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Abstract

Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to 

enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica 

exchange is relatively easy to implement, there are many unanswered questions about how to use 

this technique most effciently, especially because it is frequently the case in practice that replica 

exchange simulations are not fully converged. A replica exchange cycle consists of a series of 

molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different 

thermodynamic states followed by one or more replica exchange attempts to swap replicas among 

the different states. How the replica exchange cycle is constructed affects how rapidly the system 

equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long 

molecular dynamics simulations of a host–guest binding system as an example, in order to study 

how different implementations of the replica exchange cycle can affect the sampling effciency. We 

analyze how the number of replica exchange attempts per cycle, the number of MD steps per 

cycle, and the interaction between the two parameters affects the largest implied time scale of the 

MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We 

show how to estimate the infinite swapping limit from the diagonal elements of the exchange 
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transition matrix constructed from MSMRE “simulations of simulations” as well as from relatively 

short runs of the actual replica exchange simulations.

Abstract

1. INTRODUCTION

Molecular dynamics (MD) is a computer simulation technique that is widely employed to 

study the behavior of biological systems at atomic resolution, but this method is limited by 

much shorter time scales of most simulations compared to those of many biochemical 

processes, such as conformational equilibria of proteins and nucleic acids, or the catalytic 

cycles of enzymes, which often occur over a wide range of time scales from milliseconds to 

seconds or longer.1–3 Powerful enhanced conformational sampling techniques have emerged 

to address this challenge. Umbrella sampling and path sampling methods are two notable 

examples. In umbrella sampling, one tessellates a region of the conformational space of 

interest by localizing potentials to explore it thoroughly.4–7 In path sampling, one places 

interfaces or biasing potentials along chosen reaction coordinates to facilitate barrier 

crossings, and samples within transition regions that connect stable states.8–18 Typically, 

these enhanced sampling techniques launch independent swarms of simulation threads each 

at a region between interfaces or each at a modified Hamiltonian containing a different 

biasing potential. These techniques often suffer from slow convergence because of the 

notorious dificulty to achieve equilibration at each state, especially when the biasing 

potentials strongly localize the system in a limited range of reduced coordinates. Other 

enhanced conformational sampling techniques are based on generalized ensemble 

formulations. In addition to the sampling of the conformational space, such techniques also 

produce a random walk in the thermodynamic and/or Hamiltonian parameter spaces.19,20

Generalized ensemble enhanced sampling can be classified as either serial, such as serial 

tempering/simulated tempering and Hamiltonian hopping, or parallel sampling. The serial 

implementations run a single Monte Carlo (MC) or MD thread and update the 

thermodynamic and Hamiltonian parameters periodically.21,22 However, the single thread 

infrequently reaches high free energy states because the probability of visiting a particular 

state is determined by the free energy of that state. To solve this problem, the serial 

implementations usually add a free energy weight to the Hamiltonian of each state and 

iteratively adjust those energy weights to equalize the state populations. The determination 
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of optimal free energy weights can be problematic, especially when they slowly converge 

due to rare conformational transitions.

Parallel replica exchange (RE) algorithms eliminate the need for prior determination of free 

energy weights.23–26 RE techniques run as many MC/MD threads (replicas) as there are 

states of the system included in the generalized ensemble, and exchange replicas’ state 

assignments periodically. The probabilities of exchanges are controlled by microscopic 

reversibility requirements of not only the configurational space of each replica but the 

combinatorial set of assignments of states to replicas. Because of the thermodynamic 

equivalence of replicas and the equality of the numbers of replicas and states, the replica 

exchange method guarantees that each replica will visit each state with equal probability 

without the prior knowledge of free energy weights. Replica exchange algorithms provide 

some of the most powerful conformational sampling tools; under favorable circumstances, 

they can yield converged results orders of magnitude faster than conventional approaches.

The RE method is one of the most popular enhanced sampling techniques to study the 

molecular behavior of systems in chemistry, physics, and biology. This technique has been 

successfully applied to protein folding, protein–ligand binding, conformational free energy 

estimation, protein structure refinement, etc.25,27–35 Adaptive and enhanced RE approaches 

have been introduced, including solute tempering RE,36,37 resolution RE,38 asynchronous 

RE,39 free energy perturbation RE,40 etc.41–47 New exchange algorithms and proposal 

schemes have also been suggested and examined.48–55 In recent years, researchers have 

shown an increased interest in analyzing the effciency of RE techniques along with their 

growing adoption.41,50,56–74 Several groups have developed RE simulation models to study 

this sampling algorithm, since explicit RE simulations are usually too computationally 

expensive to study the RE parameter space systematically.60,63,69,74

Following previous work in our group, we have constructed a Markov state model of RE 

simulations (MSMRE) using the heptanoate β-cyclodextrin binding complex, a host–guest 

system, as an example. Host–guest systems provide attractive alternatives to protein ligand 

binding systems for the investigation of molecular recognition. Since these systems are 

small-sized, convergence of the binding afinity estimate can be achieved with relatively 

modest computational cost.75 In a previous study, our group used the MSMRE idea to 

construct a kinetic network model inspired by protein folding to analyze several properties 

of temperature RE simulations.63 In the present study, we built Markov state models (MSM) 

based on long MD simulations of heptanoate binding to β-cyclodextrin at multiple 

Hamiltonian states, then implemented the transition matrices of MSM into MSMRE to 

generate Markov chains, which imitate the respective MD processes in explicit RE 

simulations. The MSMRE model described in this work is a more detailed “simulations of 

simulations” analysis compared with our previous kinetic network model of RE simulations, 

and it retains many of the important features of real replica exchange simulations, although 

the non-Markovian effects are lost. The MSMRE simulations are able to mimic weeks-long 

RE simulations within hours on a desktop by substituting a Markov chain model for the real 

kinetics of MD simulations that forms the foundation of RE simulations. This powerful tool 

enables us to analyze how the sampling effciency of replica exchange depends on the 

construction of the replica exchange cycle, which in this work includes (i) the comparison of 
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two different exchange proposal schemes; (ii) the number of exchange attempts per cycle; 

(iii) the length of the MD simulation per cycle; (iv) and finally the interaction between the 

number of exchange attempts per cycle and the length of the MD simulation per cycle.

