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Abstract

Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic
cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and
decision-making, and individual differences in EFs have been consistently linked with individual
differences in intelligence. By middle childhood, genetic factors account for a moderate proportion
of the variance in intelligence, and these effects increase in magnitude through adolescence.
Genetic influences on EFs are very high, even in middle childhood, but the extent to which these
genetic influences overlap with those on intelligence is unclear. We examined genetic and
environmental overlap between EFs and intelligence in a racially and socioeconomically diverse
sample of 811 twins ages 7-15 years (M= 10.91, SD = 1.74) from the Texas Twin Project. A
general EF factor representing variance common to inhibition, switching, working memory, and
updating domains accounted for substantial proportions of variance in intelligence, primarily via a
genetic pathway. General EF continued to have a strong, genetically-mediated association with
intelligence even after controlling for processing speed. Residual variation in general intelligence
was influenced only by shared and nonshared environmental factors, and there remained no
genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF
did remain, however, in a more specific perceptual reasoning ability. These results provide
evidence that genetic influences on general intelligence are highly overlapping with those on EF.
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Childhood intelligence is an important, early marker of lifelong socioeconomic and health
gradients, ranging from educational attainment, income, and occupational success to mental
health, physical health, and longevity (e.g., Deary, 2008; Deary, Weiss, & Batty, 2010;
Koenen et al., 2009; Schmidt & Hunter, 1998). Much of the variation in intelligence is
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associated with genetic differences between people. Behavioral genetic studies, capitalizing
on differences in genetic similarity across family members, find that genetic factors account
for approximately 50% of population-level variation in intelligence by the end of the first
decade of life. This proportion increases to approximately 70% by late adolescence
(Haworth et al., 2010; Tucker-Drob, Briley, & Harden, 2013) and remains similarly high
throughout much of adulthood (Bouchard & McGue, 1981; Pedersen, Plomin, Nesselroade,
& McLearn, 1992). Beginning around age 10, genetic influences on intelligence become
highly stable across time, indicating that increasing heritability from middle childhood
through adolescence results from amplification of the effects of the same genes that
influenced intelligence earlier in the lifespan (Briley & Tucker-Drob, 2013; Tucker-Drob &
Briley, 2014). Molecular genetic studies that capitalize on measured genetic similarity across
unrelated individuals find somewhat lower — but still developmentally stable — genetic
influences on intelligence by the end of the first decade of life (Davies et al., 2011; Deary et
al., 2012; Trzaskowski et al, 2014). Finally, large-scale genome-wide association studies
(GWAS) recently have begun to identify specific genetic polymorphisms associated with
intelligence (Rietveld et al., 2014), although most of the genes influencing intelligence
remain unidentified.

Together, these findings reinforce a longstanding interest in identifying simpler cognitive
processes that are hypothesized to lie intermediate along the pathway from genotype to
intelligence, that are manifest by middle childhood, and that statistically mediate — in full or
in part — genetic influences on intelligence. Early attempts to partition individual differences
in intelligence into more basic cognitive components focused on very simple indices of
reaction time and information processing speed (Deary, Spinath, & Bates, 2006; Jensen,
1980; Jensen, 1998; Neubauer, 1997). Researchers reasoned that such “elementary cognitive
processes” were dependent upon very basic properties of the human nervous system.
Measures of elementary cognitive processes were expected to either be unaffected by
acquired knowledge or only depend on forms of knowledge that were overlearned to the
point of being universal across individuals. Thus, it was assumed such measures would be
very minimally affected by environmental variation, that is, highly heritable. Moreover,
because it was thought that the aggregation of these elementary cognitive processes
composed the building blocks of complex thought (Kail & Salthouse, 1994; Jensen, 1980), it
was assumed that performance on simple cognitive tasks would correlate strongly with
intelligence and statistically mediate genetic influences on intelligence.

Counter to expectations, empirical correlations between elementary cognitive tasks and
intelligence tended to be modest (7~ 0.2; Smith & Stanley, 1983; Neubauer, 1997), with
larger convergent validity coefficients obtained only when the elementary tasks increased in
complexity (Jensen, 2006). Studies of elementary cognitive processes seldom used
genetically informative samples, and the few behavior genetic studies that were conducted
reported heritabilities no stronger than those obtained for more complex abilities (Luciano et
al., 2001; Luciano et al., 2004; Posthuma, Mulder, Boomsma, & De Geus, 2002; Rijsdijk,
Vernon, & Boomsma, 1998). Furthermore, multivariate analyses indicated that, while
genetic influences on elementary cognitive tasks were partially shared with intelligence,
each process was also substantially influenced by unique genetic factors (Luciano et al.,
2001; Petrill, Luo, Thompson, & Detterman, 1996; Spinath & Borkenau, 2000). Persistent
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difficulty establishing empirical support for a cognitive architecture of intelligence based
upon elementary cognitive processes ultimately resulted in a call for the identification of less
elementary, more mechanistically complex cognitive correlates of intelligence (Deary,
2002).

More recently, researchers have turned toward a suite of effortful, supervisory processes
known as executive functions (EFs) to more fully account for variation in intelligence. EFs
are conceptualized as cognitive processes that coordinate, monitor, maintain, and manipulate
more basic processes to give rise to higher-order reasoning, learning, and goal-directed
behavior (Alvarez & Emory, 2006; Diamond, 2006; Miller & Cohen, 2001; Zelazo &
Mdiller, 2002). EFs constitute a range of related but separable skills, including inhibition of
learned or prepotent responses, maintenance and manipulation of incoming information, and
changing of response patterns based on new rules or information. Converging evidence
points to a stable, multidimensional organization for EF: Individual differences in EFs are
attributable to variance specific to individual task performance, variance common to tasks
via domain-specific factors (e.g., switching, inhibition, working memory, and updating), and
variance shared across domains via a general EF factor (Engelhardt, Briley, Mann, Harden,
& Tucker-Drob, 2015; Miyake et al., 2000).

EFs feature prominently in formal cognitive models of reasoning, learning, and decision-
making (Anderson, 2001; Carpenter, Just, & Shell, 1990; Kieras & Meyer, 1997; Meyer &
Kieras, 1997) and have received considerable attention as hypothesized intermediate
mechanisms through which basic biological factors affect these complex outcomes (Kane &
Engle, 2002). An especially active line of empirical research has investigated the neural
bases of EFs. Converging evidence from functional and structural neuroimaging studies of
healthy samples of individuals, along with lesion mapping from patient samples, points to a
complex network of connected brain regions encompassing both the prefrontal cortex and
parietal lobes as subserving executive processes (Alvarez & Emory, 2006; Carpenter, Just, &
Reichle, 2000; Collette, Hogge, Salmon, & Van der Linden, 2006; Nowrangi, Lyketsos, Rao,
& Munro, 2014; Power & Petersen, 2013). Compared to researchers in neuroscience,
behavioral geneticists have paid less attention to EFs. The small body of genetic research on
EF, however, has found that it is remarkably heritable. In studies of early adulthood
(Friedman et al., 2008) and middle childhood (Engelhardt et al., 2015), a common EF factor
representing shared variance among EF domains was found to be nearly 100% heritable.
Longitudinal investigations of adult EF performance (Friedman et al., 2015) revealed high
stability across a 6-year period of emerging adulthood. Moreover, longitudinal twin models
indicated that stability was primarily attributable to genetic factors. Together, these findings
position EF as a strong candidate intermediate phenotype that might share large proportions
of genetic variance in intelligence. There is very little work, however, examining the extent
to which genetic influences on EF and intelligence indeed overlap.

Many empirical studies of EF as a source of variance in intelligence have restricted their
scope to working memory measures of EF. Early interest in phenotypic overlap between
working memory and intelligence led to the suggestion that working memory capacity was
nearly indistinguishable from fluid intelligence (e.g., Engle et al., 1999; Engle, 2002;
Kyllonen & Christal, 1990), an ability that is itself statistically — and potentially

J Exp Psychol Gen. Author manuscript; available in PMC 2017 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Engelhardt et al.

