is typically larger than the number of Cartesian DOFs, even expressed at atomic 

resolution. Thus, one needs more numbers to express a particular configuration using contact 

DOFs. Fortunately, a protein has a much more sparse contact matrix if it is confined to a 

particular well-folded basin. If each residue has a maximum m possible native contacts 

(practically, m is a small number on the order of 10), there are m × N total contact DOFs. 

Besides those contacts that are never formed, the contact DOFs that are always formed 

should also be excluded. Neither of these two types of contact DOFs will be able to 

contribute to the important motions of the protein complex or reveal the intricate interactions 

between contact formations. For comparison, the luxury of limiting the contact DOFs to that 

of the native basin was absent in a previous study of folding and structure prediction.49

We first examined all potential contacts and ranked the percentage of formations during the 

simulation. Figure 2 shows the ranked contact curves (RCC), defined as the individual 

contact probability p(i) sorted by its rank i. Note that all contacts (including the N diagonal 

portion of the contact matrix that gives a constant 1) are included in the RCC. The x-axis 

value J50 at which the curve intercepts with a y of 0.5 indicates the number of contacts that 

are formed ≥50% of the time during the simulation; i.e., p(J50) = 0.5.

On the basis of the sigmoidal nature of the RCCs, a sharp “transition zone” separates a left 

region where contacts were always formed (near 100%) and a right one where contacts were 

never formed during the simulation. The most interesting contact DOFs are the contacts in 

the transition zone. Because these contacts are not always formed, their motions will be most 

important in describing the conformational dynamics of the protein complex. The combined 

RCC, which is constructed from all snapshots, is also displayed here. We then select the 

interesting contact DOFs, defined as those formed between 20 and 80% of the combined 

RCC for the analysis below. For this system, the “20/80” cutoff leaves a manageable amount 

of DOFs to perform the second stage of data reduction analysis, i.e., PCA studies. The total 

number of contact DOFs used in PCA is J ≡ J20 – J80. As illustrated in Figure 2, the 

combined RCC provides the following cutoff values: J20 = 3386 and J80 = 2897. We 

generate a total of 489 DOFs shown as colored cylinders in Figure 2b. Note that they are 

broadly distributed across the complex.

It is important to point out the RCC of the combined data, i.e., the collection of all the 

snapshots from 18 glycine mutants, is not a direct average of individual RCC curves. We 

observe that the combined RCC has a more gradual decay with an increasing contact index. 

The combined RCC is softened with a broader tail and a less dramatic drop. The longer tail 

of the combined RCC is due to the variety of contacts that are formed in the combined 
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ensemble. A highly formed (near 100%) contact in a particular ensemble is not guaranteed 

to form in all other ensembles. Thus, the combined RCC is below the individual RCCs at 

this region.

Besides being used to select the important contacts to include in the analysis, RCCs can also 

provide information about the level of compactness of each mutant. In general, an RCC shift 

toward the right and up indicates more contacts are formed and thus the protein is more 

compact. Interestingly, all mutants show certain enhancement of contact formation 

compared to that of the wild-type complex, as shown in Figure 2c. This may indicate that the 

wild-type complex has certain frustration caused by steric interactions that are alleviated by 

glycine mutation. One can use J50 as a measurement of the compactness of a structure. 

Another way to measure the level of contact formation is to evaluate the mean contacts 

formed per residue. Here, each residue has ~10 contacting neighbors (including sequential 

neighbors) on average.

The J50 and mean contact per residue are strongly correlated. Both of these properties 

indicate an intriguing fact that the binding pocket of each contact-deleting mutant is able to 

accommodate the endogenous ligand better and makes the complex more compact in 

comparison to the wild type. For the extreme case, the removal of residue H435 can increase 

the number of global contacts by ~1% relative to that of the wild type. This indicates that the 

binding of ligand 9C creates steric frustration (especially at the ring end of the ligand), 

which forces the molecule to adopt an ensemble of more flexible conformations. Thus, the 

binding pocket of T3 does not form well and decreases the affinity for T3, which is 

consistent with the experimental evidence that upon binding 9C, RXR changes conformation 

and TR becomes more “loose” and dynamic.31 Experimental evidence showed a more 

dispersed electron density in the holo system (with both ligands) than in the apo system 

(without 9C).31 The trend is quite pronounced for TR, which leads to the conclusion that TR 

becomes more flexible upon the binding of 9C to RXR.31 This conclusion is also supported 

by the computed radius of gyration analysis, which indicates that mutants are more compact 

than the wild type (data shown in Figure S3 of the Supporting Information).