2. METHODOLOGY AND SIMULATIONS

2.1. Replica Exchange

In replica exchange simulations, sampling is performed by a Markov chain alternating 

between two components: (i) updates of molecular configurations using MC or MD 

independently for each replica at a fixed thermodynamic and/or Hamiltonian state, which 

will be called the “move” process; (ii) updates of thermodynamic and/or Hamiltonian 

parameters (referred to as “thermodynamic state” below) assignments to replicas, by means 

of a series of coordinated attempted swaps of thermodynamic states among replicas 

according to the usual MC algorithm, which will be called the “exchange” process. The 

move and exchange processes together will be referred to as a RE cycle throughout this 

paper.

The exchange process in a RE cycle—the sampling of the state permutation space—must 

satisfy the detailed balance condition

(1)

where PRE is the joint probability distribution of a RE configuration,  is the 

conformational coordinates of the mth replica, and {S} represents the Sth combination of 

replicas and thermodynamic states in the state permutation space. Since each replica 

associates with one thermodynamic state, there are M! possible permutations of replica 

configurations with thermodynamic states. One can expand {S} as an array

(2)

where s[m] is the index of the thermodynamic state occupied by the mth replica. Both {S} 

and {S′} are the permutations of the set {1, 2, 3, …, M – 1, M}. TSS′ is the transition 

probability from state S to S′ when all of the conformational coordinates are fixed.

PRE is simply the product of the probabilities of each replica configuration at the 

thermodynamic state according to the permutation {S}

(3)

In this study, we assume that the distribution of replica configurations is described by the 

canonical ensemble at each thermodynamic state, and their probabilities are represented by 
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the corresponding Boltzmann distributions. For the mth replica at the s[m]th thermodynamic 

state

(4)

where Zs[m] is the partition function of the s[m]th thermodynamic state,  is the 

energy of the system with configuration  at the s[m]th thermodynamic state, and βs[m] = 

1/(kBTs[m]) is the inverse temperature. TSS′ in eq 1 is the product of the probability of the 

trial move αSS′ and the probability of accepting this trial move AccpSS′. For the sake of 

simplicity, we only discuss the symmetric trial move (αSS′ = αS′S); hence, the ratio of the 

acceptance probabilities is

(5)

The standard realization of eq 5 is to apply the Metropolis MC acceptance criteria

(6)

In temperature RE simulations—the basic RE approach—the Hamiltonian function is 

universal, namely, ; in Hamiltonian RE simulations, all the 

temperatures are fixed, namely, βs[m] ≡ β. More generally, both temperature and 

Hamiltonian parameters can be swapped at the same time.

The nearest neighbor exchange scheme is the standard scheme for the sampling of state 

permutation space in RE simulations. This most commonly employed scheme attempts to 

exchange pairs at the {(1st, 2nd), (3rd, 4th), …} thermodynamic states in one RE cycle and 

then attempts to exchange replica pairs at the {(2nd, 3rd), (4th, 5th), …} states in the next 

RE cycle. Exchanges are accepted with the probability given by eq 6. Its name comes from 

the fact that the exchanges are only attempted between two replicas associated with adjacent 

thermodynamic states. Since the replicas with adjacent thermodynamic states usually have 

large overlap in their conformational distributions, attempting exchanges between them 

minimizes the rejection probability, which is desirable for better sampling of state 

permutation space. However, there is a tradeoff between the larger acceptance probability 

when the replica exchange is limited to attempted exchanges only between nearest neighbors 

and the large number of replica exchange steps required to reach “distant” thermodynamic 
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states when the exchange attempts are restricted to nearest neighbors. Furthermore, the 

nearest neighbor exchange proposal scheme requires the prior identification of neighboring 

states, and might become impractical in the context of new replica exchange techniques 

being developed for grid computing.39

The independence sampling algorithm, recently proposed by Chodera and Shirts, is the 

second proposal scheme we consider.50 This algorithm attempts to exchange two replicas 

that are randomly picked from the set with a uniform probability. The acceptance ratio for 

exchange follows the same Metropolis criterion as in eq 6. The independence sampling does 

not require the prior identification of neighboring states but usually has lower acceptance 

probability compared with the nearest neighbor exchange. To overcome this drawback, 

Chodera and Shirts suggested that M3 to M5 exchanges be attempted in one RE cycle, where 

M is the total number of replicas.50

2.2. Heptanoate β-Cyclodextrin Binding System

In this study, the test system used to illustrate the problem is the binding of a guest molecule 

(heptanoate) to a host molecule β-cyclodextrin) in implicit solvation (OPLS-AA/AGBNP2)

— a problem we studied previously.33,75 β-Cyclodextrin (βCD), a well know host molecule, 

is a frustum-cone-shaped cyclic polymer with a hydrophobic interior core. The narrow 

opening of βCD is laced with primary hydroxyls, and the wider opening is laced with 

secondary hydroxyls. The ligand, heptanoate, is a common guest molecule with a 

hydrophilic carboxylate group and hydrophobic alkyl groups. Both the primary and 

secondary hydroxyl groups of βCD can coordinate the carboxylate group of heptanoate 

when the alkyl group of heptanoate stays in the hydrophobic cavity of βCD. The two 

orientations of heptanoate shown in Figure 1 correspond to two metastable states at each 

thermodynamic state: labeled “UP” in the left panel and “DOWN” in the right panel. The 

sampling problems associated with sampling the two binding modes of heptanoate/βCD 

have features in common with the two-state behavior of other sampling problems in 

computational biophysics (e.g., the protein folding problem), which makes the heptanoate/

βCD complex dynamics a good choice to study the effciency of RE simulations using 

MSMRE simulations. Our MSMRE models follow the kinetics of the joint distribution value 

of the binding energy and the metastable conformational state of each replica, i.e., binding 

“UP” versus binding “DOWN” at each thermodynamic state.

The binding energy distribution analysis method (BEDAM) is applied to study the binding 

of the heptanoate/βCD complex, and provides a benchmark for the MSMRE 

models.32,33,75,76 BEDAM is a free energy method based on RE simulations in which the 

interaction between ligand and acceptor is scaled by the factor λ changing gradually from 

zero to one. Here we chose 12 λ values: 0.0, 0.001, 0.002, 0.004, 0.04, 0.1, 0.25, 0.5, 0.8, 

0.9, 0.95, 1.0. The heptanoate molecule is completely free to change its orientation relative 

to the βCD molecule at the λ = 0 thermodynamic state, which corresponds to no interaction 

between the host and guest at all, but it has less freedom as λ increases. At the four largest λ 
thermodynamic states, the heptanoate molecule has a large barrier to flipping its orientation 

through MD simulations because of the interactions between the heptanoate and βCD 

molecules which hinders the flip while the guest is bound within the host. We note that no 
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flips between the “UP” and “DOWN” states are observed at λ = 0.8, 0.9, 0.95, 1.0 

thermodynamic states and therefore the free energy barriers are effectively infinite at these 

states.