Page 4

mechanistically — central to general intelligence (Gustafsson, 1984; Marshalek, Lohman, &
Snow, 1983; Tucker-Drob & Salthouse, 2009). Under prominent views originating from
these lines of research, working memory tasks are thought to tap a latent executive attention
capacity that is itself fundamental to higher-order cognition, particularly abstract reasoning
(Blair, 2006; Kane & Engle, 2002). More recent work has found working memory and
intelligence to be strongly overlapping, but not equivalent (Ackerman et al., 2005; Conway
et al., 2003). Less attention has been paid to how a diverse system of EFs — including
individual domains such as switching and inhibition, as well as a general factor common to
multiple EF domains — correlate with intelligence, although there have been some reports of
overlap between intelligence and inhibitory control (Dempster, 1991; Salthouse, Atkinson,
& Berish, 2003), switching (Salthouse, Fristoe, McGuthry, & Hambrick, 1998), and a
general factor of EFs (Friedman et al., 2008). Theoretical accounts for this overlapping
variance describe executive functions as general-purpose processes that coordinate complex
cognitive functions (Miyake & Friedman, 2000), with other accounts emphasizing fluid
intelligence as itself reflecting a highly general capacity for controlled and effortful
processing (Deary, 2000; Salthouse, Pink, & Tucker-Drob, 2008).

Behavioral genetic work testing the extents to which EFs relate to intelligence via genetic
and environmental mechanisms has been rare. Much of the small body of the research on
EF-intelligence associations has tended to rely on single measures of EF, rather than latent
EF factors (see, e.g., Lee et al., 2012; Polderman et al., 2006; Polderman et al., 2009). One
of the few exceptions is a study by Friedman et al. (2008), who reported that genetic
variance in full scale 1Q correlated with genetic variance in general EF at r=.57. However,
we are aware of no other behavioral genetic research on overlap between intelligence and a
general EF factor derived from a diverse multivariate battery, and it is therefore unclear how
representative this single estimate will be once a larger body of research accumulates.
Indeed, it is possible that the Friedman et al. (2008) findings represent a conservative
estimate of shared genetic influence because 1Q and EF were assessed a year apart, at
participant ages 16 and 17 years, respectively.

The current study tests for genetic and environmental overlap between EF and intelligence in
a sample of 3'd- through 8t-grade children (approximately ages 8 to 14 years in the U.S.).
While genetic influences on general EF already approach 100% in this age group
(Engelhardt et al., 2015), those operating on intelligence have yet to reach their maximum;
however, meta-analytic evidence indicates that increases in the heritability of intelligence
from this period forward results from magnification of genes already expressed (Briley &
Tucker-Drob, 2013; Tucker-Drob & Briley, 2014). Meanwhile, the neurobiological
foundations of EFs and intelligence are in the midst of a relatively protracted period of
morphological and connection-based maturation (e.g., Douand et al., 2014; Jung & Haier,
2007; Power, 2012). Thus, this period of middle childhood represents an important transition
point at which cognitive abilities and their neurobiological bases continue to progress along
a trajectory of positive growth while individual differences become canalized and amplified.
Remarkably, previous investigations of associations between executive functions and
intelligence during this period have been limited, both in absolute number and in the scope
of the measures employed. In the present study, we investigate an array of EFs, each
measured with multiple indicators, allowing us to partition EF variation into test-specific,
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domain-specific, and general factors. In order to test the possibility that detected overlaps in
EF and intelligence are simply due to shared dependence on processing speed, itself a strong
correlation of intelligence (Salthouse, 1996), we also test whether these associations are
robust to controls for a latent speed factor.

Families were recruited from public school rosters as part of the Texas Twin Project
(Harden, Tucker-Drob, & Tackett, 2013). The current sample consisted of 811 children in
grades three to eight (age range 7.80 - 15.25 years; M=10.91; SD = 1.75), 51.2% of whom
were female. 61.4% were non-Hispanic White, 18.4% were Hispanic, 6.9% were African
American, 3.0% were Asian, 1.2% were of another race/ethnicity, and 9.1% reported
multiple races or ethnicities. Thirty-five percent of the participating families reported having
received needs-based public assistance such as food stamps. We report data for 431 pairs:
380 twin pairs and 51 pairwise combinations from 17 triplet sets.

All opposite-sex pairs were classified as dizygotic (DZ). The zygosity of same-sex pairs was
assessed by a latent class analysis of experimenters’ and parents’ ratings of physical
similarity and how frequently the pairs are mistaken for one another. Latent class analysis of
such ratings to assess zygosity has been reported to be over 99% accurate, as compared to
classifications employing genotyping (Heath et al., 2003). The sample consisted of 141
(32.7%) monozygotic (MZ) pairs, 147 (34.1%) same-sex dizygotic pairs, and 143 (33.2%)
opposite-sex dizygotic pairs.

Data collection for the current project has been ongoing for approximately three years. As
EF tasks are well known for poor levels of reliability relative to psychometric measures of
cognitive-ability measures (Miyake et al., 2000), we placed a great deal of emphasis on
selecting tasks that have been reported to have strong psychometric properties in child
samples (Engelhardt et al., 2015). Three of the twelve EF tasks (Stop Signal, 2-Back, Plus-
Minus) were administered to participants during approximately the first two years of data
collection only. During the third year of data collection, these tasks were replaced by new
tasks that were amenable for use in an MRI scanner; data for the three new tasks were not
analyzed for the current report. The remaining nine EF tasks were collected across all years
of data collection. We describe all measures below (also see Table 1). More comprehensive
task descriptions can be found in Engelhardt et al. (2015).

EFs—We selected twelve tasks to measure individual differences in the following EF
domains: inhibition, switching, working memory, and updating.

Inhibition refers to the ability to stop oneself from executing a prepotent or practiced
behavior. The tasks selected to assess inhibition were Animal Stroop (Wright, Waterman,
Prescott, & Murdoch-Eaton, 2003), Stop Signal (Logan, Schachar, & Tannock, 1997;
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Verbruggen, Logan, & Stevens, 2008), and Mickey (an anti-saccade paradigm; Lee & Bull,
2013). An inhibition cost was calculated for Stroop and Mickey by comparing reaction times
for inhibit and non-inhibit trials. The dependent variable of interest for Stop Signal was stop
signal reaction time (SSRT), an estimate of how quickly one can inhibit a prepotent motor
response when cued to stop.

Switching involves shifting one’s attention to different stimulus features or task rules. This
domain was measured with the Trail Making (Salthouse, 2011), Local-Global (Miyake et al.,
2000), and Plus-Minus (Miyake et al., 2000) tasks. The switch tasks compare low-demand,
non-switch performance (e.g., connecting letters alphabetically in Trail Making) to high-
demand, switch performance (e.g., connecting letters and numbers in an alternating fashion).
Switch costs were calculated to represent longer reaction times for switch relative to non-
switch conditions.

Working memory refers to simultaneous processing and storage of information. We selected
Digit Span Backward (Wechsler, 2003), Symmetry Span (Kane et al., 2004), and Listening
Recall (Daneman & Carpenter, 1980) to assess working memory. The latter two tasks
involve storing and manipulating spatial and verbal information, respectively. The number of
items correctly recalled served as the dependent variable for all working memory tasks.

Updating involves monitoring incoming stimuli and replacing old information with new,
more relevant information. The tasks selected to measure updating were 2-Back (an N-Back
paradigm comprised of all 2-back trials; Jaeggi et al., 2010), Keeping Track (Miyake et al.,
2000), and Running Memory for Letters (Broadway & Engle, 2010), each of which requires
participants to recall the most recent x number of stimuli in an ongoing set. The number of
items correctly recalled served as the dependent variable for Keeping Track and Running
Memory for Letters. The outcome of interest for 2-Back was the number of correctly
identified matches minus incorrectly identified non-matches.

Intelligence—The Wechsler Abbreviate Scale of Intelligence (WASI-II; Wechsler, 2011)
was administered to assess general intelligence. The WASI-II consists of four tests
(Vocabulary and Similarities subtests assess verbal comprehension [crystallized
intelligence]; Block Design and Matrix Reasoning subtests assess perceptual reasoning
[fluid intelligence]) that, when age-standardized (based on published norms from a
nationally representative reference sample) and combined, form a full scale intelligence
quotient (1Q) that reliably approximates full scale 1Q indexed from a more extensive
intelligence test battery (correlation between full-scale 1Q measured by the WASI-1I and the
Wechsler Intelligence Scale for Children-1V: r=.86; Wechsler, 2003). The average FSIQ of
participants in our sample was 103.65, with a standard deviation of 14.14. FSIQ scores are
normed to have a mean of 100 and standard deviation of 15 in the general U.S. population.
Thus, our sample was closely representative of children in the general U.S. population both
in terms of average ability and range of ability. FSIQ was uncorrelated with age (r=.03, p
= .64), indicating that our sample is equally representative of ability in the general U.S.
population across the age range sampled.
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Processing Speed—Processing speed was measured with three tasks: Letter Comparison
(Salthouse & Babcock, 1991), Pattern Comparison (Salthouse & Babcock, 1991), and
Symbol Search (Wechsler, 2003). These timed tasks require participants to assess
similarities across lexical- or symbol-based sets of stimuli as quickly as possible while
maintaining near perfect accuracy.

