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Abstract

Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic 

cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and 

decision-making, and individual differences in EFs have been consistently linked with individual 

differences in intelligence. By middle childhood, genetic factors account for a moderate proportion 

of the variance in intelligence, and these effects increase in magnitude through adolescence. 

Genetic influences on EFs are very high, even in middle childhood, but the extent to which these 

genetic influences overlap with those on intelligence is unclear. We examined genetic and 

environmental overlap between EFs and intelligence in a racially and socioeconomically diverse 

sample of 811 twins ages 7-15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A 

general EF factor representing variance common to inhibition, switching, working memory, and 

updating domains accounted for substantial proportions of variance in intelligence, primarily via a 

genetic pathway. General EF continued to have a strong, genetically-mediated association with 

intelligence even after controlling for processing speed. Residual variation in general intelligence 

was influenced only by shared and nonshared environmental factors, and there remained no 

genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF 

did remain, however, in a more specific perceptual reasoning ability. These results provide 

evidence that genetic influences on general intelligence are highly overlapping with those on EF.
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Childhood intelligence is an important, early marker of lifelong socioeconomic and health 

gradients, ranging from educational attainment, income, and occupational success to mental 

health, physical health, and longevity (e.g., Deary, 2008; Deary, Weiss, & Batty, 2010; 

Koenen et al., 2009; Schmidt & Hunter, 1998). Much of the variation in intelligence is 
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associated with genetic differences between people. Behavioral genetic studies, capitalizing 

on differences in genetic similarity across family members, find that genetic factors account 

for approximately 50% of population-level variation in intelligence by the end of the first 

decade of life. This proportion increases to approximately 70% by late adolescence 

(Haworth et al., 2010; Tucker-Drob, Briley, & Harden, 2013) and remains similarly high 

throughout much of adulthood (Bouchard & McGue, 1981; Pedersen, Plomin, Nesselroade, 

& McLearn, 1992). Beginning around age 10, genetic influences on intelligence become 

highly stable across time, indicating that increasing heritability from middle childhood 

through adolescence results from amplification of the effects of the same genes that 

influenced intelligence earlier in the lifespan (Briley & Tucker-Drob, 2013; Tucker-Drob & 

Briley, 2014). Molecular genetic studies that capitalize on measured genetic similarity across 

unrelated individuals find somewhat lower – but still developmentally stable – genetic 

influences on intelligence by the end of the first decade of life (Davies et al., 2011; Deary et 

al., 2012; Trzaskowski et al, 2014). Finally, large-scale genome-wide association studies 

(GWAS) recently have begun to identify specific genetic polymorphisms associated with 

intelligence (Rietveld et al., 2014), although most of the genes influencing intelligence 

remain unidentified.

Together, these findings reinforce a longstanding interest in identifying simpler cognitive 

processes that are hypothesized to lie intermediate along the pathway from genotype to 

intelligence, that are manifest by middle childhood, and that statistically mediate – in full or 

in part – genetic influences on intelligence. Early attempts to partition individual differences 

in intelligence into more basic cognitive components focused on very simple indices of 

reaction time and information processing speed (Deary, Spinath, & Bates, 2006; Jensen, 

1980; Jensen, 1998; Neubauer, 1997). Researchers reasoned that such “elementary cognitive 

processes” were dependent upon very basic properties of the human nervous system. 

Measures of elementary cognitive processes were expected to either be unaffected by 

acquired knowledge or only depend on forms of knowledge that were overlearned to the 

point of being universal across individuals. Thus, it was assumed such measures would be 

very minimally affected by environmental variation, that is, highly heritable. Moreover, 

because it was thought that the aggregation of these elementary cognitive processes 

composed the building blocks of complex thought (Kail & Salthouse, 1994; Jensen, 1980), it 

was assumed that performance on simple cognitive tasks would correlate strongly with 

intelligence and statistically mediate genetic influences on intelligence.

Counter to expectations, empirical correlations between elementary cognitive tasks and 

intelligence tended to be modest (r ≈ 0.2; Smith & Stanley, 1983; Neubauer, 1997), with 

larger convergent validity coefficients obtained only when the elementary tasks increased in 

complexity (Jensen, 2006). Studies of elementary cognitive processes seldom used 

genetically informative samples, and the few behavior genetic studies that were conducted 

reported heritabilities no stronger than those obtained for more complex abilities (Luciano et 

al., 2001; Luciano et al., 2004; Posthuma, Mulder, Boomsma, & De Geus, 2002; Rijsdijk, 

Vernon, & Boomsma, 1998). Furthermore, multivariate analyses indicated that, while 

genetic influences on elementary cognitive tasks were partially shared with intelligence, 

each process was also substantially influenced by unique genetic factors (Luciano et al., 

2001; Petrill, Luo, Thompson, & Detterman, 1996; Spinath & Borkenau, 2000). Persistent 

Engelhardt et al. Page 2

J Exp Psychol Gen. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difficulty establishing empirical support for a cognitive architecture of intelligence based 

upon elementary cognitive processes ultimately resulted in a call for the identification of less 

elementary, more mechanistically complex cognitive correlates of intelligence (Deary, 

2002).

More recently, researchers have turned toward a suite of effortful, supervisory processes 

known as executive functions (EFs) to more fully account for variation in intelligence. EFs 

are conceptualized as cognitive processes that coordinate, monitor, maintain, and manipulate 

more basic processes to give rise to higher-order reasoning, learning, and goal-directed 

behavior (Alvarez & Emory, 2006; Diamond, 2006; Miller & Cohen, 2001; Zelazo & 

Müller, 2002). EFs constitute a range of related but separable skills, including inhibition of 

learned or prepotent responses, maintenance and manipulation of incoming information, and 

changing of response patterns based on new rules or information. Converging evidence 

points to a stable, multidimensional organization for EF: Individual differences in EFs are 

attributable to variance specific to individual task performance, variance common to tasks 

via domain-specific factors (e.g., switching, inhibition, working memory, and updating), and 

variance shared across domains via a general EF factor (Engelhardt, Briley, Mann, Harden, 

& Tucker-Drob, 2015; Miyake et al., 2000).

EFs feature prominently in formal cognitive models of reasoning, learning, and decision-

making (Anderson, 2001; Carpenter, Just, & Shell, 1990; Kieras & Meyer, 1997; Meyer & 

Kieras, 1997) and have received considerable attention as hypothesized intermediate 

mechanisms through which basic biological factors affect these complex outcomes (Kane & 

Engle, 2002). An especially active line of empirical research has investigated the neural 

bases of EFs. Converging evidence from functional and structural neuroimaging studies of 

healthy samples of individuals, along with lesion mapping from patient samples, points to a 

complex network of connected brain regions encompassing both the prefrontal cortex and 

parietal lobes as subserving executive processes (Alvarez & Emory, 2006; Carpenter, Just, & 

Reichle, 2000; Collette, Hogge, Salmon, & Van der Linden, 2006; Nowrangi, Lyketsos, Rao, 

& Munro, 2014; Power & Petersen, 2013). Compared to researchers in neuroscience, 

behavioral geneticists have paid less attention to EFs. The small body of genetic research on 

EF, however, has found that it is remarkably heritable. In studies of early adulthood 

(Friedman et al., 2008) and middle childhood (Engelhardt et al., 2015), a common EF factor 

representing shared variance among EF domains was found to be nearly 100% heritable. 