Principal Components and Projections of Conformations onto Them

In the case presented in this work, PCA is performed on the selected total of 489 contact 

DOFs introduced in the previous section. We first calculate the elements of the covariance 

matrix (size of J × J) Cαβ ≡ Ci:j,k:l, which describes the level of correlation between contact 

events u indexed by α = 1, 2, 3, …, J (between residues i and j) with the event β = 1, 2, 3, 

…, J (between residues k and l). Thus, covariance matrix C is defined as Cijkl = 〈(uij − 〈uij〉) 
× (ukl − 〈ukl〉)〉. We use a collection of snapshots (380000 frames) from 19 mutant and wild-

type simulations. The results presented below are based on this combined covariance matrix.

For PCA, covariance matrix C is then diagonalized, and transformation matrix U is 

obtained, which yields UTCU = Λ, where matrix U gives a recipe to linearly transform the 

contact DOFs to another set of DOFs and matrix Λ is diagonal. The significance of the 

transformed DOFs, termed principal components (PCs), is that they are directly ranked by 

their importance according to eigenvalue Λ. The top PCs (containing the largest Λs) provide 

the major modes of protein dynamics in terms of contacts. Ideally, the fluctuation of 
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residue–residue contact and detachment events contains only the largest few PCs for the 

dimension reduction, and the sorted eigenvalue Λi drops with index i. The 65th largest PC is 

less than one-tenth of the largest. The relatively slow decay of eigenvalues suggests that 

quite a few modes contribute to protein motion. However, it does not change the ranking of 

the top PCs. These top PCs still hold the most likely motions. Although the decrease is not 

extremely rapid, the top 13 PCs together contribute more than half of the whole amplitude. 

We will focus on PC1 and PC2 below.

We display the top two PCs (normalized eigenvectors) in Figure 3. Principal component 1 

(PC1) is of immediate interest because it represents the largest mode of movements and will 

likely exhibit the most interesting information. Here, in Figure 3a, the normalized 

eigenvector PC1ij is shown on a residue–residue contact map, and the values of these 489 

contacts are color-coded. The black dashed lines demarcate the intrachain contact region and 

the interchain region. Figure 3b contains the same information about PC1 but focuses on the 

contacts between the protein and the ligand. Although there are a variety of positive and 

negative values for each contact along PC1, the overall contact with ligand T3 is positively 

correlated along PC1 while 9C is negatively correlated. This means that the modes of 

ligand–protein interaction are anticorrelated and is an indication that when one ligand is 

drawn closer to its binding site, the second ligand will escape from its binding site. Our 

negative allostery results indicate the binding of T3 is weakened once 9C is bound. This is 

consistent with the earlier experimental study that examined the binding affinity and 

reported an increase in the dissociation constant and a decrease in the binding constant of the 

T3 pocket in the TR(T3)–RXR(9C) complex in comparison to those of the TR(T3)–RXR(ø) 

complex.31

Besides the two-dimensional plot (Figure 3a) and the ligand plot (Figure 3b), a cylinder 

representation is also used to display the information about PC1 in a three-dimensional view 

(front and back), as shown in Figure 3d. Additional side views are presented in Figures S5 

and S6 of the Supporting Information. Here the contacts are again visualized as cylinders, 

similar to that of the mean contact plot in Figure 2b. All three representations indicate the 

dynamics of the PC1 mode. Overall, the most dramatic dynamics of PC1 center around the 

binding pocket of T3, which is remarkable given that all the mutations directly probe the 9C 

binding of the RXR side. Previously, it was reported that electron density for the T3 binding 

site in TR is markedly discontinuous in the TR(T3)–RXR(9C) complex.31 In this PC1 mode, 

there is one main region of interchain contact. Helix H11 of RXR and helix H10′ of TR 

seem to hold many of the important interchain (interfacial) contact pairs. Also, the contact 

between helix H6′ of TR and the turn region (residues 377–383) of RXR contributes to the 

interfacial interaction between TR and RXR.

Similarly, Figure 3c is a contact map view of the PC2 value for each residue–residue contact. 

While PC2 may be less important than PC1, there is some useful information in this mode, 

which will be discussed in the PC projection below. The values in PC2 mode have smaller 

amplitudes, as expected.

Figure 4 depicts the conformation (contact states) of all systems studied projected onto the 

top two principal components (presented in Figure 3). Projecting the dynamic snapshots of 
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all systems onto these two PCs may enhance our understanding of the propagation of the 

allosteric control utilized by the TR–RXR complex. In this case, PC1 distinguishes the wild 

type from the mutants, as the wild type is located on the extreme positive end of PC1 in 

Figure 4, reaching values well above 4.0. Opposite to the wild type on the extreme negative 

end of PC1 lies mutant R316, reaching values of less than –4.0.

It is interesting to point out mutation R316 is expected to cause the most drastic changes to 

the binding interaction, because the arginine to glycine mutation removes the salt bridge 

interaction between the side chain of arginine and the carboxylic group of ligand 9C. We 

suggest that PC1 resembles the docking mode of the carboxyl end of ligand 9C. 