Structural equation models, which allow the simultaneous estimation of statistical
associations involving both observed and latent variables, were fit with Mp/us \ersion 7.11
(Muthén & Muthén, 2012). To account for missing data, M p/us takes a full-information
maximum likelihood approach, which uses all available data to compute parameter
estimates. All analyses implemented the Complex Survey option in Mpl/usto correct for the
non-independence of observations that arises when including data from individuals within
the same family. As triplet sets contribute three pairwise combinations of siblings to the
dataset, behavioral genetic analyses employed the Weighting function to down-weight data
from triplet pairs by 50%.

Prior to examining interrelations between our outcomes of interest, we fit separate
confirmatory factor models for EF, general intelligence, and processing speed. Path analyses
were constructed to investigate the contributions of EF and processing speed to the
intelligence measures. All phenotypic and biometric models were applied to scores
residualized for sex. When estimating models involving the general intelligence factor, we
regressed the individual WASI-II test scores (Block Design, Matrix Reasoning, Vocabulary,
Similarities) onto age to account for age differences in WASI-II test scores in a manner most
closely resembling how FSIQ composites are created (in which individual test scores are
first age-standardized prior to being combined). When estimating models involving EF and
Speed factors, we chose a parsimonious approach in which we controlled for age at the level
of the first order EF factors (Inhibition, Switching, Working Memory, Updating) and the
Speed factor, rather than at the level of the individual tasks. We have previously reported that
both factor loadings and intercepts of the individual EF measures are measurement invariant
across age groups (Engelhardt et al., 2015). We report loadings of the individual intelligence
tests and the first-order EF factors on their respective superordinate factors standardized
relative to total variance (i.e., semipartial with respect to age).

To examine genetic and environmental influences on the outcomes, we fit a series of
behavioral genetic models. These models decompose variance in a given outcome into
additive genetic (A), shared environmental (C), and non-shared environmental (£) factors.
Influences attributable to A serve to make genetically more similar individuals more alike on
the phenotype under investigation, those attributable to C serve to make individuals raised in
the same household more similar on the phenotype irrespective of their genetic relatedness,
and those attributable to £ serve to differentiate individuals on the phenotype even when
raised together and perfectly matched on genotype. Model fit for both the phenotypic and
behavioral genetic analyses was assessed by the chi-square test, the root-mean-square error
of approximation (RMSEA), the comparative fit index (CFI), and the Akaike information
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criterion (AIC). To compare fit across models, we computed scaled chi-square difference
statistics (Satorra & Benter, 2010).

Scores for timed EF tasks were converted to reaction time metrics prior to computing switch
costs and inhibition costs. Switch and inhibition costs were then multiplied by -1 so that
higher scores represented better task performance. To correct for positive skew, we log
transformed Trail Making and Local-Global scores, and square root transformed 2-Back and
Listening Recall scores. Plus-Minus scores greater than 3 SD from the mean were
Winsorized to the next least extreme value. Adhering to the Stop Signal exclusion protocol
set by Congdon et al. (2010), we first computed Stop Signal Reaction Time (SSRT) for
blocks consisting of 64 trials each. Block-level scores were omitted on the basis of
consistent stop failures, misidentification of arrow direction, failure to respond to go trials,
and low SSRTs. Remaining block scores were averaged to create a final SSRT measure.

Descriptive Statistics

Sample sizes, descriptive statistics and reliability estimates for all tasks can be found in
Table 1. As is typical for the literature, reliability estimates for EF indices were occasionally
somewhat lower than is standard for psychometric measures. This likely stems, in part, from
the fact that EF indices are often calculated from difference scores between executive and
nonexecutive conditions, leading to the compounding of measurement error (Cronbach &
Furby, 1970). Consistent with this inference, we have previously reported high reliabilities
for the individual task conditions upon which difference scores are based (Engelhardt et al.,
2015).

Correlations among age, sex, and scores on the individual tasks are presented in Table 2.
Age was significantly correlated with performance on all tasks aside from Full Scale 1Q,
which is computed using standard scores relative to a nationally representative aged-
matched norming sample. Visual inspection of scatterplots and loess curves of age effects on
the individual measures indicated that age effects were predominantly linear. Estimated
quadratic age trends were trivial and inconsistent across tasks. Correlations between task
performance and sex were inconsistent, with only 4 of the 20 tasks correlating significantly
with sex. All models reported below were conducted using scores residualized for sex.

Phenotypic Models

Table 3 presents the standardized loadings from the confirmatory factor models. Based on
our prior investigation of the structure of EF in a subset of 505 individuals from the current
sample (Engelhardt et al., 2015), we first specified a hierarchical model in which each task
loaded onto one of four first-order EF factors (Inhibition, Switching, Working Memory, or
Updating), and each first-order factor loaded onto a latent general factor of EF (Common
EF). The factor loadings of individual EF tasks onto the first-order factors were all
significant at p < .05 (Miambda = -55). The factor loadings of the first-order EF factors onto
Common EF were significant at p < .001 (Miambda = -62). As shown in Table 4, this model
fit the data well (X2(58) =91.12, p=.0036, RMSEA = .03, CFI = .99). Moreover, the full
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four-factor model fit significantly better than reduced models in which two or more of the
first-order EF factors were collapsed (o’s < .01). Given the low reliability of Stop Signal
performance (a = .40) and its poor loading onto the Inhibition factor (A = .16), we examined
whether excluding the Stop Signal variable from the four-factor CFA would change the
pattern of parameter estimates appreciably. In this model, which fit the data well (X2(47) =
75.74, p=.005, RMSEA = .03, CFI = .99), the factor loadings of the remaining inhibition
tasks did not change dramatically (Stroop A = .37 and Mickey A = .25, compared to .40

and .27, respectively, in the original model), nor did the loading of the Inhibition factor onto
Common EF (A = .47, compared to .43 in the original model).

In the model of intelligence, all four WASI-II test scores were specified to load onto a latent
general intelligence factor (i.e., a g factor), and correlated residuals were specified between
Block Design and Matrix Reasoning, as well as between Vocabulary and Similarities.
Loadings of the individual cognitive tasks onto the g factor were moderate (Miampda = -53;
p’s <.05). The model of processing speed specified a single common factor representing
variance common to the three processing speed tasks. In this model, loadings of the tasks
onto the latent Speed factor were high (Miampda = -79; 'S < .001).

Correlations among the higher-order variables (Switching, Working Memory, Updating,
Common EF, g, FSIQ, and Speed) were all significant at p < .001, with the exception of
those involving the Inhibition factor, which were large yet not statistically significant (see
Table 5). Notably, the Common EF factor correlated with FSIQ at .71 and with g at .91. To
more directly assess the relationship between EF and intelligence, we fit a model in which
the indices of intelligence were regressed onto a Common EF factor residualized for the
effects of speed (see Figures 1a and 1b). After extracting the variance in Common EF that
was unique of Speed, EF continued to be a strong predictor of both FSIQ (8= .57, p<.001)
and g (8= .64, p< .001). Fifty percent of the variance in FSIQ remained unique of Speed
and EF, and 13% of variance in gwas explained by neither EF nor Speed. Residual variances
for these analyses are reported in supplementary materials.

We were interested in whether these findings substantively differed when storage-plus-
processing measures of working memory were excluded, but updating measures remained,
such that the structure would more closely resemble the Miyake & Friedman (2000) three-
factor structure. This was a potential concern because the inclusion of working memory
measures and updating measures (such that Working Memory and Updating tasks composed
six out of twelve EF measures) may have shifted the centroid of the EF construct hyperspace
toward a Working Memory/Updating region that may be more strongly related to
intelligence and away from a more diffuse central executive region that may be only
moderately related to intelligence (for a general explication of the effect of indicator choice
on factor identification, see Little, Lindenberger, and Nesselroade, 1999). The results of this
analysis were very similar to those of the full model in which Working Memory tasks were
included. Specifically, after extracting the variance in Common EF that was unique of
Speed, EF continued to be a strong predictor of g (8= .68, p< .001), and only 5% of the
variance in g was unique of both Speed and EF.
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We next tested an alternative model in which speed and the domain-specific EFs served as
indicators (rather than predictors) of g. Factor loadings of these additional indicators onto g
were all significant at p < .001 (Inhibition A = .36, Switching A = .61, Working Memory A

= .66, Updating A =.78, Speed A = .36). Nevertheless, there was a significant decrement in
model fit relative to the model in which gwas regressed onto the Speed factor and the speed-
residualized Common EF factor (deiff(4) =13.18, p=.002). Thus, in our behavioral genetic
analyses, we proceeded with the original parameterization of the relationship between these
factors.