2.3. Simulations of Replica Exchange Simulations: MSMRE

To analyze the effciency of different RE algorithms, we developed tools to simulate RE 

simulations in our previous research.63,69 In this work, the basic idea of the model is to 

replace the explicit MD simulations of biomolecules generated by the integration of 

Newton’s laws of motion with Markov chains generated by transition matrices. The 

transition matrices are constructed from the data of reference MD simulations. This 

approach, which we refer to as the Markov state model of replica exchange (MSMRE), is an 

extension of the two-state kinetic network model introduced by Zheng et al.63,69 and 

molecular dynamics meta-simulator introduced by Smith et al.74

2.3.1. Construction of MSMRE Transition Matrices—To prepare the MSMRE 

models, we ran one set of 72 ns MD simulations independently at 300 K starting from the 

“UP” metastable state at each thermodynamic state and the other set of 72 ns MD 

simulations starting from the “DOWN” metastable state. We collected the binding energy 

and metastable state of each observation during these reference simulations for each 

thermodynamic state to construct Markov state models. The time scales of the flip of the 

heptanoate binding mode between “UP” and “DOWN” are much longer than 72 ns at the 

four largest λ states. No flips of the orientation of heptanoate were observed at those 

thermodynamic states. In the Supporting Information, we plot the binding energy 

distribution for each simulation. The pictures show that, at the four largest λ states, the 

simulations starting from different metastable states have significantly different binding 

energy distributions and are not converged. In contrast, the binding energy distributions of 

the eight remaining λ states are converged, as can be seen in the pictures.

We built up the transition matrices mimicking explicit MD simulations in the following way. 

First, we constructed a 50-bin histogram of binding energies at each thermodynamic state, 

and labeled each observation generated by the reference simulation with an array {ei, ci}, 

where i is the time index of the observation, ei is the index of the bin which this observation 

belongs to in the histogram, and ci = 0 if the observation is in the “UP” metastable state; ci = 

1 if the observation is in the “DOWN” metastable state. Then, we assigned each observation 

to the kth discrete state according to k = ei + 50ci. Lastly, we defined a (100 × 100) state-to-

state transition matrix, T(m) (where (m) stands for the “move” matrix), based on the analysis 

of the time series of discrete states for each thermodynamic state. In this work, we simply 

used the time interval between two binding energy records in the reference simulations, 0.5 

ps, as the lag time for the construction of transition matrices.

The transition matrices need to be calibrated before they are used in MSMRE models. Since 

the matrices are constructed from finite MD simulations, the estimates of the density of 

states at different thermodynamic states are not identical, which will cause the outputs of the 

MSMRE simulation to differ from the equilibrium probabilities solved from the transition 

matrices. In other words, the inputs and outputs of MSMRE are different statistical 
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ensembles. To make the MSMRE models self-consistent, we adjusted the transition matrices 

so that their equilibrium distributions agree with the corresponding WHAM estimate 

determined numerically; this insures that the estimates of the density of states at all the 

thermodynamic states are the same. Table 1 lists the largest implied time scale of every 

transition matrix used in our MSMRE models, corresponding to the transition between the 

“UP” and “DOWN” metastable states at each thermodynamic state.

2.3.2. Construction of MSMRE Models—The moves in MSMRE are fulfilled by 

performing the following steps based on the transition matrices T(m) and the binding energy 

ensembles collected from the reference simulations:

1. Decide which discrete state the initial observation belongs to. Suppose it is 

the ith discrete state.

2. Choose the next discrete state j according to the probability of moving 

from the ith state to the jth state, specifically .

3. Randomly pick one (energy) observation from those (energy values) 

belonging to the jth discrete state as the next sampling.

The move process chooses the next observation (binding energy and conformational state 

{ei, ci}) from the database at each thermodynamic state according to the probability 

where nj is the number of observations in the jth discrete state of that thermodynamic state.

The exchanges in MSMRE use either the nearest neighbor exchange scheme or the 

independence sampling scheme. This part of MSMRE is the same as explicit RE 

simulations. Like explicit RE simulations, the move and exchange processes constitute a RE 

cycle of MSMRE. They were wrapped together by a program written in the C++ language. 

At the end of each RE cycle, the observation at each thermodynamic state is recorded as the 

output of the MSMRE simulation at cycle n, when n runs from 1, 2, …, N, where N is the 

total number of cycles in the MSMRE simulation.

2.3.3. The Effciency of RE Simulations—In this work, we use Markov state modeling 

(MSM) to describe the RE simulation kinetic network, and then measure the effciency of the 

RE simulations by examining the properties of the eigenvalues and eigenvectors of the 

corresponding transition matrix.77 The first step to build up a transition matrix from a RE 

simulation is clustering the simulation data. Suppose a system with n metastable states in 

conformational space is running at M thermodynamic states which are coupled by the RE 

algorithm. There are (M!nM) labeled states in the RE network model of this discretized 

system if one keeps track of each thermodynamic state and each replica label. The factor M! 

corresponds to the possible permutations of the way replicas are assigned to thermodynamic 

states, and the factor nM reflects the fact that the replica at each thermodynamic state 

occupies one of the n metastable states. However, one can average replica labels, in other 

words, project the (M!nM) labeled states onto (nM) unlabeled states due to the degeneracy of 

states and exponentially increasing scale of the labeled state space; this results in a 

substantial reduction in the number of states. In this study, we drastically simplified the 

labeling of the conformational state space of the RE simulations by only considering the 
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heptanoate binding mode (“UP” or “DOWN”) at the largest four λ thermodynamic states. 

Since, at λ = 0.8, 0.9, 0.95, 1.0, each thermodynamic state has two metastable states, the RE 

system is considered to have 24 = 16 possible conformational states in total. In fact, the 

equilibration of populations among these 16 states is the rate limiting process for the full 

system. Since the transition rates via direct MD moves between the “UP” and “DOWN” 

metastable states are zero at the largest four λ thermodynamic states, in RE or MSMRE 

simulations, the transitions at these thermodynamic states can only occur by the exchanges 

with the replicas at the smaller λ states. This mimics the real system for which the barriers 

to the conformational transition of the ligand from binding in the “UP” mode to the 

“DOWN” mode are very large when the guest is confined within the host as it is for this 

alchemical process, and these conformational transitions are forbidden at the four largest λ 
states because of the strong coupling between the ligand and receptor.