Additionally, L433 and L436 have similar values along PC1 and PC2. These two residues 

have the same chemical properties and are also found only three residues apart, which 

explains their similar behavior along these modes. Interestingly, A327 and R316, which are 

found in a very similar locale, have very different PC1 values. This can be explained by the 

difference in their chemical properties. Compared to the mutations near the ring of 9C, those 

residues near the carboxyl end of 9C tend to have lower PC1 values.

The wild-type TR–RXR complex shows relatively high values of PC2, as well. PC2 is used 

here as another way to differentiate mutant from wild-type conformations. Mutant Q275 

shows the lowest values along PC2, while F313 shows the highest values. Mutants C432, 

L433, H435, and L436 (all similar locales) show very similar PC2 values. One may wonder 

whether 20 ns simulations are sufficiently long to obtain convergent PCA results. To 

examine the dynamics aspect of protein motion projected onto the top PCs, we split the 

same data into two halves (10 ns each) as shown in Figure S8 of the Supporting Information. 

We can see that most systems are relaxed to a stationary ensemble and show little change 

between the two halves. There are a couple exceptions that indicate transient motions. Note 

that our perturbation scheme aims to generate a set of diverse and slightly perturbed 

structures, not necessarily fully equilibrated ensembles.

CONCLUSIONS

We present a method that isolates important allosteric modes from glycine mutant 

simulations by performing PCA on selected dynamic contacts. This two-stage data reduction 

scheme [(1) selecting dynamic contacts based on RCC and (2) rendering important contact 

collective modes by PCA] is efficient in terms of computational cost and maintains the 

atomistic interactions of the system. The method is applied to reveal the interactions 

between ligands of the TR–RXR NR complex. Ligand 9C binds RXR, which invokes 

frustration of the binding site, and this frustration is propagated through the interface of the 

TR–RXR complex. This “frustrated fit” eventually leads to a decrease in the level of contact 

between TR and its ligand, T3. Understanding the allostery of RXR with its endogenous 

ligand will serve as a model system for studying rational drug design of antagonists that 

control the regulation pathway. Besides other NRs in the superfamily, the method presented 

here can be generally useful in the study of many other allosteric systems and large-scale 

motions of flexible proteins.
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RXR retinoid X receptor

TR thyroid hormone receptor

9C 9-cis-retinoic acid
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NR nuclear receptor

PCA principal component analysis
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Figure 1. 
Several depictions of the structure of the RXR–TR complex with varying levels of detail. (a) 

Cartoon rendering of the structure of the RXR(9C)–TR(T3) complex. (b) Interaction 

between the RXR binding pocket and ligand 9C. The amino acid residues used to construct 

glycine mutants in this study are listed.
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Figure 2. 
Residue–residue contact analysis. (a) The ranked contact curves (RCCs) display the 

probability of residue–residue contacts for each individual system (thin lines) and the 

combined data (thick dashes). Note that there are 19 colored lines; each color represents an 

individual system from this study. The color scheme is displayed in panel c. Positions of J20, 

J50, and J80 of the combined RCC are labeled. The inset presents the overall view of the 

combined RCC. (b) The average contact probabilities for those contacts selected (between 

20 and 80% formed) are displayed as cylinders (total of 489) between residues in the 

complex structure. The color spectrum is from red (0.2) to green (0.5) to blue (0.8). (c) The 
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value of J50 vs the corresponding contacts per residue is displayed here for individual 

mutants and the wild type. The color scheme for the 19 systems is consistent throughout this 

work.
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Figure 3. 
(a) Eigenvector PC1 displayed on the residue–residue contact map. The internal index of the 

residues is used here for the axes. The dashed lines separate intra- and interprotein contacts. 

Another set of dashes demarcates the contacts formed between ligands (internal indices 492 

and 493) and protein residues. (b) Sum of selected elements in eigenvector PC1 that contain 

the contact interaction between ligands (T3 and 9C) and the protein complex. The values of 

individual elements are listed in Figure S4 of the Supporting Information. (c) Eigenvector 

PC2 displayed on the contact map. Three-dimensional representations of PC1 and PC2 

values are shown in panels d and e, respectively. For the sake of clarity, only those contacts 

with absolute values of >0.03 are explicitly displayed as colored cylinders.
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Figure 4. 
Projection of all snapshots onto top PCs. The configurations of the protein–ligand complex 

are projected onto PC1 and PC2. Each of the 380000 points represents a specific 

configuration of the system obtained from a snapshot, as shown at the left. The color scheme 

matches that of previous figures. Each individual mutant is also displayed in a multipanel 

view at the right for a clear comparison with the wild type.
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