Longitudinal investigations of adult EF performance (Friedman et al., 2015) revealed high 

stability across a 6-year period of emerging adulthood. Moreover, longitudinal twin models 

indicated that stability was primarily attributable to genetic factors. Together, these findings 

position EF as a strong candidate intermediate phenotype that might share large proportions 

of genetic variance in intelligence. There is very little work, however, examining the extent 

to which genetic influences on EF and intelligence indeed overlap.

Many empirical studies of EF as a source of variance in intelligence have restricted their 

scope to working memory measures of EF. Early interest in phenotypic overlap between 

working memory and intelligence led to the suggestion that working memory capacity was 

nearly indistinguishable from fluid intelligence (e.g., Engle et al., 1999; Engle, 2002; 

Kyllonen & Christal, 1990), an ability that is itself statistically – and potentially 
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mechanistically – central to general intelligence (Gustafsson, 1984; Marshalek, Lohman, & 

Snow, 1983; Tucker-Drob & Salthouse, 2009). Under prominent views originating from 

these lines of research, working memory tasks are thought to tap a latent executive attention 

capacity that is itself fundamental to higher-order cognition, particularly abstract reasoning 

(Blair, 2006; Kane & Engle, 2002). More recent work has found working memory and 

intelligence to be strongly overlapping, but not equivalent (Ackerman et al., 2005; Conway 

et al., 2003). Less attention has been paid to how a diverse system of EFs – including 

individual domains such as switching and inhibition, as well as a general factor common to 

multiple EF domains – correlate with intelligence, although there have been some reports of 

overlap between intelligence and inhibitory control (Dempster, 1991; Salthouse, Atkinson, 

& Berish, 2003), switching (Salthouse, Fristoe, McGuthry, & Hambrick, 1998), and a 

general factor of EFs (Friedman et al., 2008). Theoretical accounts for this overlapping 

variance describe executive functions as general-purpose processes that coordinate complex 

cognitive functions (Miyake & Friedman, 2000), with other accounts emphasizing fluid 

intelligence as itself reflecting a highly general capacity for controlled and effortful 

processing (Deary, 2000; Salthouse, Pink, & Tucker-Drob, 2008).

Behavioral genetic work testing the extents to which EFs relate to intelligence via genetic 

and environmental mechanisms has been rare. Much of the small body of the research on 

EF-intelligence associations has tended to rely on single measures of EF, rather than latent 

EF factors (see, e.g., Lee et al., 2012; Polderman et al., 2006; Polderman et al., 2009). One 

of the few exceptions is a study by Friedman et al. (2008), who reported that genetic 

variance in full scale IQ correlated with genetic variance in general EF at r = .57. However, 

we are aware of no other behavioral genetic research on overlap between intelligence and a 

general EF factor derived from a diverse multivariate battery, and it is therefore unclear how 

representative this single estimate will be once a larger body of research accumulates. 

Indeed, it is possible that the Friedman et al. (2008) findings represent a conservative 

estimate of shared genetic influence because IQ and EF were assessed a year apart, at 

participant ages 16 and 17 years, respectively.

The current study tests for genetic and environmental overlap between EF and intelligence in 

a sample of 3rd- through 8th-grade children (approximately ages 8 to 14 years in the U.S.). 

While genetic influences on general EF already approach 100% in this age group 

(Engelhardt et al., 2015), those operating on intelligence have yet to reach their maximum; 

however, meta-analytic evidence indicates that increases in the heritability of intelligence 

from this period forward results from magnification of genes already expressed (Briley & 

Tucker-Drob, 2013; Tucker-Drob & Briley, 2014). Meanwhile, the neurobiological 

foundations of EFs and intelligence are in the midst of a relatively protracted period of 

morphological and connection-based maturation (e.g., Douand et al., 2014; Jung & Haier, 

2007; Power, 2012). Thus, this period of middle childhood represents an important transition 

point at which cognitive abilities and their neurobiological bases continue to progress along 

a trajectory of positive growth while individual differences become canalized and amplified. 

Remarkably, previous investigations of associations between executive functions and 

intelligence during this period have been limited, both in absolute number and in the scope 

of the measures employed. In the present study, we investigate an array of EFs, each 

measured with multiple indicators, allowing us to partition EF variation into test-specific, 
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domain-specific, and general factors. In order to test the possibility that detected overlaps in 

EF and intelligence are simply due to shared dependence on processing speed, itself a strong 

correlation of intelligence (Salthouse, 1996), we also test whether these associations are 

robust to controls for a latent speed factor.

Method

Participants

Families were recruited from public school rosters as part of the Texas Twin Project 

(Harden, Tucker-Drob, & Tackett, 2013). The current sample consisted of 811 children in 

grades three to eight (age range 7.80 - 15.25 years; M = 10.91; SD = 1.75), 51.2% of whom 

were female. 61.4% were non-Hispanic White, 18.4% were Hispanic, 6.9% were African 

American, 3.0% were Asian, 1.2% were of another race/ethnicity, and 9.1% reported 

multiple races or ethnicities. Thirty-five percent of the participating families reported having 

received needs-based public assistance such as food stamps. We report data for 431 pairs: 

380 twin pairs and 51 pairwise combinations from 17 triplet sets.

Zygosity

All opposite-sex pairs were classified as dizygotic (DZ). The zygosity of same-sex pairs was 

assessed by a latent class analysis of experimenters’ and parents’ ratings of physical 

similarity and how frequently the pairs are mistaken for one another. Latent class analysis of 

such ratings to assess zygosity has been reported to be over 99% accurate, as compared to 

classifications employing genotyping (Heath et al., 2003). The sample consisted of 141 

(32.7%) monozygotic (MZ) pairs, 147 (34.1%) same-sex dizygotic pairs, and 143 (33.2%) 

opposite-sex dizygotic pairs.

Measures

Data collection for the current project has been ongoing for approximately three years. As 

EF tasks are well known for poor levels of reliability relative to psychometric measures of 

cognitive-ability measures (Miyake et al., 2000), we placed a great deal of emphasis on 

selecting tasks that have been reported to have strong psychometric properties in child 

samples (Engelhardt et al., 2015). Three of the twelve EF tasks (Stop Signal, 2-Back, Plus-

Minus) were administered to participants during approximately the first two years of data 

collection only. During the third year of data collection, these tasks were replaced by new 

tasks that were amenable for use in an MRI scanner; data for the three new tasks were not 

analyzed for the current report. The remaining nine EF tasks were collected across all years 

of data collection. We describe all measures below (also see Table 1). More comprehensive 

task descriptions can be found in Engelhardt et al. (2015).

EFs—We selected twelve tasks to measure individual differences in the following EF 

domains: inhibition, switching, working memory, and updating.