After clustering every snapshot (observation) of a RE simulation to one of 16 unlabeled 

states (in each thermodynamic state, a conformational state is assigned without regard to the 

replica label), the RE kinetic network is described via a discretized master equation in the 

unlabeled state space, for which the solution is

(7)

where  represents the vector probability of the unlabeled states at time Δt and T(Δt) is 

the row-normalized transition matrix. Then, one can investigate how effciently a RE 

simulation performs by determining the largest implied time scale of the transition matrix 

T(Δt) constructed from the RE trajectory, which represents the relaxation time of the slowest 

mode of the RE system.

2.3.4. Two-Dimensional MSMRE Model—By following the same procedures, we also 

constructed a set of databases and transition matrices for 64 thermodynamic states, which 

include the combinations of 4 temperatures (252, 267, 283, and 300 K) and 16 λ values (0.0, 

0.001, 0.002, 0.004, 0.01, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, and 1.0). To 

measure the effciency of this two-dimensional MSMRE model, we simplified the labeled 

state space into 212 = 4096 unlabeled states by only considering the orientation of the 

heptanoate molecule at the largest three λ thermodynamic states at each temperature. (212 

corresponds to two metastable states for each of 12 thermodynamic states—λ = 0.9, 0.95, 

1.0 at each of four temperatures.) In two-dimensional MSMRE simulations, only the 

independence sampling scheme was used.

3. RESULTS AND DISCUSSION

As introduced in section 2.1, there are two components in a RE cycle: (i) the MD or MC 

simulation of each replica at a fixed thermodynamic state (the move process), which 

includes conformational relaxation at that thermodynamic state; (ii) the attempted swaps of 

replicas (the exchange process), which is the relaxation in the replica and thermodynamic 

state permutation space. There are two sets of random variables sampled in RE simulations: 
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one corresponds to the conformations of replicas at each thermodynamic state, and the other 

corresponds to the permutations of replicas among thermodynamic states. The two 

components of a RE cycle each correspond to the sampling of one set of variables from the 

joint distribution, while the other set of variables is frozen. The goal of this section is to 

examine how the effciency of RE simulations depends on the two sampling components and 

how they interact using MSMRE models. We refer to the choice of the number of moves 

(MD steps) and the number of exchanges (replica exchange attempts) per RE cycle together 

as the “packing” of the moves and exchanges in the cycle.

3.1. Proposal Schemes and the Number of Exchange Attempts per RE Cycle

In this subsection, we examine how the number of exchange attempts per RE cycle ne affects 

the effciency of RE simulations when the MD period per RE cycle is 0.5 ps long by using 

the transition matrices built up from the MD simulations with 0.5 ps time resolution. As 

shown in Figure 2, the largest implied time scale decreases to a plateau value as the number 

of exchange attempts per RE cycle ne increases. Notice the largest implied time scale is 

expressed in units of RE cycles. We refer to the plateau value as the infinite swapping limit 

which corresponds to an infinite number of exchange attempts per RE cycle, as described in 

ref 51. The nearest neighbor exchange proposal scheme leads to faster equilibration and is 

therefore more effcient especially when the number of exchange attempts per RE cycle ne is 

small. With only one exchange attempt per cycle, the nearest neighbor exchange proposal 

scheme is approximately twice as effcient as the independence sampling scheme. In contrast, 

in the infinite swapping limit, the largest implied time scale is independent of the proposal 

scheme. The advantage of the nearest neighbor exchange scheme at small ne for this 

particular example arises from its higher exchange acceptance ratio (see Table S1 in the 

Supporting Information for the acceptance ratios) and the specific spacing of λ values in this 

model. The relative advantage/disadvantage of the nearest neighbor exchange scheme 

compared with the independence sampling will vary depending on the configuration-space 

overlap of neighboring thermodynamic states and the total number of thermodynamic states.

The kinetics of the labeled states in RE simulations explains why different proposal schemes 

have the same effciency in the infinite swapping limit. As discussed in previous work,63,72 

the labeled states of RE simulations are connected by both move and exchange processes. 

One can cluster the labeled states into islands so that the labeled states in one island are 

connected only by exchange processes; states in different islands are connected through at 

least one move process. Figure 3 shows an example of clustering a three-replica RE system 

by their connections. In this example, each replica (represented by the position of the letter 

or number in the array—see the figure legend) moves via operations of the molecular 

dynamics transition matrix (arrows drawn in blue) between the “UP” and “DOWN” 

metastable states at its assigned thermodynamic state, and then can exchange (arrows drawn 

in red) to another thermodynamic state via an exchange. Since exchange processes cannot 

change the conformational state of a replica, the number of islands corresponds to the total 

possible number of ways replicas can be assigned to conformational states, namely, NM 

when there are M replicas and N metastable states at each thermodynamic state. Thus, there 

are 23 = 8 islands at the corners of a cube in Figure 3 connected by blue arrows. The number 

of labeled states in every island is the total number of possible permutations without 
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repetition of replicas and thermodynamic states: M! = 3! = 6. Note that within an island the 

number of unique metastable state labels determines the degeneracy of the states. For 

example, the six states in the “DDD” island are all degenerate with respect to the 

conformational label, while the six states in the “DDU” island are partially degenerate. 

Figure 3 also shows the exchange connections between labeled states for the nearest 

neighbor exchange (solid red arrows) and the independence sampling (solid and dashed red 

arrows) proposal schemes. The proposal scheme does not affect the island clustering but 

only affects the equilibrium pathways connecting labeled states within each individual 

island. At the limit of many attempts per RE cycle— the infinite swapping limit—the 

probability of staying at each labeled state in an island has reached equilibrium in each cycle 

of replica exchange; therefore, only the MD moves between islands determine the relaxation 

of the full RE system.

Prior studies have noted the importance of increasing the number of exchange attempts per 

RE cycle ne to make sure RE systems are “well mixed”.50,51 Chodera and Shirts suggested 

that M3 to M5 exchanges be attempted in one RE cycle, where M is the total number of 

replicas.50 A similar discussion of the structure of RE states space was reported recently by 

Doll et al., and the approach to the plateau value as shown in Figure 2 was termed “infinite 

swapping”.51–53 If one calculates the equilibrium probabilities of all labeled states in an 

island and then exchanges to the next labeled state according to those probabilities, the 

infinite swapping limit is reached in one exchange attempt. However, the number of states in 

one island increases factorially and becomes overwhelming when the number of replicas 

increases. For example, for a RE system with 12 replicas, there were (12! = 4.79 × 108) 

labeled states in every island. Doll et al. proposed the “partial infinite swapping” technique 

to deal with this factorial explosion.51 For the host– guest binding problem we are 

considering, the effciency of RE simulations converges rapidly for both proposal schemes 

even though the number of labeled states in each island is huge. This effect may be 

explained by the fact that, for each island, only a very small number of states have nontrivial 

probabilities. Figure 2 suggests that the probabilities of those states have converged to close 

to their equilibrium values after relaxation corresponding to ~50 exchange attempts per RE 

cycle on average. The results shown in Figure 2 are for an MSMRE model with fixed MD 

period per cycle (0.5 ps). As we discuss later, these results are independent of the MD period 

per cycle.