Behavioral Genetic Models

Correlations between monozygotic (MZ) twins were greater than those between dizygotic
(DZ) twins for 19 of the 20 manifest variables (see Table 6), indicating some degree of
genetic influence on the measured outcomes. The confirmatory factor models from the
phenotypic analyses served as the basis for our initial behavioral genetic models. We first
estimated A, C, and £ contributions to individual differences in EF, intelligence, and speed
separately. For each set of variables, we assessed genetic and environmental influences on
the highest-order factor, as well as residual genetic and environmental influences on the
lower-order factors (in the case of EF) and individual tasks. Standardized parameter
estimates are shown in Table 7.

With regard to the Common EF factor, the a coefficient representing additive genetic
influences was .97 (p < .001), the ¢ coefficient representing shared environmental influences
was .10 (p = .88), and the e coefficient representing non-shared environmental influences
was .24 (p < .05). Thus, the heritability of Common EF was estimated at 94% (i.e., &= .
972). Of the first-order EF domains, only Switching exhibited significant genetic influence
above and beyond that of Common EF (a= .42, p< .001). Working Memory and Updating
exhibited significant non-shared environmental influences independent of Common EF
(Working Memory e = .38, p<.001; Updating ¢ =.19, p< .05). We observed significant (p
< .05) residual A influences operating on four of the tasks, significant Cinfluences operating
on one of the tasks, and significant £ influences operating on all EF tasks.

Full Scale 1Q was moderately heritable (a= .74, p< .001; a2 = 55%) with significant
contributions coming from environmental factors (¢= .40, p< .01; e= .55, p<.001). The
behavioral genetic decomposition of g indicated higher genetic contributions (2= .88, p <.
001; a2 = 77%) and somewhat lower environmental contributions (c= .34, p=.20; e= .34, p
<.01) than did the decomposition of FSIQ. Residual genetic variance was observed for
Block Design (a= .60, p < .001) and Matrix Reasoning (a = .28, p< .001). Shared
environmental variance independent of gwas found for Similarities (¢= .29, p< .05) and
Matrix Reasoning (a= .26, p < .001), and all four WASI-II tasks exhibited significant
residual non-shared environmental variance (p's < .01). With respect to Speed, genetic (a=.
53, p<.001) and non-shared environmental (e= .39, p < .001) influences predominated,
with no observable effect of the shared environment. Unique genetic and shared
environmental factors operating on Symbol Search were significant, as were residual non-
shared environmental factors contributing to Pattern Comparison (0’s < .05).
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We next fit separate AE models for EF, intelligence, and processing speed (see final two
columns in Table 7). The resulting estimates for EF and speed were consistent with those of
the ACE models: significant genetic contributions to the higher-order EF and Speed factors
and a small number of indicators, combined with significant non-shared environment
contributions to the common factors and the majority of indicators. Nested model
comparisons indicated that the fits of A£and ACE models of EF were not significantly
different from one another (p = .95), meaning that the omission of the ¢ parameters did not
significantly decrease model fit. The same was the case for a nested comparison of the AE
and ACE models of speed (p=.37). Dropping the ¢ parameters from the behavioral genetic
model of gresulted in inflation of the a coefficients corresponding to the g factor and three
of the four tasks. A nested model comparison indicated that the A£ model of g fit
significantly worse than the ACE model of g (v =.006), indicating a decrement in model fit
with the omission of shared environment factors. Based on the results of these model
comparisons, we proceeded with AE models of EF and speed and ACE models of FSIQ and
g for the remaining analyses.

In an alternative parameterization of the genetic architecture of EFs, we specified an AE
bifactor model in which all 12 tasks loaded directly onto Common EF, in addition to their
respective first-order EFs. The pattern of genetic and environmental contributions to EFs in
this model was extremely similar to that of the original hierarchical model. Additive genetic
influences on Common EF - a latent factor defined as shared variance across all tasks —
were estimated at .98 (p < .001; a2 = 96%), and unique environmental contributions were
estimated at .22 (p < .05). Significant genetic influences not accounted for by the common
factor operated only on Switching (a= .52, p<.001), while significant environmental
factors independent of Common EF operated only on Working Memory (e = .39, p< .001).
Estimates of task-specific genetic and environmental influences were also similar to those
for the hierarchical AE model (see Supplementary Figure 1).

After characterizing the genetic and environmental structures of the three sets of variables
separately, we combined them to examine whether overlapping genetic and/or environmental
factors contribute to the observed relations between EF, intelligence, and processing speed.
First, we fit a model of EF and intelligence in which we regressed the measures of
intelligence onto the A and £ factors of the higher order Common EF factor from the
hierarchical model of EF (see Figures 2a and 2b). Genetic influences on Common EF
explained just under half of the variance in FSIQ (8= .69, p<.001), and the genetic
correlation between EF and FSIQ was high (74 = .92, p<.001). Conversely, non-shared
environment contributions to Common EF had a negligible effect on FSIQ (8= .12, p= .24),
which corresponds to a correlation of .22 (p = .22) between the £ factors for EF and FSIQ.
Environmental influences unique to FSIQ remained high (¢=.37, p=.001; e= .54, p<.
001). The finding of overlapping genetic influences was even more pronounced when we
operationalized intelligence using the g factor: Genetic influences on Common EF explained
80% of the variance in g (8= .90, p<.001). Moreover, the genetic correlation between EF
and gwas 1.00 (p < .001), meaning that after incorporating genetic factors for EF into the
behavioral genetic model for g, there were negligible residual genetic influences on g (a=".
01, p=.98). As with FSIQ, the non-shared environment important for EF did not
significantly predict g (8= .13, p=.29), and environmental influences unique to g were
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evident (¢= .28, p<.05; e=.32, p<.001). The non-shared environment correlation between
EF and gwas .38 (p=.22). Importantly, however, there was some indication of unique
genetic influences on individual WASI-I1 measures that were unique of gand EF.

To examine the extent to which /ndividual EFs accounted for genetic and environmental
variance in intelligence, we also fit bivariate Cholesky models in which gwas regressed onto
the A and £ factors for, separately, Inhibition, Switching, Working Memory, and Updating.
The results of these analyses, including residual ACE influences on g, are shown in Table 8.
Genetic influences operating on each of the first-order EFs significantly contributed to g
(Mheta = .89, p’'s < .001), as did non-shared environment influences operating on Inhibition
(B=.32, p<.01). Interestingly, genetic influences on Inhibition were appreciable but not
significant (a = .22, p=.08), although they significantly related to g. This may be the result
of lower power to detect effects involving the Inhibition factor, as its factor loadings tended
to be very low. Across these models, genetic influences on g unique of EF were not
significant. That either genetic variance common to all four EFs or genetic variance in each
EF domain could account for nearly the entirety of genetic variance in intelligence likely
results from the fact that nearly all of the genetic variance in each EF domain was shared
with all the other domains.

In order to test the possibility that overlapping genetic influences on EF and intelligence
were simply due to processing speed, we next fit a multivariate model in which Common EF
was regressed on the A and £ factors for Speed, and intelligence was regressed on the A and
E factors for both Speed and Common EF. These results are depicted in Figure 3. Genetic
and non-shared environmental influences on Speed also contributed significantly to
Common EF ability (8= .49, p<.001 for g, f= .23, p<.001 for &). The £ factor for
Common EF significantly contributed to FSIQ (8 = .54, p< .001) but did not appreciably
contribute to Common EF itself after extracting variance unique of Speed (e= .07, p=.10).
The Efactor of Speed did not appreciably contribute to FSIQ (8= -.05, p = .44). Genetic
variation in Speed accounted for 30% of the variance in FSIQ (8= .55, p<.001). Genetic
variation in Common EF unique of genetic influences on Speed accounted for an additional
22% of the variance in FSIQ (8= .47, p<.001). Residual genetic influences on FSIQ were
not significant after accounting for genetic influences mediated by Speed and EF (a= .25, p
=.24). Results were very similar when intelligence was measured by the latent g factor.
Genetic influences on Speed explained 46% of the variance in g (8= .68, p<.001). The
Speed-unique genetic factors for Common EF explained 41% of the variance in g (8= .66, p
<.001). No genetic influences unique to g remained after accounting for genetic
contributions to Speed and EF (5= .00, p=.73). The £ factor for EF impacted general
intelligence (8= .31, p<.01) but did not appreciably contribute to Common EF itself after
controlling for genetic contributions of Speed (¢= .16, p=.07). The Efactor for Speed did
not impact general intelligence (8 = -.06, p = .41). There was some indication of unique
genetic influences on the individual WASI-11 measures that were unique of g, EF, and Speed.