Inhibition refers to the ability to stop oneself from executing a prepotent or practiced 

behavior. The tasks selected to assess inhibition were Animal Stroop (Wright, Waterman, 

Prescott, & Murdoch-Eaton, 2003), Stop Signal (Logan, Schachar, & Tannock, 1997; 
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Verbruggen, Logan, & Stevens, 2008), and Mickey (an anti-saccade paradigm; Lee & Bull, 

2013). An inhibition cost was calculated for Stroop and Mickey by comparing reaction times 

for inhibit and non-inhibit trials. The dependent variable of interest for Stop Signal was stop 

signal reaction time (SSRT), an estimate of how quickly one can inhibit a prepotent motor 

response when cued to stop.

Switching involves shifting one’s attention to different stimulus features or task rules. This 

domain was measured with the Trail Making (Salthouse, 2011), Local-Global (Miyake et al., 

2000), and Plus-Minus (Miyake et al., 2000) tasks. The switch tasks compare low-demand, 

non-switch performance (e.g., connecting letters alphabetically in Trail Making) to high-

demand, switch performance (e.g., connecting letters and numbers in an alternating fashion). 

Switch costs were calculated to represent longer reaction times for switch relative to non-

switch conditions.

Working memory refers to simultaneous processing and storage of information. We selected 

Digit Span Backward (Wechsler, 2003), Symmetry Span (Kane et al., 2004), and Listening 

Recall (Daneman & Carpenter, 1980) to assess working memory. The latter two tasks 

involve storing and manipulating spatial and verbal information, respectively. The number of 

items correctly recalled served as the dependent variable for all working memory tasks.

Updating involves monitoring incoming stimuli and replacing old information with new, 

more relevant information. The tasks selected to measure updating were 2-Back (an N-Back 

paradigm comprised of all 2-back trials; Jaeggi et al., 2010), Keeping Track (Miyake et al., 

2000), and Running Memory for Letters (Broadway & Engle, 2010), each of which requires 

participants to recall the most recent x number of stimuli in an ongoing set. The number of 

items correctly recalled served as the dependent variable for Keeping Track and Running 

Memory for Letters. The outcome of interest for 2-Back was the number of correctly 

identified matches minus incorrectly identified non-matches.

Intelligence—The Wechsler Abbreviate Scale of Intelligence (WASI-II; Wechsler, 2011) 

was administered to assess general intelligence. The WASI-II consists of four tests 

(Vocabulary and Similarities subtests assess verbal comprehension [crystallized 

intelligence]; Block Design and Matrix Reasoning subtests assess perceptual reasoning 

[fluid intelligence]) that, when age-standardized (based on published norms from a 

nationally representative reference sample) and combined, form a full scale intelligence 

quotient (IQ) that reliably approximates full scale IQ indexed from a more extensive 

intelligence test battery (correlation between full-scale IQ measured by the WASI-II and the 

Wechsler Intelligence Scale for Children-IV: r = .86; Wechsler, 2003). The average FSIQ of 

participants in our sample was 103.65, with a standard deviation of 14.14. FSIQ scores are 

normed to have a mean of 100 and standard deviation of 15 in the general U.S. population. 

Thus, our sample was closely representative of children in the general U.S. population both 

in terms of average ability and range of ability. FSIQ was uncorrelated with age (r = .03, p 
= .64), indicating that our sample is equally representative of ability in the general U.S. 

population across the age range sampled.
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Processing Speed—Processing speed was measured with three tasks: Letter Comparison 

(Salthouse & Babcock, 1991), Pattern Comparison (Salthouse & Babcock, 1991), and 

Symbol Search (Wechsler, 2003). These timed tasks require participants to assess 

similarities across lexical- or symbol-based sets of stimuli as quickly as possible while 

maintaining near perfect accuracy.

Analyses

Structural equation models, which allow the simultaneous estimation of statistical 

associations involving both observed and latent variables, were fit with Mplus Version 7.11 

(Muthén & Muthén, 2012). To account for missing data, Mplus takes a full-information 

maximum likelihood approach, which uses all available data to compute parameter 

estimates. All analyses implemented the Complex Survey option in Mplus to correct for the 

non-independence of observations that arises when including data from individuals within 

the same family. As triplet sets contribute three pairwise combinations of siblings to the 

dataset, behavioral genetic analyses employed the Weighting function to down-weight data 

from triplet pairs by 50%.

Prior to examining interrelations between our outcomes of interest, we fit separate 

confirmatory factor models for EF, general intelligence, and processing speed. Path analyses 

were constructed to investigate the contributions of EF and processing speed to the 

intelligence measures. All phenotypic and biometric models were applied to scores 

residualized for sex. When estimating models involving the general intelligence factor, we 

regressed the individual WASI-II test scores (Block Design, Matrix Reasoning, Vocabulary, 

Similarities) onto age to account for age differences in WASI-II test scores in a manner most 

closely resembling how FSIQ composites are created (in which individual test scores are 

first age-standardized prior to being combined). When estimating models involving EF and 

Speed factors, we chose a parsimonious approach in which we controlled for age at the level 

of the first order EF factors (Inhibition, Switching, Working Memory, Updating) and the 

Speed factor, rather than at the level of the individual tasks. We have previously reported that 

both factor loadings and intercepts of the individual EF measures are measurement invariant 

across age groups (Engelhardt et al., 2015). We report loadings of the individual intelligence 

tests and the first-order EF factors on their respective superordinate factors standardized 

relative to total variance (i.e., semipartial with respect to age).

To examine genetic and environmental influences on the outcomes, we fit a series of 

behavioral genetic models. These models decompose variance in a given outcome into 

additive genetic (A), shared environmental (C), and non-shared environmental (E) factors. 

Influences attributable to A serve to make genetically more similar individuals more alike on 

the phenotype under investigation, those attributable to C serve to make individuals raised in 

the same household more similar on the phenotype irrespective of their genetic relatedness, 

and those attributable to E serve to differentiate individuals on the phenotype even when 

raised together and perfectly matched on genotype. Model fit for both the phenotypic and 

behavioral genetic analyses was assessed by the chi-square test, the root-mean-square error 

of approximation (RMSEA), the comparative fit index (CFI), and the Akaike information 
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criterion (AIC). To compare fit across models, we computed scaled chi-square difference 

statistics (Satorra & Benter, 2010).

Results

Scores for timed EF tasks were converted to reaction time metrics prior to computing switch 

costs and inhibition costs. Switch and inhibition costs were then multiplied by −1 so that 

higher scores represented better task performance. To correct for positive skew, we log 

transformed Trail Making and Local-Global scores, and square root transformed 2-Back and 

Listening Recall scores. Plus-Minus scores greater than 3 SD from the mean were 

Winsorized to the next least extreme value. Adhering to the Stop Signal exclusion protocol 

set by Congdon et al. (2010), we first computed Stop Signal Reaction Time (SSRT) for 

blocks consisting of 64 trials each. Block-level scores were omitted on the basis of 

consistent stop failures, misidentification of arrow direction, failure to respond to go trials, 

and low SSRTs. Remaining block scores were averaged to create a final SSRT measure.