3.2. The Infinite Swapping Limit

We now propose a way to determine how many exchange attempts per RE cycle are required 

to reach the infinite swapping limit by observing the trajectories of replicas through state 

space during simulations of replica exchange. This approach makes it possible to compare 

proposal schemes and in favorable circumstances estimate the respective number of 

exchange attempts per RE cycle ne required to reach the infinite swapping limit through 

short test runs of RE simulations. The basic idea is as follows. In the infinite swapping limit, 

the probability of a labeled state {S} in one island (see Figure 3) is
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(8)

where the denominator is the sum of the probabilities of all the labeled states in the same 

island including {S}. Suppose at the beginning of a set of exchange processes the mth 

replica is at the αth thermodynamic state and Pm,α(ne) represents the probability for this 

replica to be at the αth state after ne exchange attempts. After a large number of exchange 

attempts

(9)

where the sum includes every labeled state in that island which has the mth replica at the αth 

thermodynamic state, namely, s[m] = α. Since the dynamical behaviors of all replicas at a 

thermodynamic state are the same, we can omit the replica index in Pm,α(ne). If one follows 

a single replica trajectory within the exchange process per cycle and records the time 

evolution of the replica through the state space, one can construct an M × M transition 

matrix T(e) (where (e) stands for the “exchange” matrix) for a set of exchanges of a RE 

simulation with M thermodynamic states. In that case, Pα(ne) is the diagonal element 

 of the matrix;  represents the probability that a labeled replica is at the αth 

thermodynamic state after one RE cycle consisting of ne exchange attempts given that the 

replica is at the αth thermodynamic state at the beginning of the RE cycle.78 The precision 

in the estimate of  can be increased by averaging over the trajectories of all the 

replicas.

According to eq 9,  converges to an asymptote when the number of exchange attempts 

per cycle ne approaches the infinite swapping limit; therefore, the dependence of the 

diagonal matrix elements  on the number of exchange attempts per cycle ne provides a 

way to determine how many exchange attempts per cycle are required to reach the infinite 

swapping limit. In practice, an estimate of the limit  is required to apply this 

approach. The value of  can be estimated by the unbinned WHAM method 

(UWHAM).79 Recently, we developed a replica exchange-like algorithm called “RE-

SWHAM” which solves the UWHAM equations stochastically.80 The RE-SWHAM 

algorithm uses a similar replica exchange procedure as MSMRE to resample the raw data 

generated from parallel simulations. See the Supporting Information for the differences 

between the RESWHAM and MSMRE methods.

Suppose wαk is the normalized UWHAM weight of the kth data element at the αth 

thermodynamics state, which satisfies , where M 
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is the total number of thermodynamic states and N is the total number of observations. We 

showed previously that the probability of the kth data element appearing in the database of 

the αth thermodynamic state is (wαkN/M) during the RE-SWHAM analysis.80 Therefore, 

for a RE-SWHAM analysis, the asymptote of  is

(10)

Because the MSMRE models have been calibrated so that their equilibrium distributions 

agree with the corresponding UWHAM (or RE-SWHAM) estimate numerically, and 

because the limit  is independent of the MD period per cycle (which we 

discuss below), eq 10 can be used to estimate the asymptote of  and therefore can be 

used to provide an estimate of the number of exchange attempts per cycle ne required to 

reach the infinite swapping limit in both MSMRE “simulations of simulations” and the 

actual MD or MC replica exchange simulations.

Figure 4a shows  averaged over all 12 thermodynamic states versus the number of 

exchange attempts per RE cycle ne in one-dimensional MSMRE simulations. As mentioned 

previously, for the specific spacing of the thermodynamic states in this model problem, the 

nearest neighbor exchange reaches the infinite swapping limit first. Also from Figure 4a, it 

can be seen that the number of exchange attempts per RE cycle ne required to reach the 

infinite swapping limit is about 40 for the nearest neighbor exchange proposal scheme and 

100 for the independence sampling, respectively. Figure 4b shows  versus the number 

of exchange attempts per RE cycle ne in two-dimensional MSMRE simulations (described in 

section 2.3.4).  is the average over the replicas at the largest three λ states of each 

temperature. In Figure 4b, the function  plateaus as ne approaches ~2500. The inset 

plot of Figure 4b shows the dependence of the largest implied time scale on the number of 

exchange attempts per RE cycle ne. Note both axes are in logarithmic scale in the inset plot. 

In each picture of Figure 4, the asymptote of average  estimated by eq 10 is 

shown as a horizontal black line. As demonstrated by these two examples, one can choose 

the best proposal scheme and estimate the number of exchange attempts per cycle ne 

required to reach the infinite swapping limit by examining the dependence of  on the 

number of exchange attempts per cycle ne before running RE simulations in production 

mode.

3.3. Length of the MD Period per RE Cycle

In this subsection, we first examine how the largest implied time scale depends on the 

number of exchange attempts per RE cycle ne at the MD f ull relaxation limit. We define the 
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time scale to reach the MD full relaxation limit for the model host–guest problem as follows. 

At the eight smallest λ thermodynamic states, the MD simulation period is long enough to 

equilibrate over the whole configurational space via MD moves without exchanges; at the 

four largest λ thermodynamic states, the MD simulation is only long enough to equilibrate 

within each of the metastable states (UP and DOWN) but not long enough to equilibrate 

between the UP and DOWN conformational states. Referring to the time scales in Table 1, 

the MD full relaxation limit corresponds to an MD period per RE cycle τ longer than the 

largest implied time scale at the λ = 0.5 state, 2.4 ns, which corresponds to the longest 

relaxation for the UP to DOWN transition by means of conformational relaxation within a 

thermodynamic state without coupling to additional relaxation pathways using replica 

exchange. To model the MD full relaxation limit, we changed the transition matrices in 

MSMRE to choose the next observation based on the equilibrium probability in the full 

configurational space (or in the metastable state for the largest four λ states) so that adjacent 

MD moves are completely uncorrelated.