To examine the extent to which EFs account for genetic and environmental variance in more
specific components of intelligence, we also fit bivariate Cholesky models in which WASI-I11
Verbal Comprehension Index (VCI, a composite of age-standardized Vocabulary and
Similarities scores) and WASI-II Perceptual Reasoning Index (PRI, a composite of age-
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standardized Block Design and Matrix Reasoning scores) were regressed onto the Aand £
factors for, separately, Common EF, Inhibition, Switching, Working Memory, and Updating.
The results of these analyses, including residual ACE influences on the PRI and VCI
composites, are shown in Table 9. Genetic influences operating on Common EF, as well as
those acting on each of the first-order EFs, significantly contributed to variance in PRI
(Mhyeta = .59, p’s <.001) and VCI (Myeta = .61, p’s < .001). Variance in PRI was also
attributable to non-shared environmental factors for Common EF (8= .31, p<.05).
Consistent with the decompositions of g reported above, residual genetic influences on VCI
(i.e., those unique of EF) were not significant in any model. Conversely, we observed genetic
influences on PRI that were unique of those for Common EF (a= .49, p<.01), Switching (a
= .48, p<.01), and Updating (a= .51, p<.001). These results indicate that EFs capture all
of the genetic variance in verbal comprehension and all of the variance that is shared
between the verbal comprehension and perceptual reasoning measures (i.e., general
intelligence), but they do not capture all of the genetic variance in perceptual reasoning.

Sensitivity Analyses

We were interested in probing the sensitivity of our key finding of high genetic overlap
between general EF and intelligence by testing alternative modeling choices. First, we
examined whether the results substantively differed when the bifactor model of EF described
earlier was included in the Cholesky decomposition of gon EF. Results of this analysis
revealed high genetic overlap between gand Common EF (8= .89, p<.001). Consistent
with estimates from the hierarchical EF model, genetic (a= .11, p=.90) and shared
environmental (¢= .26, p=.36) influences unique to g were not significant. In contrast to
results from the hierarchical model of EF, we found that residual non-shared environmental
influences continued to significantly contribute to variance in g in the bifactor model (e=.
33, p<.01).

We next fit a multivariate behavioral genetic model in which the WASI-II tasks, first-order
EF factors, and the Speed factor served as indicators of a higher-order g factor. Parameter
estimates for the ACE components of this analysis can be found in Supplementary Table 3.
The results of this analysis revealed a highly heritable g factor (a= .96, p < .001; a2 = 92%)
that was only minimally influenced by environmental factors (¢ = .17, p= .64; e= .24, p<.
01). Switching and Speed exhibited genetic influence independent of g (Switching a= .39, p
<.001; Speed a= .42, p<.001). Of the latent indicators of g, Working Memory, Updating,
and Speed were influenced by non-shared environment influences unique of general
intelligence (Working Memory e= .29, p< .001; Updating e= .25, p< .001; Speed e= .36,
p<.001).

Finally, we tested whether our key finding of strong genetic overlap between EFs and
intelligence would hold after omitting storage-only measures of working memory, so as to
closely approximate the three-factor structure established by Miyake and Friedman (2000).
The results of this analysis indicated that, even in the absence of working memory storage
measures, genetic influences on Common EF that were not attributable to Speed explained
46% of the variance in g (8= .68, p<.001). As in the full model, no genetic influences
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unique to g remained after accounting for genetic contributions to Speed and EF (8= .00, p
=.71).

Discussion

There has been widespread and longstanding interest in identifying fundamental cognitive
processes that account for genetic variation in higher-order mental abilities, but very few
studies have capitalized on genetically informative research designs. The goal of the current
study was to test EF as a source of variance underlying genetic influences on intelligence in
a cross-sectional child sample. Results indicated that genetic influences on broad executive
functioning ability — as indexed by a latent factor capturing common variance across four
specific EF domains — account for a large proportion of phenotypic variance and a// of the
genetic variance in childhood intelligence. Importantly, there exists substantial shared
genetic variance between general EF and intelligence that is independent of variation that
both variables share with processing speed. Results did indicate, however, that EFs strongly,
but do not fully, capture genetic variation in a more specific perceptual reasoning index.

Previous studies have reported strong links between various EF domains and individual
differences in intelligence across the lifespan (Ackerman et al., 2005; Blair, 2006; Brydges,
Reid, Fox, & Anderson, 2012; Conway et al., 2003; Engle, 2002; Kyllonen & Christal, 1990;
Salthouse et al., 2003; Salthouse, 2005), but fewer studies have examined relations in the
context of the multidimensional hierarchical model of EF. Importantly, constructing latent
EF variables from multiple indicators enabled us to isolate variance in each EF domain of
interest from task-specific (and potentially non-executive) variance. Other studies that have
used latent variable approaches to examine EF-intelligence relations (e.g., Engle, Tuholski,
Laughlin, & Conway, 1999; Polderman et al., 2009; Salthouse et al., 2003; Schmiedek,
Hildebrandt, Lévdén, Wilhelm, & Lindenberger, 2009) have reported stronger and more
consistent relations than those implementing single measures (e.g., Jaeggi et al., 2010; Kane,
Conway, Miura, & Colflesh, 2007; Salthouse, 2005).

The current report of a strong, genetically-mediated relationship between latent EFs and
intelligence in childhood is similar to the pattern of results reported for a young adult sample
that also employed a latent variable approach to modeling EFs (Friedman et al., 2008).
However, our results and those of Friedman et al. (2008) do differ somewhat in terms of the
specific magnitude of genetic correlation between general EF and intelligence. Friedman et
al. (2008) report the association between EF and FSIQ at 4 = .57, whereas the current
estimate of this association was 74 =.92 (95% Cls: .73, 1.11). One possible reason for this
difference could be the different age ranges of the two samples. However, the difference
could also stem from other causes, some of which we were able to probe. First, we did not
specify a cognitive architecture of EF identical to Friedman et al.’s, in that we included
measures of both storage (working memory) and storage-plus-processing (updating). To
more directly compare our results with those of Friedman et al. (2008), we conducted a
sensitivity analysis that excluded the Working Memory latent variable. The EF-intelligence
association in this sensitivity analysis remained very strong, indicating that it was not driven
by our original EF structure being more heavily weighted toward working memory. A
second difference between the two studies is that the loadings of the inhibition measures on
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the Inhibition factor were somewhat stronger in the Friedman et al. study than in the current
study. It is possible that the paradigms commonly accepted as tapping “inhibition” in fact
represent a rather heterogeneous, weakly overlapping set of processes, particularly in
developmental samples (for a review, see Lee et al., 2013). Nevertheless, the primary results
of our study held after removing the weakest-loading Inhibition indicator (Stop Signal) from
the model, suggesting that our Inhibition factor does not unduly bias either the phenotypic or
the genetic relations among the remaining variables. Finally, it is possible that while the
point estimates from our study and that of Friedman et al. (2008) differ somewhat in
magnitude, they both reflect a similar population effect size. In other words, the point
estimates may potentially differ simply because of sampling variability.