Descriptive Statistics

Sample sizes, descriptive statistics and reliability estimates for all tasks can be found in 

Table 1. As is typical for the literature, reliability estimates for EF indices were occasionally 

somewhat lower than is standard for psychometric measures. This likely stems, in part, from 

the fact that EF indices are often calculated from difference scores between executive and 

nonexecutive conditions, leading to the compounding of measurement error (Cronbach & 

Furby, 1970). Consistent with this inference, we have previously reported high reliabilities 

for the individual task conditions upon which difference scores are based (Engelhardt et al., 

2015).

Correlations among age, sex, and scores on the individual tasks are presented in Table 2. 

Age was significantly correlated with performance on all tasks aside from Full Scale IQ, 

which is computed using standard scores relative to a nationally representative aged-

matched norming sample. Visual inspection of scatterplots and loess curves of age effects on 

the individual measures indicated that age effects were predominantly linear. Estimated 

quadratic age trends were trivial and inconsistent across tasks. Correlations between task 

performance and sex were inconsistent, with only 4 of the 20 tasks correlating significantly 

with sex. All models reported below were conducted using scores residualized for sex.

Phenotypic Models

Table 3 presents the standardized loadings from the confirmatory factor models. Based on 

our prior investigation of the structure of EF in a subset of 505 individuals from the current 

sample (Engelhardt et al., 2015), we first specified a hierarchical model in which each task 

loaded onto one of four first-order EF factors (Inhibition, Switching, Working Memory, or 

Updating), and each first-order factor loaded onto a latent general factor of EF (Common 

EF). The factor loadings of individual EF tasks onto the first-order factors were all 

significant at p < .05 (Mlambda = .55). The factor loadings of the first-order EF factors onto 

Common EF were significant at p < .001 (Mlambda = .62). As shown in Table 4, this model 

fit the data well (χ2(58) = 91.12, p = .0036, RMSEA = .03, CFI = .99). Moreover, the full 
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four-factor model fit significantly better than reduced models in which two or more of the 

first-order EF factors were collapsed (p’s < .01). Given the low reliability of Stop Signal 

performance (α = .40) and its poor loading onto the Inhibition factor (λ = .16), we examined 

whether excluding the Stop Signal variable from the four-factor CFA would change the 

pattern of parameter estimates appreciably. In this model, which fit the data well (χ2(47) = 

75.74, p = .005, RMSEA = .03, CFI = .99), the factor loadings of the remaining inhibition 

tasks did not change dramatically (Stroop λ = .37 and Mickey λ = .25, compared to .40 

and .27, respectively, in the original model), nor did the loading of the Inhibition factor onto 

Common EF (λ = .47, compared to .43 in the original model).

In the model of intelligence, all four WASI-II test scores were specified to load onto a latent 

general intelligence factor (i.e., a g factor), and correlated residuals were specified between 

Block Design and Matrix Reasoning, as well as between Vocabulary and Similarities. 

Loadings of the individual cognitive tasks onto the g factor were moderate (Mlambda = .53; 

p’s < .05). The model of processing speed specified a single common factor representing 

variance common to the three processing speed tasks. In this model, loadings of the tasks 

onto the latent Speed factor were high (Mlambda = .79; p’s < .001).

Correlations among the higher-order variables (Switching, Working Memory, Updating, 

Common EF, g, FSIQ, and Speed) were all significant at p < .001, with the exception of 

those involving the Inhibition factor, which were large yet not statistically significant (see 

Table 5). Notably, the Common EF factor correlated with FSIQ at .71 and with g at .91. To 

more directly assess the relationship between EF and intelligence, we fit a model in which 

the indices of intelligence were regressed onto a Common EF factor residualized for the 

effects of speed (see Figures 1a and 1b). After extracting the variance in Common EF that 

was unique of Speed, EF continued to be a strong predictor of both FSIQ (β = .57, p < .001) 

and g (β = .64, p < .001). Fifty percent of the variance in FSIQ remained unique of Speed 

and EF, and 13% of variance in g was explained by neither EF nor Speed. Residual variances 

for these analyses are reported in supplementary materials.

We were interested in whether these findings substantively differed when storage-plus-

processing measures of working memory were excluded, but updating measures remained, 

such that the structure would more closely resemble the Miyake & Friedman (2000) three-

factor structure. This was a potential concern because the inclusion of working memory 

measures and updating measures (such that Working Memory and Updating tasks composed 

six out of twelve EF measures) may have shifted the centroid of the EF construct hyperspace 

toward a Working Memory/Updating region that may be more strongly related to 

intelligence and away from a more diffuse central executive region that may be only 

moderately related to intelligence (for a general explication of the effect of indicator choice 

on factor identification, see Little, Lindenberger, and Nesselroade, 1999). The results of this 

analysis were very similar to those of the full model in which Working Memory tasks were 

included. Specifically, after extracting the variance in Common EF that was unique of 

Speed, EF continued to be a strong predictor of g (β = .68, p < .001), and only 5% of the 

variance in g was unique of both Speed and EF.
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We next tested an alternative model in which speed and the domain-specific EFs served as 

indicators (rather than predictors) of g. Factor loadings of these additional indicators onto g 
were all significant at p < .001 (Inhibition λ = .36, Switching λ = .61, Working Memory λ 
= .66, Updating λ = .78, Speed λ = .36). Nevertheless, there was a significant decrement in 

model fit relative to the model in which g was regressed onto the Speed factor and the speed-

residualized Common EF factor (χ2
diff(4) = 13.18, p = .002). Thus, in our behavioral genetic 

analyses, we proceeded with the original parameterization of the relationship between these 

factors.

Behavioral Genetic Models

Correlations between monozygotic (MZ) twins were greater than those between dizygotic 

(DZ) twins for 19 of the 20 manifest variables (see Table 6), indicating some degree of 

genetic influence on the measured outcomes. The confirmatory factor models from the 

phenotypic analyses served as the basis for our initial behavioral genetic models. We first 

estimated A, C, and E contributions to individual differences in EF, intelligence, and speed 

separately. For each set of variables, we assessed genetic and environmental influences on 

the highest-order factor, as well as residual genetic and environmental influences on the 

lower-order factors (in the case of EF) and individual tasks. Standardized parameter 

estimates are shown in Table 7.

With regard to the Common EF factor, the a coefficient representing additive genetic 

influences was .97 (p < .001), the c coefficient representing shared environmental influences 

was .10 (p = .88), and the e coefficient representing non-shared environmental influences 

was .24 (p < .05). Thus, the heritability of Common EF was estimated at 94% (i.e., a2 = .

972). Of the first-order EF domains, only Switching exhibited significant genetic influence 

above and beyond that of Common EF (a = .42, p < .001). Working Memory and Updating 

exhibited significant non-shared environmental influences independent of Common EF 

(Working Memory e = .38, p < .001; Updating e = .19, p < .05). We observed significant (p 
< .05) residual A influences operating on four of the tasks, significant C influences operating 

on one of the tasks, and significant E influences operating on all EF tasks.

Full Scale IQ was moderately heritable (a = .74, p < .001; a2 = 55%) with significant 

contributions coming from environmental factors (c = .40, p < .01; e = .55, p < .001). The 

behavioral genetic decomposition of g indicated higher genetic contributions (a = .88, p < .