Figure 5a shows the dependence of the largest implied time scale in units of RE cycles on 

the number of exchange attempts per RE cycle ne at the MD full relaxation limit. The results 

are similar to those results shown in Figure 2 obtained from the MSMRE simulations with 

the MD duration per RE cycle τ equal to 0.5 ps. Both figures show the largest implied time 

scale reaches a plateau within 50 exchange attempts per cycle, which implies that the 

number of exchange attempts per RE cycle ne required to reach the infinite swapping limit 

does not depend on the MD period per RE cycle τ. In the Supporting Information, we plot 

the dependence of  averaged over all 12 thermodynamic states on the number of 

exchange attempts per RE cycle ne for five one-dimensional MSMRE simulations using the 

independence sampling scheme. These MSMRE simulations use different lengths of the MD 

period per RE cycle ranging from 0.5 ps to the MD full relaxation limit. The overlapping of 

all five curves further demonstrates that the number of exchange attempts per RE cycle ne 

required to reach the infinite swapping limit does not depend on the MD period per RE cycle 

τ. This can be understood by the following argument. In each RE cycle, one can construct an 

exchange transition matrix based on the proposal scheme and the instantaneous energies of 

replicas. The largest implied time scale of the exchange transition matrix determines the 

number of exchange attempts required to fully relax the RE system in that RE cycle. 

Therefore, the number of exchange attempts required to reach the infinite swapping limit is 

determined by the average of the largest implied time scale of the exchange transition matrix 

determined by all possible combinations of energy at each thermodynamic state. The 

probability of an energy combination appearing in a RE cycle is proportional to the product 

of the Boltzmann factor and the density of states of each energy in that combination, and 

therefore does not depend on the MD period per RE cycle.

Both the exchange processes and the MD move processes relax the RE system. Compared 

with Figure 2, the implied time scales in Figure 5a at the MD full relaxation limit are much 

smaller in units of RE cycles, since there is more conformational relaxation at all 

thermodynamic states due to the long MD move duration per RE cycle. The inset of Figure 

5a shows the ratio of the largest implied time scales when τ is 0.5 ps to those at the MD full 

relaxation limit. This ratio increases with increasing number of exchange attempts per RE 
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cycle ne, approaching a plateau value of ~10× as ne approaches the infinite swapping limit. 

Figure 5b shows the dependence of the largest implied time scale in units of RE cycles on 

the MD period per RE cycle τ for the one-dimensional MSMRE simulations using the 

independence sampling scheme when the number of exchange attempts per RE cycle ne is 3, 

12, or 50. As can be seen from Figure 5b, the largest implied time scale decreases when the 

MD period per RE cycle τ increases, and every curve converges toward the respective MD 

full relaxation limit. Although it appears that each curve is already close to converged when 

τ increases to ~20 ps, the largest implied time scale will continue decreasing until reaching 

the MD full relaxation limit when τ is longer than 2.4 ns. The reason for this is that 

conformational relaxation at every λ state makes some contribution to the implied time scale 

even though the implied time scale is dominated by the state with the fastest conformational 

relaxation time as ne approaches the infinite swapping limit.

3.4. Packing Moves and Exchanges in RE Simulations

We have used the MSMRE models with independence sampling scheme to investigate how 

the two components of a RE cycle—the configurational relaxation within each 

thermodynamic state via moves and the multicanonical relaxation via exchanges—combine 

to equilibrate RE systems. We showed that either increasing the number of exchange 

attempts per RE cycle ne or increasing the MD period per RE cycle τ can shorten the largest 

implied time scale of MSMRE simulations in units of RE cycles. As listed in Table 2, for the 

host–guest binding affnity model system with one-dimensional replica exchange and 12 

thermodynamic states, the largest implied time scale is 771.1 RE cycles when the number of 

exchange attempts per cycle ne is one and the MD period per RE cycle τ is 0.5 ps, and 

decreases to 19.2 RE cycles when ne reaches the infinite swapping limit and τ reaches the 

MD full relaxation limit.

Because performing the MD simulation is the most computationally intensive part of a 

replica exchange cycle, in the following discussion, we assume the time for the 

multicanonical exchange in a RE cycle is negligible compared with the time to perform MD 

simulations and change the unit of the largest implied time scale to MD simulation time in 

order to provide a more intuitive understanding of the relationship between packing and 

effciency. Figure 6 shows the largest implied time scale calculations for ~80 one-

dimensional MSMRE simulations using the independence sampling scheme, which include 

different combinations of the MD period per RE cycle τ ranging from 0.5 to 10 ps and the 

number of exchange attempts per RE cycle ne ranging from one to the “infinite” swapping 

limit.

Figure 6 summarizes our results about the impact of the packing (i.e., the concerted change 

in both the number of exchange attempts per RE cycle ne and the MD period per RE cycle τ) 

on the sampling effciency of RE simulations. The vertical borders between gray and white 

regions in Figure 6 are the constant MD period (τ) contours. The data at each constant τ 
contour (vertical lines) show that increasing the number of exchange attempts per RE cycle 

ne increases the sampling effciency of RE simulations until ne reaches the infinite swapping 

limit (the black dots). When the MD period per RE cycle is 0.5 ps, increasing the number of 

exchange attempts from one to the infinite swapping limit leads to a 4-fold effciency gain. In 
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the Supporting Information Figures S6 and S7, we plot the corresponding results for two-

dimensional MSMRE simulations. When the MD period per RE cycle is 0.5 ps, increasing 

the number of exchange attempts from one to the infinite swapping limit leads to a 25-fold 

effciency gain for the two-dimensional MSMRE model with 64 replicas (described in 

section 2.3.4), and a 40-fold effciency gain for another two-dimensional MSMRE model 

with 128 replicas. This result is consistent with the intuitive idea that the effciency gain 

obtained by going to the infinite swapping limit becomes larger as the system size (number 

of states) of the replica exchange simulation increases.