In statistically mediating genetic effects on intelligence, EFs meet a primary criterion for
what others have termed endophenotypes (Cannon & Keller, 2006; Gottesman & Gould,
2003; Meyer-Lindenberg & Weinberger, 2006). Endophenotypes are conceptualized as
intermediaries between the genome and a more environmentally-influenced phenotype. One
major criterion for a variable to be considered an endophenotype is that genetic factors that
contribute to its variance should also account for substantial genetic variance in the
phenotype of interest. Endophenotypes may share genetic variation with phenotypes because
of causal mediation, in that they occupy an intermediate position along the causal chain
between genotype and phenotype. However, they may also share genetic variation with
phenotypes because they simply index the same genetic liability for that phenotype without
playing causal roles per se (Kendler & Neale, 2010; Solovieff, Cotsapas, Lee, Purcell, &
Smoller, 2013). Indeed, it is even possible that the direction of causality is from the
purported phenotype (in this case, intelligence) to the purported endophenotype (EF).
Although a large theoretical and computational literature in cognitive psychology operates
on the assumption that EFs are causal to intelligence, we were not able to directly test this
hypothesis in the current study. Nevertheless, the finding that EFs and intelligence share
substantial genetic variance is of high theoretical and practical importance regardless of the
causal basis of this association. For instance, although researchers who document genetic
associations between EFs and other outcomes, such as academic achievement or
psychopathology, may be tempted to interpret these associations in terms of the very specific
regulatory processes that happen to have been tapped by the EF measures that were
administered in a particular study, our results suggest that such findings may be
manifestations of genetic etiology shared with a much broader set of cognitive abilities.

The finding that the genes that are relevant to EF are highly overlapping with those that
impact intelligence held true regardless of whether intelligence was formally modeled as a
latent factor or simply indexed by FSIQ (a composite measure). However, intelligence as
indexed by a latent variable was much more highly heritable than intelligence as indexed by
FSIQ. Importantly, the heritability of FSIQ in the current sample (mean age = 11 years) was
55%, exactly the same estimate reported by Haworth et al. (2010) for composite measures
(oftentimes FSIQ) of intelligence in a meta-analytic sample of V= 4,934 pairs of twins
(mean age = 12 years, labeled the “adolescence” age group by those authors) from four
different countries. Additionally, shared and nonshared environmentalities of FSIQ were,
respectively, 16% and 30% in our sample, compared to 18% and 27% in Haworth et al.
(2010). Thus, the higher heritability estimate of 77% that we obtained for g does not appear
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to be attributable to differences between the current sample and existing samples, but is
attributable to the latent variable modeling strategy. Indeed, studies that have formally
modeled g as a latent variable have also reported very high heritability estimates (Cheung,
Harden, & Tucker-Drob, 2015; Panizzon et al., 2014; Petrill, 1997). In formal latent variable
models, environmental influences predominantly act on more specific ability domains
measured by individual tests (Petrill, 1997). This distinction has potentially interesting
implications for research on age trends in the heritability of intelligence. For example, are
developmental increases in the heritability of intelligence — which primarily have been
identified in studies of composite measures of intelligence — driven by age-related changes
in the overall magnitude of genetic influence on cognitive abilities per se, or simply by age-
related increases in genetic covariation among cognitive ability domains? How do such
trends compare to the age trends in the genetics of EFs and their covariation with
intelligence? Investigations of developmental transformations in the genetic and
environmental influences of intelligence that model age trends in both domain-general and
domain-specific components of test score variation (cf. Cheung et al., 2015) are needed in
order to discern these possibilities.

The finding that EFs share all of their genetic variance with general intelligence and verbal
comprehension but only some of their genetic variance with perceptual reasoning may
appear initially to be somewhat of a puzzle. Because both EFs and perceptual reasoning
reflect highly abstract forms of cognitive mechanics (Baltes, 1987), whereas verbal
comprehension reflects a culturally contextualized form of acquired knowledge, one might
expect EFs to share more genetic variance with perceptual reasoning than with verbal
comprehension. One possible explanation for this finding is that EFs more fully index
motivational and self-regulatory skills important for learning and knowledge acquisition
(Tucker-Drob, Briley, Engelhardt, Mann, & Harden, in press) than does perceptual
reasoning. Thus, greater shared genetic variance between EFs and verbal comprehension
than between EFs and perceptual reasoning may reflect a stronger role for EFs than for
perceptual reasoning in intellectual investment processes (Cattell, 1987; Tucker-Drob &
Harden, in press).

The very high heritability of EF and its strong phenotypic and genetic covariation with
intelligence raises the question of whether strong genetic influences are universal across
individuals. One intriguing hypothesis that has existed in the literature for some time is that
genetic influences on intelligence (and, by implication, possibly EFs as well) differ as a
systematic function of childhood socioeconomic status, with genetic influences being
suppressed under conditions of greater socioeconomic adversity (Scarr-Salapatek, 1971).
This is an important hypothesis with potentially widespread implications for science and
policy. A recent meta-analysis of such Gene x Socioeconomic Status interaction research
indicated support for the Scarr-Salapatek (1971) hypothesis in US samples, but not in
samples from Western Europe and Australia (Tucker-Drob & Bates, 2016). Importantly,
however, Tucker-Drob and Bates (2016) conducted a power analysis based on the meta-
analytic effect sizes, which indicated that sample sizes of at least 3,300 twin pairs are

lAlthough Haworth et al. (2010) described their study as being a study of general intelligence (g), they did not model gas a latent
variable but instead used composite measures of g.
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required to obtain acceptable power to detect a Gene x Socioeconomic Status interaction.
We have therefore chosen not to examine this hypothesis in the current data. The question of
whether genetic influences on EF and its covariation with intelligence vary systematically
with family socioeconomic status thus remains an open question.

The finding of strong phenotypic overlap and nearly perfect genetic overlap between EF and
intelligence has important implications for the intersection of two traditionally distinct fields
of study: genetics and neuroscience. Intelligence is a highly studied phenotype not only in
behavioral genetics (e.g., twin studies) but also in molecular genetic association studies (e.g.,
GWAS). Recently, researchers in genetics have made strides in identifying the molecular-
genetic foundations of intelligence (e.g., Davies et al., 2015; Rietveld, 2014), but the
genetics of EFs are far less studied. The reverse occurs in neuroscience, in that the neural
foundations of EFs are much more highly studied than those of intelligence. Researching the
genetics of the neural foundations of both intelligence and EFs might benefit from an
integration of findings across fields. For instance, polygenic scores derived from large-scale
GWA studies of intelligence might be used in smaller neuroimaging studies of EF. Our
results suggest that such approaches might be quite fruitful.

In conclusion, we found that the genetic factors underlying individual differences in
childhood EFs also account for significant proportions of variance in concurrently measured
intelligence, measured both in latent and manifest space. These findings provide a
foundation for future investigations into the psychological and physiological processes that
link genetic variation to individual differences in complex, socially meaningful traits such as
intelligence. These results may also serve as a springboard for future studies of age- and
socioeconomic-based differences in the heritability of cognitive processes, including EFs
and intelligence. Together, the results of this study further our understanding of the
psychological functions hypothesized to support broad mental capacities that are relevant
across time and settings.
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Figure 1.

Phenotypic models of FSIQ and g regressed onto Speed and Speed-residualized EF.

Note. Path diagrams for relationships between speed, executive function (EF) unique of
speed, and measures of intelligence unique of speed and EF. Figure 1a depicts these
relationships with respect to Full Scale 1Q (FSIQ), while Figure 1b depicts them with respect
to the latent g factor. Numbers on arrows represent standardized regression coefficients and
factor loadings. All parameters are standardized and have been residualized for sex. The
effect of age is controlled for at the level of the individual WASI-II tests, the first-order EF
factors, and the Speed factor. Relations between Speed, Common EF, and intelligence are
standardized relative to total factor variance, as are loadings of WASI-I1I tests onto g and of
Inhibition, Switching, Working Memory, and Updating onto Common EF. Fit statistics for
model depicted in Figure 1a: X2(107) =229.37, p<.001, RMSEA =.038, CFIl = .97. Fit
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statistics for model depicted in Figure 1b: X2(151) = 318.64, p<.001, RMSEA =.037, CFI
=.97. Solid paths and bolded estimates indicate significance at p< .01.
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Figure2.
Behavioral genetic models of FSIQ and g regressed onto EF.
Note. Bivariate Cholesky decomposition for additive genetic (A), shared environmental (C),
and non-shared environmental (E) contributions to executive function (EF) and measures of
intelligence. Figure 2a depicts these relationships with respect to Full Scale 1Q (FSIQ),
while Figure 2b depicts them with respect to the latent g factor. Numbers on arrows
represent standardized regression coefficients and factor loadings. All parameters are
standardized and have been residualized for sex. The effect of age is controlled for at the
level of the individual WASI-II tests, the first-order EF factors, and the Speed factor.
Relations between Speed, Common EF, and intelligence are standardized relative to total
factor variance, as are loadings of WASI-II tests onto g and of Inhibition, Switching,
Working Memory, and Updating onto Common EF. Fit statistics for model depicted in
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Figure 2a: %(738) = 1046.54, p< .001, RMSEA = .044, CFI = .91. Fit statistics for model
depicted in Figure 2b: X2(1089) =1492.15, p<.001, RMSEA =.041, CFl = .93. Solid paths
and bolded estimates indicate significance at p< .01.
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Figure 3.
Behavioral genetic models of FSIQ and g regressed onto Speed and Speed-residualized EF.