001; a2 = 77%) and somewhat lower environmental contributions (c = .34, p = .20; e = .34, p 
< .01) than did the decomposition of FSIQ. Residual genetic variance was observed for 

Block Design (a = .60, p < .001) and Matrix Reasoning (a = .28, p < .001). Shared 

environmental variance independent of g was found for Similarities (c = .29, p < .05) and 

Matrix Reasoning (a = .26, p < .001), and all four WASI-II tasks exhibited significant 

residual non-shared environmental variance (p’s < .01). With respect to Speed, genetic (a = .

53, p < .001) and non-shared environmental (e = .39, p < .001) influences predominated, 

with no observable effect of the shared environment. Unique genetic and shared 

environmental factors operating on Symbol Search were significant, as were residual non-

shared environmental factors contributing to Pattern Comparison (p’s < .05).
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We next fit separate AE models for EF, intelligence, and processing speed (see final two 

columns in Table 7). The resulting estimates for EF and speed were consistent with those of 

the ACE models: significant genetic contributions to the higher-order EF and Speed factors 

and a small number of indicators, combined with significant non-shared environment 

contributions to the common factors and the majority of indicators. Nested model 

comparisons indicated that the fits of AE and ACE models of EF were not significantly 

different from one another (p = .95), meaning that the omission of the c parameters did not 

significantly decrease model fit. The same was the case for a nested comparison of the AE 
and ACE models of speed (p = .37). Dropping the c parameters from the behavioral genetic 

model of g resulted in inflation of the a coefficients corresponding to the g factor and three 

of the four tasks. A nested model comparison indicated that the AE model of g fit 

significantly worse than the ACE model of g (p = .006), indicating a decrement in model fit 

with the omission of shared environment factors. Based on the results of these model 

comparisons, we proceeded with AE models of EF and speed and ACE models of FSIQ and 

g for the remaining analyses.

In an alternative parameterization of the genetic architecture of EFs, we specified an AE 
bifactor model in which all 12 tasks loaded directly onto Common EF, in addition to their 

respective first-order EFs. The pattern of genetic and environmental contributions to EFs in 

this model was extremely similar to that of the original hierarchical model. Additive genetic 

influences on Common EF – a latent factor defined as shared variance across all tasks – 

were estimated at .98 (p < .001; a2 = 96%), and unique environmental contributions were 

estimated at .22 (p < .05). Significant genetic influences not accounted for by the common 

factor operated only on Switching (a = .52, p < .001), while significant environmental 

factors independent of Common EF operated only on Working Memory (e = .39, p < .001). 

Estimates of task-specific genetic and environmental influences were also similar to those 

for the hierarchical AE model (see Supplementary Figure 1).

After characterizing the genetic and environmental structures of the three sets of variables 

separately, we combined them to examine whether overlapping genetic and/or environmental 

factors contribute to the observed relations between EF, intelligence, and processing speed. 

First, we fit a model of EF and intelligence in which we regressed the measures of 

intelligence onto the A and E factors of the higher order Common EF factor from the 

hierarchical model of EF (see Figures 2a and 2b). Genetic influences on Common EF 

explained just under half of the variance in FSIQ (β = .69, p < .001), and the genetic 

correlation between EF and FSIQ was high (rA = .92, p < .001). Conversely, non-shared 

environment contributions to Common EF had a negligible effect on FSIQ (β = .12, p = .24), 

which corresponds to a correlation of .22 (p = .22) between the E factors for EF and FSIQ. 

Environmental influences unique to FSIQ remained high (c = .37, p = .001; e = .54, p < .

001). The finding of overlapping genetic influences was even more pronounced when we 

operationalized intelligence using the g factor: Genetic influences on Common EF explained 

80% of the variance in g (β = .90, p < .001). Moreover, the genetic correlation between EF 

and g was 1.00 (p < .001), meaning that after incorporating genetic factors for EF into the 

behavioral genetic model for g, there were negligible residual genetic influences on g (a = .

01, p = .98). As with FSIQ, the non-shared environment important for EF did not 

significantly predict g (β = .13, p = .29), and environmental influences unique to g were 
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evident (c = .28, p < .05; e = .32, p < .001). The non-shared environment correlation between 

EF and g was .38 (p = .22). Importantly, however, there was some indication of unique 

genetic influences on individual WASI-II measures that were unique of g and EF.

To examine the extent to which individual EFs accounted for genetic and environmental 

variance in intelligence, we also fit bivariate Cholesky models in which g was regressed onto 

the A and E factors for, separately, Inhibition, Switching, Working Memory, and Updating. 

The results of these analyses, including residual ACE influences on g, are shown in Table 8. 

Genetic influences operating on each of the first-order EFs significantly contributed to g 
(Mbeta = .89, p’s < .001), as did non-shared environment influences operating on Inhibition 

(β = .32, p < .01). Interestingly, genetic influences on Inhibition were appreciable but not 

significant (a = .22, p = .08), although they significantly related to g. This may be the result 

of lower power to detect effects involving the Inhibition factor, as its factor loadings tended 

to be very low. Across these models, genetic influences on g unique of EF were not 

significant. That either genetic variance common to all four EFs or genetic variance in each 

EF domain could account for nearly the entirety of genetic variance in intelligence likely 

results from the fact that nearly all of the genetic variance in each EF domain was shared 

with all the other domains.

In order to test the possibility that overlapping genetic influences on EF and intelligence 

were simply due to processing speed, we next fit a multivariate model in which Common EF 

was regressed on the A and E factors for Speed, and intelligence was regressed on the A and 

E factors for both Speed and Common EF. These results are depicted in Figure 3. Genetic 

and non-shared environmental influences on Speed also contributed significantly to 

Common EF ability (β = .49, p < .001 for a; β = .23, p < .001 for e). The E factor for 

Common EF significantly contributed to FSIQ (β = .54, p < .001) but did not appreciably 

contribute to Common EF itself after extracting variance unique of Speed (e = .07, p = .10). 

The E factor of Speed did not appreciably contribute to FSIQ (β = −.05, p = .44). Genetic 

variation in Speed accounted for 30% of the variance in FSIQ (β = .55, p < .001). Genetic 

variation in Common EF unique of genetic influences on Speed accounted for an additional 

22% of the variance in FSIQ (β = .47, p < .001). Residual genetic influences on FSIQ were 

not significant after accounting for genetic influences mediated by Speed and EF (a = .25, p 
= .24). Results were very similar when intelligence was measured by the latent g factor. 

Genetic influences on Speed explained 46% of the variance in g (β = .68, p < .001). The 

Speed-unique genetic factors for Common EF explained 41% of the variance in g (β = .66, p 
< .001). No genetic influences unique to g remained after accounting for genetic 

contributions to Speed and EF (β = .00, p = .73). The E factor for EF impacted general 

intelligence (β = .31, p < .01) but did not appreciably contribute to Common EF itself after 

controlling for genetic contributions of Speed (e = .16, p = .07). The E factor for Speed did 

not impact general intelligence (β = −.06, p = .41). There was some indication of unique 

genetic influences on the individual WASI-II measures that were unique of g, EF, and Speed.