Each broken line of colored dots in Figure 6 marks a contour corresponding to a constant 

number of exchange attempts per RE cycle ne. If one connects each data point and the origin 

with a straight line (not shown in Figure 6), the slope of this line is the largest implied time 

scale in units of RE cycles of that MSMRE simulation, which corresponds to the height of 

the respective data point in Figure 5b. The constant ne contours show that, although 

increasing the MD period per RE cycle τ decreases the largest implied time scale in units of 

RE cycles, it increases the largest implied time scale in units of MD simulation time; in 

other words, the RE simulation is less effcient when the MD length per cycle is increased at 

a fixed number of exchange attempts per cycle. Compared with exchange processes, MD 

move processes are less effcient at relaxing the RE system. This conclusion is in agreement 

with the results reported previously by Roitberg et al.67,70

Finally, we examine how the sampling effciency of RE simulations changes when both the 

number of exchange attempts per RE cycle ne and the MD period per RE cycle τ are altered 

at the same time; we refer to this as packing moves and exchanges into the RE cycle. In 

Figure 6, the dashed lines are constant ne/τ contours, which correspond to a fixed ratio of 

exchange attempts/MD period. For the one-dimensional MSMRE model, the largest implied 

time scale monotonically increases when the number of exchange attempts per RE cycle ne 

and the MD period per RE cycle τ both increase while the ratio of ne/τ is fixed at 1 or 2 

ps−1. As the fixed ratio ne/τ increases, the constant ne/τ contour lines approach the infinite 

swapping limit curve (i.e., the dashed contour lines approach the solid black infinite 

swapping limit contour line in Figure 6). In the Supporting Information, Figures S6 and S7, 

we show the corresponding results for two-dimensional MSMRE simulations. In these 

examples, the constant ne/τ curves also monotonically increase when ne and τ both increase 

while the ratio of ne/τ is fixed at 1 or 2 ps−1

To compare the sampling effciency of RE simulations using different combinations of the 

number of exchange attempts per RE cycle ne and the MD period per RE cycle τ, we 

introduce the concept of “the average continuous MD period” (or “lifetime”78,81) at the αth 

thermodynamic state, , which represents the average simulation time that a replica stays 

at the αth thermodynamic state before it is exchanged to another state. In a RE simulation, 

the probability density function of a lifetime only has nonzero values at time nτ, where n is a 

positive integer and τ is the MD period per RE cycle. The lifetime at the αth thermodynamic 

state is a function of the number of exchange attempts per RE cycle ne and the MD period 

per RE cycle τ, namely,
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(11)

where  is the αth diagonal element of the exchange transition matrix for ne 

exchange attempts, which was discussed above in section 3.2. The trajectory of a single 

replica in the space of thermodynamic state indexes resembles a random walk on a chain or 

a network.41,62 Equation 11 shows the explicit dependence of the lifetime of a replica on the 

number of exchange attempts per RE cycle ne and the MD period per RE cycle τ at the αth 

thermodynamic state.

In Figure 7a, we show the correlations between the largest implied time scales and the 

average lifetimes  for ~600 one-dimensional MSMRE simulations using the 

independence sampling scheme. For each simulation, the average lifetime  is the mean 

value of the average continuous MD periods over 12 λ thermodynamic states, which ranges 

from 0.5 to 100 ps. Figure 7b shows the correlation between the largest implied time scales 

and the average lifetimes  for ~200 two-dimensional MSMRE simulations (described 

in section 2.3.4). For each simulation, the average lifetime  is the mean value of the 

average continuous MD period over the largest three λ thermodynamic states at each 

temperature. The results in Figure 7a and b show that the average lifetime  provides a 

measure of the sampling effciency comparable to that of thelargest implied time scale as the 

packing of moves and exchanges into a RE cycle is changed.

There are a few observations of interest concerning the average lifetime . We note that 

it corresponds to an explicit expression describing how the effciency of replica exchange 

varies with both the number of exchange attempts per RE cycle ne and the MD period per 

RE cycle τ. While the effciency increases as  decreases to the infinite swapping limit 

as expected, the effciency is also predicted to increase as the MD move period decreases 

without an apparent limit. This is of course unphysical, as the effciency must eventually 

plateau if the MD move period is short enough. Formulas for the effciency of replica 

exchange in the fast exchange limit (both ne going to the infinite swapping limit and τ going 

to zero simultaneously) have been derived.63,72 We have tried to investigate the behavior of 

the MSMRE model in this limit but were unable to converge the MSMRE simulations for 

very short MD periods below 50 fs. We also note that the average lifetime  can be 

related to the mean first passage times (MFPTs) for the replicas to cross the thermodynamic 

state space,81 and these MFPTs have been used previously as an effciency diagnostic to 

analyze ways to optimize replica exchange parameters.41 An advantage of using  as a 
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measure of the effciency of the RE packing scheme is that it can be calculated directly from 

RE simulations without having to construct an MSM.

4. CONCLUSION

We have built Markov state models of replica exchange (MSMRE) to study the sampling 

effciency of RE simulations as the number of exchange attempts and the MD period are 

varied in a replica exchange cycle. The MSMRE model replaces the explicit MD simulations 

generated by the integration of Newton’s equations of motion with Markov chains generated 

by transition matrices parametrized from independent simulations at each thermodynamic 

state. This “simulations of simulations” tool can model explicit RE simulations which 

require months’ of computational time on computer clusters with ones which require hours 

on a desktop, therefore significantly reducing the time required to develop new adaptive RE 

algorithms and proposal schemes.

We applied the MSMRE models to study different possible implementations of the replica 

exchange cycle. Our results show that different exchange proposal schemes converge to the 

same infinite swapping limit. It is possible to reach the infinite swapping limit with tens of 

exchange attempts per RE cycle in the one-dimensional system we studied and a few 

thousand exchange attempts per RE cycle in the two-dimensional system. If the 

computational cost for exchange is negligible compared with the computational cost to 

perform MD simulations, which is true for most RE simulations, one should always perform 

enough exchange attempts per RE cycle to reach the infinite swapping limit. We propose a 

practical approach to estimate the number of exchange attempts per RE cycle ne required to 

reach the infinite swapping limit which involves estimating  in preproduction runs 

of replica exchange. We also applied the MSMRE models to study the impact of the MD 

period per RE cycle τ on the sampling effciency. Our results confirm that MD move 

processes are less effcient at relaxing RE systems compared with exchange processes. As 

shown in Figure 6, the effciency of MSMRE simulations decreases when the MD length per 

cycle is increased at a fixed number of exchange attempts per cycle. Therefore, the MD 

period per RE cycle in RE simulations should be set as short as possible until the overhead 

time associated with restarting MD simulations becomes significant. Finally, we applied the 