Note. Multivariate Cholesky decomposition for additive genetic (A), shared environmental
(C), and non-shared environmental (E) contributions to executive function (EF), measures of
intelligence, and speed. Figure 3a depicts these relationships with respect to Full Scale 1Q
(FSIQ), while Figure 3b depicts them with respect to the latent g factor. Numbers on arrows
represent standardized regression coefficients and factor loadings. All parameters are
standardized and have been residualized for sex. The effect of age is controlled for at the
level of the individual WASI-I11 tests, the first-order EF factors, and the Speed factor.
Relations between Speed, Common EF, and intelligence are standardized relative to total
factor variance, as are loadings of WASI-II tests onto g and of Inhibition, Switching,
Working Memory, and Updating onto Common EF. Fit statistics for model depicted in
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Figure 3a: y%(1098) = 1606.64, p < .001, RMSEA = .046, CFI = .91. Fit statistics for model
depicted in Figure 3b: X2(1521) =2167.13, p<.001, RMSEA = .044, CFIl = .91. Solid paths
and bolded estimates indicate significance at p< .01.
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Standardized Factor Loadings and Age Relations from Phenotypic Models of EF, g, and Speed

Table 3

Indicator

L atent Factor

In Sw WM Up Common EF g

Speed

Stroop

Mickey

Stop Signal

Trail Making

Plus-Minus

Local-Global

Digit Span Back

Symmetry Span

Listening Recall

Running Memory

Keep Track

2-Back

Inhibition factor

Switching factor

Working Memory

factor

Updating factor

Hierarchical Factor Model of EF

[.24, .62]
58 A AA
[49, 67]
70 A AA
[62,.78]
77 HAA
.70, .85]

Block Design

Matrix Reasoning

Vocabulary

Similarities

Factor Model of g4
497
[.11,.86]
60 *A
[.20, 1.00]
567
[.15, .98]
48 HAA
[.19, .77]
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L atent Factor

Indicator In Sw WM Up Common EF g Speed

Factor Model of Processing Speed

Pattern Comparison 81"
[.77,.85]
Letter Comparison g2
[.78, .86]
Symbol Search 75 %A
[.69, .80]

Age Relations

Age effect .89 A AA .67 A AA .70 HAA ‘57 A kA .75 A AA
[61,1.17] [61,.74] [64,.76] [.49,.65] [.71,.79]

Note. Standardized loadings of individual tasks onto higher-order factors, standardized loadings of first-order EF factors onto a Common EF factor,
and standardized regression coefficients of first-order EF factors and the latent Speed factor onto age. 95% confidence intervals are reported in
brackets. Manifest variables were residualized for sex prior to model fitting. The effect of age is controlled for at the level of the individual
intelligence tests, the first-order EF factors, and the Speed factor. Loadings of the individual intelligence tests and the first-order EF factors on their
respective superordinate factors are standardized with respect to total factor variances (including age-related variance). EF = Executive Function, g
= general intelligence, In = Inhibition, Sw = Switching, WM = Working Memory, Up = Updating.

aThe residual correlation between Block Design and Matrix Reasoning was .20 (p = .52). The residual correlation between Vocabulary and
Similarities was .45 (p < .05).

*

p<.05,

Aok

p<.01,

Hokh

p<.001
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Table 5

Correlations Among EF, g, and Speed Factors

Latent Variable 1 2 3 4 5 6 7

1. Inhibition

2. Switching .99

3. Working Memory .90 77°**

4. Updating 84 747 93

5. Common EF - - - -

6. Full Scale 1Q 64 B59*F G4 g* 71

7.g ,82 _76*** .83*** _89*** .91*** _

8. Speed .78 _63 HAA I54 Ak A ‘44 HAA .55 A AA .41 Ak .53 HAA

Page 36

Note. Pearson correlation coefficients, semipartial with respect to age. Manifest variables were residualized for sex prior to model fitting. The effect
of age is controlled for in models at the level of the individual intelligence tests, the first-order EF factors, and the Speed factor. Correlations with
Common EF were modeled separately from correlations with first-order EF factors because correlations among the first-order EF factors are
statistically redundant with factor loadings onto a latent variable. Because Full Scale 1Q and g are constructed from the same tasks, correlations
with each measure of intelligence were also estimated in separate models.

p<.05,
Ak
p<.01,

HokAh

p<.001
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Univariate Task Twin Correlations

Task

Stroop

Mickey

Stop Signal

Trail Making
Plus-Minus
Local-Global
Digit Span Back
Symmetry Span
Listening Recall
Running Memory
Keep Track
2-Back

Block Design
Matrix Reasoning
Vocabulary
Similarities

FSIQ

Pattern Comparison

Letter Comparison

Symbol Search

Mz
0.33
0.18
-0.04
0.57
0.41
0.46
0.47
0.50
0.52
0.70
0.40
0.54
0.78
0.47
0.69
0.62
0.72
0.57
0.57
0.33

DZ
0.09
0.12
0.23
0.24

-0.08
0.31
0.23
0.42
0.43
0.43
0.25
0.30
0.50
0.41
0.58
0.54
0.43
0.50
0.50
0.09

Note. Pearson correlation coefficients for cross-twin, within-task performance on measures of EF, speed, and intelligence. Variables were
residualized for age and sex prior to analysis.
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Table 7

Standardized Parameter Estimates from Behavioral Genetic Analyses of EF, Intelligence, and Speed

h Model with shared
Modelswith shared h
" : environmental effects
environmental effectsincluded omitted
Variance component a c e a e
Behavioral Genetic Model of EF
Ak * kA *
c EF 97 10 24 .97 24
ommon [80,1.13] [-124,144]  [04,.45]  [92,1.02]  [05,.43]
. . .00 .00 31 .00 .28
Inhibition-specific [.00, .00] [00,.00]  [-56,1.18]  [00,.00]  [-.71,127]
N 40* .00 .20 427 .20
Switching-specific (23, 62] [.00, .00] [-.22, 63] [.23, .62] [-.22, .63]
Working Memory- .00 .00 277 .00 277
specific [.00, .00] [.00, .00] [.13, .40] [.00, .00] [.13, .40]
R 00 00 197 00 197
Updating-specific .00, .00] [.00, .00] [.01,.37] [.00, .00] [.01, .37]
- 27 .00 87 27 887"
Stroop-specific [-.16,.70] [.00, .00] [72,1.02]  [-16,.70]  [73,1.02]
: - 21 21 917 32" 917
Mickey- f
Ickey-specitic [-.94,135]  [-.64,1.06]  [.82,1.01] [.07, .57] [:81,1.00]
. o 00 31** 94*** 24 96***
Stop Signal- f : : ;
op Signal-specific [.00, .00] [.12, .50] [.87,1.00] [-07,.56]  [87,1.04]
. . _ » 22 00 70 AR 22 70 kA
Trail Making-specific [-.04, 48] [.00, .00] [.61,.79] [-.04, .48] [.61,.79]
V- 08 00 937 07 937"
Plus-Minus-specific [-1.64,1.79] [.00, .00] [79,1.08] [-1.72,1.87] [.78,1.08]
HAAA HAA HAA HAAA
Local-Global-specifi 33 .00 72 33 72
ocal-Global-specific /" o) .00, .00] .64, .80] [16,.50]  [.64,.80]
Digit Span Back- .35 .19 75 a7 747
specific [-.08,.78] [-.37,.75] [.66, .83] [.28, .54] [.66, .82]
Symmgt(y Span- ‘34* 13 64 Ak 37 HAA 64 HAAA
specific [.03, .64] [-47,.73] [57,.71] [.26, .46] [57,.70]
Listening Recall- .00 .00 617 .00 617"
specific [.00, .00] [.00, .00] [.56, .66] [.00, .00] [.56, .66]
Running Memory- 25 *** .00 55 25 55
specific [.10, .40] [.00, .00] [.48, .62] [.10, .40] [.48, .62]
rocifi 14 00 77 14 e
Keep Track-specific [-.20, 48] [.00, .00] [.69, .84] [-.19, .48] [.69, .84]
. Ak OO 64 oAk 38 kA 64 A A
2-Back-specif 38 : - :
ackspeciiic [23, 52] .00, .00] [55, .74] [23,52]  [55,.74]