To examine the extent to which EFs account for genetic and environmental variance in more 

specific components of intelligence, we also fit bivariate Cholesky models in which WASI-II 

Verbal Comprehension Index (VCI, a composite of age-standardized Vocabulary and 

Similarities scores) and WASI-II Perceptual Reasoning Index (PRI, a composite of age-
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standardized Block Design and Matrix Reasoning scores) were regressed onto the A and E 
factors for, separately, Common EF, Inhibition, Switching, Working Memory, and Updating. 

The results of these analyses, including residual ACE influences on the PRI and VCI 

composites, are shown in Table 9. Genetic influences operating on Common EF, as well as 

those acting on each of the first-order EFs, significantly contributed to variance in PRI 

(Mbeta = .59, p’s < .001) and VCI (Mbeta = .61, p’s < .001). Variance in PRI was also 

attributable to non-shared environmental factors for Common EF (β = .31, p < .05). 

Consistent with the decompositions of g reported above, residual genetic influences on VCI 

(i.e., those unique of EF) were not significant in any model. Conversely, we observed genetic 

influences on PRI that were unique of those for Common EF (a = .49, p < .01), Switching (a 
= .48, p < .01), and Updating (a = .51, p < .001). These results indicate that EFs capture all 

of the genetic variance in verbal comprehension and all of the variance that is shared 

between the verbal comprehension and perceptual reasoning measures (i.e., general 

intelligence), but they do not capture all of the genetic variance in perceptual reasoning.

Sensitivity Analyses

We were interested in probing the sensitivity of our key finding of high genetic overlap 

between general EF and intelligence by testing alternative modeling choices. First, we 

examined whether the results substantively differed when the bifactor model of EF described 

earlier was included in the Cholesky decomposition of g on EF. Results of this analysis 

revealed high genetic overlap between g and Common EF (β = .89, p < .001). Consistent 

with estimates from the hierarchical EF model, genetic (a = .11, p = .90) and shared 

environmental (c = .26, p = .36) influences unique to g were not significant. In contrast to 

results from the hierarchical model of EF, we found that residual non-shared environmental 

influences continued to significantly contribute to variance in g in the bifactor model (e = .

33, p < .01).

We next fit a multivariate behavioral genetic model in which the WASI-II tasks, first-order 

EF factors, and the Speed factor served as indicators of a higher-order g factor. Parameter 

estimates for the ACE components of this analysis can be found in Supplementary Table 3. 

The results of this analysis revealed a highly heritable g factor (a = .96, p < .001; a2 = 92%) 

that was only minimally influenced by environmental factors (c = .17, p = .64; e = .24, p < .

01). Switching and Speed exhibited genetic influence independent of g (Switching a = .39, p 
< .001; Speed a = .42, p < .001). Of the latent indicators of g, Working Memory, Updating, 

and Speed were influenced by non-shared environment influences unique of general 

intelligence (Working Memory e = .29, p < .001; Updating e = .25, p < .001; Speed e = .36, 

p < .001).

Finally, we tested whether our key finding of strong genetic overlap between EFs and 

intelligence would hold after omitting storage-only measures of working memory, so as to 

closely approximate the three-factor structure established by Miyake and Friedman (2000). 

The results of this analysis indicated that, even in the absence of working memory storage 

measures, genetic influences on Common EF that were not attributable to Speed explained 

46% of the variance in g (β = .68, p < .001). As in the full model, no genetic influences 
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unique to g remained after accounting for genetic contributions to Speed and EF (β = .00, p 
= .71).

Discussion

There has been widespread and longstanding interest in identifying fundamental cognitive 

processes that account for genetic variation in higher-order mental abilities, but very few 

studies have capitalized on genetically informative research designs. The goal of the current 

study was to test EF as a source of variance underlying genetic influences on intelligence in 

a cross-sectional child sample. Results indicated that genetic influences on broad executive 

functioning ability – as indexed by a latent factor capturing common variance across four 

specific EF domains – account for a large proportion of phenotypic variance and all of the 

genetic variance in childhood intelligence. Importantly, there exists substantial shared 

genetic variance between general EF and intelligence that is independent of variation that 

both variables share with processing speed. Results did indicate, however, that EFs strongly, 

but do not fully, capture genetic variation in a more specific perceptual reasoning index.

Previous studies have reported strong links between various EF domains and individual 

differences in intelligence across the lifespan (Ackerman et al., 2005; Blair, 2006; Brydges, 

Reid, Fox, & Anderson, 2012; Conway et al., 2003; Engle, 2002; Kyllonen & Christal, 1990; 

Salthouse et al., 2003; Salthouse, 2005), but fewer studies have examined relations in the 

context of the multidimensional hierarchical model of EF. Importantly, constructing latent 

EF variables from multiple indicators enabled us to isolate variance in each EF domain of 

interest from task-specific (and potentially non-executive) variance. Other studies that have 

used latent variable approaches to examine EF-intelligence relations (e.g., Engle, Tuholski, 

Laughlin, & Conway, 1999; Polderman et al., 2009; Salthouse et al., 2003; Schmiedek, 

Hildebrandt, Lövdén, Wilhelm, & Lindenberger, 2009) have reported stronger and more 

consistent relations than those implementing single measures (e.g., Jaeggi et al., 2010; Kane, 

Conway, Miura, & Colflesh, 2007; Salthouse, 2005).

The current report of a strong, genetically-mediated relationship between latent EFs and 

intelligence in childhood is similar to the pattern of results reported for a young adult sample 

that also employed a latent variable approach to modeling EFs (Friedman et al., 2008). 

However, our results and those of Friedman et al. (2008) do differ somewhat in terms of the 

specific magnitude of genetic correlation between general EF and intelligence. Friedman et 

al. (2008) report the association between EF and FSIQ at rA = .57, whereas the current 

estimate of this association was rA = .92 (95% CIs: .73, 1.11). One possible reason for this 

difference could be the different age ranges of the two samples. However, the difference 

could also stem from other causes, some of which we were able to probe. First, we did not 

specify a cognitive architecture of EF identical to Friedman et al.’s, in that we included 

measures of both storage (working memory) and storage-plus-processing (updating). To 

more directly compare our results with those of Friedman et al. (2008), we conducted a 

sensitivity analysis that excluded the Working Memory latent variable. The EF-intelligence 

association in this sensitivity analysis remained very strong, indicating that it was not driven 

by our original EF structure being more heavily weighted toward working memory. A 

second difference between the two studies is that the loadings of the inhibition measures on 
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the Inhibition factor were somewhat stronger in the Friedman et al. study than in the current 

study. It is possible that the paradigms commonly accepted as tapping “inhibition” in fact 

represent a rather heterogeneous, weakly overlapping set of processes, particularly in 

developmental samples (for a review, see Lee et al., 2013). Nevertheless, the primary results 

of our study held after removing the weakest-loading Inhibition indicator (Stop Signal) from 

the model, suggesting that our Inhibition factor does not unduly bias either the phenotypic or 

the genetic relations among the remaining variables. Finally, it is possible that while the 

point estimates from our study and that of Friedman et al. (2008) differ somewhat in 

magnitude, they both reflect a similar population effect size. In other words, the point 

estimates may potentially differ simply because of sampling variability.