MSMRE models to study the packing of moves and exchanges in RE simulations. We 

introduced the concept of the lifetime of replicas at a thermodynamic state in RE 

simulations, and found that the average lifetime of replicas can be used as an indicator of the 

sampling effciency of RE simulations which depends on the way moves and exchange 

attempts are packed into the replica exchange cycles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two orientations of heptanoate in the heptanoate β-cyclodextrin binding complex. Both the 

primary and the secondary hydroxyl groups of βCD can form a hydrogen bond with the 

carboxylate group of heptanoate.
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Figure 2. 
Dependence of the largest implied time scale on the number of exchange attempts per RE 

cycle ne for the one-dimensional MSMRE simulations using different proposal schemes 

(NNE, nearest neighbor exchange; ISE, independence sampling). The MD period per RE 

cycle is fixed at 0.5 ps. Note that the largest implied time scales of the two proposal schemes 

converge to the same limit. The inset shows the ratio of the largest implied time scales of 

MSMRE simulations using these two proposal schemes.
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Figure 3. 
Kinetic network model of RE product state space. In this picture, the nth position of the 

letter or number represents the metastable state or the thermodynamic state of the nth 

replica, respectively. The cube on the left shows the possible combinations of replicas and 

metastable states for a RE system with three replicas, namely, 23 = 8 vertexes. Each vertex 

of the cube is called an island. For example, UDU represents an island in which the 1st 

replica is at the “UP” metastable state, the 2nd replica is at the “DOWN” metastable state, 

and the 3rd replica is at the “UP” metastable state. Since exchanges cannot change the 

conformational state of a replica, the RE system can only travel to different islands via MD 

simulations (or moves) represented by blue arrows. On the right side, we show the 

degeneracy of one island. The states in each island are the possible permutations without 

repetition of replicas and thermodynamic states; therefore, there are 3! = 6 labeled states in 

each island. For example, “132” means the 1st replica occupies the 1st thermodynamic state, 

the 2nd replica occupies the 3rd thermodynamic state, and the 3rd replica occupies the 2nd 

thermodynamic state. The labeled states (yellow boxes in the figure above) in an island are 

solely connected by exchanges. Solid red arrows stand for the connections made by the 

nearest neighbor exchange scheme; i.e., the RE system can switch between the two labeled 

states connected by solid red arrows through one successful swap of the nearest neighbor 

exchange scheme. All red arrows, including the solid and dashed arrows, represent the 

connections made by the independence sampling scheme.
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Figure 4. 

Dependence of the average of diagonal matrix elements  on the number of exchange 

attempts per cycle ne.  is the average probability that a labeled replica is at the αth 

thermodynamic state after the exchange process given that it is at the αth thermodynamic 

state before the exchange process. Plot a shows the dependence of  on the exchange 

attempts per RE cycle ne for one-dimensional MSMRE simulations using different proposal 

schemes (NNE, nearest neighbor exchange; ISE, independence sampling). Plot b shows the 

dependence of  on the number of exchange attempts per RE cycle ne for the two-

dimensional MSMRE simulations using the independence sampling scheme, and the inset 

shows the dependence of the largest implied time scale (IT) on the number of exchange 

attempts per RE cycle ne. The horizontal black lines in plots a and b are the estimates of 

 calculated by eq 10.
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Figure 5. 
(a) At the MD full relaxation limit, the dependence of the largest implied time scale on the 

number of exchange attempts per RE cycle ne for the one-dimensional MSMRE simulations 

using different proposal schemes (NNE, nearest neighbor exchange; ISE, independence 

sampling). The inset plots the ratio of the largest implied time scales when τ is 0.5 ps to 

those at the MD full relaxation. (b) The dependence of the largest implied time scale on the 

MD period per RE cycle τ for the one-dimensional MSMRE simulations using the 

independence sampling scheme when the number of exchange attempts per RE cycle ne is 3, 

12, or 50. The horizontal lines are the respective largest implied time scales at the MD full 

relaxation limit.
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Figure 6. 
Largest implied time scales of one-dimensional MSMRE simulations using different 

combinations of the number of exchange attempts per RE cycle ne and the MD period per 

RE cycle τ. All of these one-dimensional MSMRE simulations use the independence 

sampling scheme. The vertical borders between white and gray regions are the constant τ 
contours. The constant τ contours show that increasing the number of exchange attempts per 

RE cycle ne increases the sampling effciency of RE simulations until ne reaches the infinite 

swapping limit. Each color marks a constant ne contour. The constant ne contours show that 

increasing the MD period per RE cycle τ increases the largest implied time scale in units of 

MD simulation time, namely, decreases the sampling effciency of RE simulations. The 

dashed lines are the constant ne/τ contours, which show that the largest implied time scale 

increases monotonously when the number of exchange attempts per RE cycle ne and the MD 

period per RE cycle τ both increase while the ratio of ne over τ is fixed.
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Figure 7. 
Correlation between the largest implied time scale and the average lifetime. Plot a shows the 

correlation between the largest implied time scale and the average lifetime  for ~600 

one-dimensional MSMRE simulations using the independence sampling scheme, where 

 is the average lifetime over 12 λ thermodynamic states. Plot b shows the correlation 

between the largest implied time scale and the average lifetime  for ~200 two-

dimensional MSMRE simulations using the independence sampling scheme, where  is 

the average lifetime over the largest three λ thermodynamic states at each temperature. Both 

results suggest that the average lifetime is a good indicator for the sampling effciency of RE 

simulations which differ by the way moves and exchange attempts are packed into the 

replica exchange cycles.
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Table 2

Largest Implied Time Scales of the One-Dimensional MSMRE Simulations Using the Independence Sampling 

Scheme under Four Conditions

largest implied time scale (cycle) ne =1 infinite swapping limit

τ = 0.5 ps 771.1 202.1

MD full relaxation limit 595.8 19.2

J Phys Chem B. Author manuscript; available in PMC 2017 August 25.


	Abstract
	Abstract
	1. INTRODUCTION
	2. METHODOLOGY AND SIMULATIONS
	2.1. Replica Exchange
	2.2. Heptanoate β-Cyclodextrin Binding System
	2.3. Simulations of Replica Exchange Simulations: MSMRE
	2.3.1. Construction of MSMRE Transition Matrices
	2.3.2. Construction of MSMRE Models
	2.3.3. The Effciency of RE Simulations
	2.3.4. Two-Dimensional MSMRE Model


	3. RESULTS AND DISCUSSION
	3.1. Proposal Schemes and the Number of Exchange Attempts per RE Cycle
	3.2. The Infinite Swapping Limit
	3.3. Length of the MD Period per RE Cycle
	3.4. Packing Moves and Exchanges in RE Simulations

	4. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2