Behavioral Genetic Model of Full Scale 1Q

FSIQ .74*** I40** 55 HAA 85 HAA ‘53***
.55, . A4, . .46, .64 19, . .45, .61
92 66 6, .6 9,.90 6
Behavioral Genetic Model of g @
.88*** 34 .34** .95*** ‘32***

[.63,1.12] [-.17,.87] [.13, .54] [.88, 1.01] [.13, 52]

J Exp Psychol Gen. Author manuscript; available in PMC 2017 September 01.
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M odel with shared

Modelswith shared ;
. ; environmental effects
environmental effectsincluded omitted
Variance component a c e a e
) . Ak 03 47 KAk 53 Ak 46 Ak A
OckDeSIgnspectlic 151, 701 [-13..18]  [:30, .54] [41,66]  [38,.54]
Matrix Reasoning- 287 26™ 667 16 657
specific [.14, .42] [.10, .41] [.60, .73] [-.02,.33] [57,.74]
. 12 27* 49 HAA 45 Ak A 49 Ak A
Vocabulary-specif : : : :
pcabularyspectlic - 1-13,191 o2, 52] [.42, 56] [34,56]  [43,.56]
i i " . 19 .29* '57 Ak '47 A AA .57***
Similarities-specif
imularties-spectiic —1-07,.46] .05, 53] [.50, .64] [36,57]  [51,.63]
Behavioral Genetic Model of Speed
Speed 53 Ak OO 39 HAk 53 HAA .39***
[.44, .62] [.00, .00] [.28, .50] [.44, .62] [.28, .50]
Pattern Comparison- 15 14 557 227 547
specific [-.46, .76] [-1.24, 1.51] [.35,.74] [.07, .37] [.46, .62]
Letter Comparison- .05 567* 15 197 547
specific [-.03,.12] [.18,.93] [-1.29, 1.58] [.03, .35] [.47,.62]
Symbol Search- 09" 66" 02 29" 607"
specific [.02, .16] [.60,.72] [-67,.71] [.16, .42] [51, .68]

Page 39

Note. Standardized regression coefficients for separate behavioral genetic analyses of EF, speed, and intelligence. 95% confidence intervals are

reported in brackets. Manifest variables were residualized for sex prior to model fitting. The effect of age is controlled for at the level of the

individual intelligence tests, the first-order EF factors, and the Speed factor. Loadings of the individual intelligence tests and the first-order EF
factors on their respective superordinate factors are standardized with respect to total factor variance. EF = executive function, a = additive genetics,
¢ = shared environment, e = non-shared environment, g = general intelligence.

aResiduaI ACE correlations for Block Design and Matrix Reasoning: r,4 = 1.00 (p< .001), r¢c=1.00 (p< .001), r£= .03 (p=.71). Residual AE

correlations for Block Design and Matrix Reasoning: r 4 = .97 (p<.001), r£=.08 (p=.42). Residual ACE correlations for Vocabulary and

Similarities: r 4 = 1.00 (p< .001), rc=1.00 (p< .001), r £= .27 (p< .001). Residual AE correlations for Vocabulary and Similarities: r4 = .77 (p
<.001), rg=.27 (p<.001).

*
p<.05,
Ak
p<.01,

*kA

p<.001
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Table 8

Page 40

Standardized Parameter Estimates for Bivariate Cholesky Models of Individual EFs and g

Regression

AE factors L Residual ACE factors
B coefficient for g onto .
operating on EFs AE factors of EF operating on g
EF entered as
upstream variable a e Ba Be a c e
Inhibition 22 457 917 327 .00 27 o1
[-.03,.47] [04,.86] [69,113] [12,.53] [00,.01] [-37,.90] [-.44,.45]
i 72 19 777 .04 42 36 33
Switching [60, 85 [-24.62] [61, 92 [-37,.45] [~06,.80] [-02.74] [14,.53]
HAA HAA HAA * A
Working M 57 43 95 .08 .00 11 29
oring Memory 147 671 [30,.55] [.82,1.08] [-06,.23] [00,.00] [-.78,1.00] [.08, 50]
76 *kA 28 *AA 94 *AA 04 00 o1 2 Aok
Updatin . . . . . . )
paating [69,83] [13, 43] [87,101] [-21,28] [00,.00] [-31,.32] [16, 51]

Note. Standardized regression coefficients for separate Cholesky decompositions modeling relationships between gand the AE factors of
Inhibition, Switching, Working Memory, and Updating. 95% confidence intervals are reported in brackets. Manifest variables were residualized for
sex prior to model fitting. The effect of age is controlled for at the level of the individual WASI-II tests and the EF factors. Relations between each
EF and g are partial with respect to age. EF = executive function, a = additive genetics, ¢ = shared environment, e = non-shared environment, g=

general intelligence.

*

p<.05,

Aok

p<.01,

*hA

p<.001
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Table 9

Standardized Parameter Estimates for Bivariate Cholesky Decompositions of EFs, Perceptual Reasoning, and
Verbal Comprehension

Regression
AE factor s operating coefficient for
on EFs composite onto
AE factorsof EF

Residual ACE factors
operating on composite

EF entered as
upstream variable a e Ba Be a c e
Cholesky Decompositions of EFs and PRI
Ak *Hk Ak * Aok Ak
c EF 97 25 54 31 49 28 54
ommon [92,1.02] [06,.43] [46,.63] [06 55 [19,.80] [-09,.65] [38,.69]
Inhibition .20 45 71 21 .00 .34 587
[-.08, 48] [-.13,1.02] 1[45, .96] [-23,.66] [00,.01] [-.01,.70] [.38,.78]
A AA Ak H*A * A kA
Switchi 73 A7 49 23 48 37 58
witching [61,.85 [-32,.66] [36,63 [-47,.921 [15 .82] [08,.66] [31,.85]
HAA A AA A AA * Ak
Working Memory [.fss, 67] [.'gf, 58] [.'gg, 78] [-.0'3%,1 24] [-.3572,9 95] [.o'g,s.es] [.fs}, 73]
Updatlng .77 HAA I27 *A I55 A AA .19 I51*** '22 .59 Ak
[.69, .85] [10,.44]  [45,.65] [-.03,.40]1 [21,.82] [-28,.72] [47,.71]
Cholesky Decompositions of EFs and V/CI
Ak *Hk HAk Ak HAA
Common EF [.é%? 1.01] [.6%? 43] [5?52 70] [—.ig,g 31] [-06(,)(.)00] [.gg, 54] [563 70]
Inhibition .23 44 647" 22 00 447 Bt
[-.05,.50] [-.15,1.02] 1[45,6.83] [-25.69] [00,.00] [.21,.67] [.40,.77]
Switching [.gg, 84] [—.2'91,8 65] [.'gf, 63] [—.22?245] [—.O'f,6 73] [.':?2 63] [f;, 70]
A AA Ak Ak HAAA A kA
Working M 57 43 65 01 .00 44 62
orang Memory 147 671 [30,55]  [54,.75] [-12,.14] [00,.00]  [30,.57] [57,.68]
Updating 77 25" 677" —17 00 407 60
[.70, .85] [08,.42] [59,.75] [-.07,.41] [00,.00] [29,.51] [.50,.70]

Note. Standardized regression coefficients for separate Cholesky decompositions modeling relationships between WASI-1I composites and the AE
factors of Common EF, Inhibition, Switching, Working Memory, and Updating. 95% confidence intervals are reported in brackets. Manifest
variables were residualized for sex prior to model fitting. The effect of age is controlled for at the level of the composites and the first order EF
factors. Relations between each EF and WASI-II composites are partial with respect to age. EF = executive function, a = additive genetics, ¢=
shared environment, e = non-shared environment, PR/ = WASI-1I Perceptual Reasoning Index, VC/= WASI-II Verbal Comprehension Index.

*
p<.05,
Ak
p<.01,

Aok

p<.001

J Exp Psychol Gen. Author manuscript; available in PMC 2017 September 01.



	Abstract
	Method
	Participants
	Zygosity
	Measures
	EFs
	Intelligence
	Processing Speed

	Analyses

	Results
	Descriptive Statistics
	Phenotypic Models
	Behavioral Genetic Models
	Sensitivity Analyses

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