In statistically mediating genetic effects on intelligence, EFs meet a primary criterion for 

what others have termed endophenotypes (Cannon & Keller, 2006; Gottesman & Gould, 

2003; Meyer-Lindenberg & Weinberger, 2006). Endophenotypes are conceptualized as 

intermediaries between the genome and a more environmentally-influenced phenotype. One 

major criterion for a variable to be considered an endophenotype is that genetic factors that 

contribute to its variance should also account for substantial genetic variance in the 

phenotype of interest. Endophenotypes may share genetic variation with phenotypes because 

of causal mediation, in that they occupy an intermediate position along the causal chain 

between genotype and phenotype. However, they may also share genetic variation with 

phenotypes because they simply index the same genetic liability for that phenotype without 

playing causal roles per se (Kendler & Neale, 2010; Solovieff, Cotsapas, Lee, Purcell, & 

Smoller, 2013). Indeed, it is even possible that the direction of causality is from the 

purported phenotype (in this case, intelligence) to the purported endophenotype (EF). 

Although a large theoretical and computational literature in cognitive psychology operates 

on the assumption that EFs are causal to intelligence, we were not able to directly test this 

hypothesis in the current study. Nevertheless, the finding that EFs and intelligence share 

substantial genetic variance is of high theoretical and practical importance regardless of the 

causal basis of this association. For instance, although researchers who document genetic 

associations between EFs and other outcomes, such as academic achievement or 

psychopathology, may be tempted to interpret these associations in terms of the very specific 

regulatory processes that happen to have been tapped by the EF measures that were 

administered in a particular study, our results suggest that such findings may be 

manifestations of genetic etiology shared with a much broader set of cognitive abilities.

The finding that the genes that are relevant to EF are highly overlapping with those that 

impact intelligence held true regardless of whether intelligence was formally modeled as a 

latent factor or simply indexed by FSIQ (a composite measure). However, intelligence as 

indexed by a latent variable was much more highly heritable than intelligence as indexed by 

FSIQ. Importantly, the heritability of FSIQ in the current sample (mean age = 11 years) was 

55%, exactly the same estimate reported by Haworth et al. (2010) for composite measures 

(oftentimes FSIQ) of intelligence in a meta-analytic sample of N = 4,934 pairs of twins 

(mean age = 12 years, labeled the “adolescence” age group by those authors) from four 

different countries.1 Additionally, shared and nonshared environmentalities of FSIQ were, 

respectively, 16% and 30% in our sample, compared to 18% and 27% in Haworth et al. 

(2010). Thus, the higher heritability estimate of 77% that we obtained for g does not appear 
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to be attributable to differences between the current sample and existing samples, but is 

attributable to the latent variable modeling strategy. Indeed, studies that have formally 

modeled g as a latent variable have also reported very high heritability estimates (Cheung, 

Harden, & Tucker-Drob, 2015; Panizzon et al., 2014; Petrill, 1997). In formal latent variable 

models, environmental influences predominantly act on more specific ability domains 

measured by individual tests (Petrill, 1997). This distinction has potentially interesting 

implications for research on age trends in the heritability of intelligence. For example, are 

developmental increases in the heritability of intelligence – which primarily have been 

identified in studies of composite measures of intelligence – driven by age-related changes 

in the overall magnitude of genetic influence on cognitive abilities per se, or simply by age-

related increases in genetic covariation among cognitive ability domains? How do such 

trends compare to the age trends in the genetics of EFs and their covariation with 

intelligence? Investigations of developmental transformations in the genetic and 

environmental influences of intelligence that model age trends in both domain-general and 

domain-specific components of test score variation (cf. Cheung et al., 2015) are needed in 

order to discern these possibilities.

The finding that EFs share all of their genetic variance with general intelligence and verbal 

comprehension but only some of their genetic variance with perceptual reasoning may 

appear initially to be somewhat of a puzzle. Because both EFs and perceptual reasoning 

reflect highly abstract forms of cognitive mechanics (Baltes, 1987), whereas verbal 

comprehension reflects a culturally contextualized form of acquired knowledge, one might 

expect EFs to share more genetic variance with perceptual reasoning than with verbal 

comprehension. One possible explanation for this finding is that EFs more fully index 

motivational and self-regulatory skills important for learning and knowledge acquisition 

(Tucker-Drob, Briley, Engelhardt, Mann, & Harden, in press) than does perceptual 

reasoning. Thus, greater shared genetic variance between EFs and verbal comprehension 

than between EFs and perceptual reasoning may reflect a stronger role for EFs than for 

perceptual reasoning in intellectual investment processes (Cattell, 1987; Tucker-Drob & 

Harden, in press).

The very high heritability of EF and its strong phenotypic and genetic covariation with 

intelligence raises the question of whether strong genetic influences are universal across 

individuals. One intriguing hypothesis that has existed in the literature for some time is that 

genetic influences on intelligence (and, by implication, possibly EFs as well) differ as a 

systematic function of childhood socioeconomic status, with genetic influences being 

suppressed under conditions of greater socioeconomic adversity (Scarr-Salapatek, 1971). 

This is an important hypothesis with potentially widespread implications for science and 

policy. A recent meta-analysis of such Gene × Socioeconomic Status interaction research 

indicated support for the Scarr-Salapatek (1971) hypothesis in US samples, but not in 

samples from Western Europe and Australia (Tucker-Drob & Bates, 2016). Importantly, 

however, Tucker-Drob and Bates (2016) conducted a power analysis based on the meta-

analytic effect sizes, which indicated that sample sizes of at least 3,300 twin pairs are 

1Although Haworth et al. (2010) described their study as being a study of general intelligence (g), they did not model g as a latent 
variable but instead used composite measures of g.
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required to obtain acceptable power to detect a Gene × Socioeconomic Status interaction. 

We have therefore chosen not to examine this hypothesis in the current data. The question of 

whether genetic influences on EF and its covariation with intelligence vary systematically 

with family socioeconomic status thus remains an open question.

The finding of strong phenotypic overlap and nearly perfect genetic overlap between EF and 

intelligence has important implications for the intersection of two traditionally distinct fields 

of study: genetics and neuroscience. Intelligence is a highly studied phenotype not only in 

behavioral genetics (e.g., twin studies) but also in molecular genetic association studies (e.g., 

GWAS). Recently, researchers in genetics have made strides in identifying the molecular-

genetic foundations of intelligence (e.g., Davies et al., 2015; Rietveld, 2014), but the 

genetics of EFs are far less studied. The reverse occurs in neuroscience, in that the neural 

foundations of EFs are much more highly studied than those of intelligence. Researching the 

genetics of the neural foundations of both intelligence and EFs might benefit from an 

integration of findings across fields. For instance, polygenic scores derived from large-scale 

GWA studies of intelligence might be used in smaller neuroimaging studies of EF. Our 

results suggest that such approaches might be quite fruitful.

In conclusion, we found that the genetic factors underlying individual differences in 

childhood EFs also account for significant proportions of variance in concurrently measured 

intelligence, measured both in latent and manifest space. These findings provide a 

foundation for future investigations into the psychological and physiological processes that 

link genetic variation to individual differences in complex, socially meaningful traits such as 

intelligence. These results may also serve as a springboard for future studies of age- and 

socioeconomic-based differences in the heritability of cognitive processes, including EFs 

and intelligence. Together, the results of this study further our understanding of the 

psychological functions hypothesized to support broad mental capacities that are relevant 

across time and settings.
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Figure 1. 
Phenotypic models of FSIQ and g regressed onto Speed and Speed-residualized EF.

Note. Path diagrams for relationships between speed, executive function (EF) unique of 

speed, and measures of intelligence unique of speed and EF. Figure 1a depicts these 

relationships with respect to Full Scale IQ (FSIQ), while Figure 1b depicts them with respect 

to the latent g factor. Numbers on arrows represent standardized regression coefficients and 

factor loadings. All parameters are standardized and have been residualized for sex. The 

effect of age is controlled for at the level of the individual WASI-II tests, the first-order EF 

factors, and the Speed factor. Relations between Speed, Common EF, and intelligence are 

standardized relative to total factor variance, as are loadings of WASI-II tests onto g and of 

Inhibition, Switching, Working Memory, and Updating onto Common EF. Fit statistics for 

model depicted in Figure 1a: χ2(107) = 229.37, p < .001, RMSEA = .038, CFI = .97. Fit 
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statistics for model depicted in Figure 1b: χ2(151) = 318.64, p < .001, RMSEA = .037, CFI 

= .97. Solid paths and bolded estimates indicate significance at p ≤ .01.
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Figure 2. 
Behavioral genetic models of FSIQ and g regressed onto EF.

Note. Bivariate Cholesky decomposition for additive genetic (A), shared environmental (C), 

and non-shared environmental (E) contributions to executive function (EF) and measures of 

intelligence. Figure 2a depicts these relationships with respect to Full Scale IQ (FSIQ), 

while Figure 2b depicts them with respect to the latent g factor. Numbers on arrows 

represent standardized regression coefficients and factor loadings. All parameters are 

standardized and have been residualized for sex. The effect of age is controlled for at the 

level of the individual WASI-II tests, the first-order EF factors, and the Speed factor. 

Relations between Speed, Common EF, and intelligence are standardized relative to total 

factor variance, as are loadings of WASI-II tests onto g and of Inhibition, Switching, 

Working Memory, and Updating onto Common EF. Fit statistics for model depicted in 
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Figure 2a: χ2(738) = 1046.54, p < .001, RMSEA = .044, CFI = .91. Fit statistics for model 

depicted in Figure 2b: χ2(1089) = 1492.15, p < .001, RMSEA = .041, CFI = .93. Solid paths 

and bolded estimates indicate significance at p ≤ .01.
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Figure 3. 
Behavioral genetic models of FSIQ and g regressed onto Speed and Speed-residualized EF.

Note. Multivariate Cholesky decomposition for additive genetic (A), shared environmental 

(C), and non-shared environmental (E) contributions to executive function (EF), measures of 

intelligence, and speed. Figure 3a depicts these relationships with respect to Full Scale IQ 

(FSIQ), while Figure 3b depicts them with respect to the latent g factor. Numbers on arrows 

represent standardized regression coefficients and factor loadings. All parameters are 

standardized and have been residualized for sex. The effect of age is controlled for at the 

level of the individual WASI-II tests, the first-order EF factors, and the Speed factor. 

Relations between Speed, Common EF, and intelligence are standardized relative to total 

factor variance, as are loadings of WASI-II tests onto g and of Inhibition, Switching, 

Working Memory, and Updating onto Common EF. Fit statistics for model depicted in 
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Figure 3a: χ2(1098) = 1606.64, p < .001, RMSEA = .046, CFI = .91. Fit statistics for model 

depicted in Figure 3b: χ2(1521) = 2167.13, p < .001, RMSEA = .044, CFI = .91. Solid paths 

and bolded estimates indicate significance at p ≤ .01.
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Table 3

Standardized Factor Loadings and Age Relations from Phenotypic Models of EF, g, and Speed

Latent Factor

Indicator In Sw WM Up Common EF g Speed

Hierarchical Factor Model of EF

Stroop .40***
[.27, .53]

Mickey .27***
[.15, .39]

Stop Signal .16**
[.04, .28]

Trail Making .67***
[.61, .74]

Plus-Minus .35***
[.25, .46]

Local-Global .62***
[.55, .69]

Digit Span Back .53***
[.47, .59]

Symmetry Span .68***
[.63, .73]

Listening Recall .78***
[.74, .83]

Running Memory .79***
[.75, .83]

Keep Track .63***
[.58, .68]

2-Back .67***
[.60, .73]

Inhibition factor .43***
[.24, .62]

Switching factor .58***
[.49, .67]

Working Memory
 factor

.70***
[.62, .78]

Updating factor .77***
[.70, .85]

Factor Model of g a

Block Design .49*
[.11, .86]

Matrix Reasoning .60**
[.20, 1.00]

Vocabulary .56*
[.15, .98]

Similarities .48***
[.19, .77]
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Latent Factor

Indicator In Sw WM Up Common EF g Speed

Factor Model of Processing Speed

Pattern Comparison .81***
[.77, .85]

Letter Comparison .82***
[.78, .86]

Symbol Search .75***
[.69, .80]

Age Relations

Age effect .89***
[.61, 1.17]

.67***
[.61, .74]

.70***
[.64, .76]

.57***
[.49, .65]

.75***
[.71, .79]

Note. Standardized loadings of individual tasks onto higher-order factors, standardized loadings of first-order EF factors onto a Common EF factor, 
and standardized regression coefficients of first-order EF factors and the latent Speed factor onto age. 95% confidence intervals are reported in 
brackets. Manifest variables were residualized for sex prior to model fitting. The effect of age is controlled for at the level of the individual 
intelligence tests, the first-order EF factors, and the Speed factor. Loadings of the individual intelligence tests and the first-order EF factors on their 
respective superordinate factors are standardized with respect to total factor variances (including age-related variance). EF = Executive Function, g 
= general intelligence, In = Inhibition, Sw = Switching, WM = Working Memory, Up = Updating.

a
The residual correlation between Block Design and Matrix Reasoning was .20 (p = .52). The residual correlation between Vocabulary and 

Similarities was .45 (p < .05).

*
p ≤ .05,

**
p ≤ .01,

***
p ≤ .001
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Table 5

Correlations Among EF, g, and Speed Factors

Latent Variable 1 2 3 4 5 6 7

1. Inhibition

2. Switching .99

3. Working Memory .90 .77***

4. Updating .84 .74*** .93***

5. Common EF – – – –

6. Full Scale IQ .64 .59*** .64*** .69*** .71***

7. g .82 .76*** .83*** .89*** .91*** –

8. Speed .78 .63*** .54*** .44*** .55*** .41*** .53***

Note. Pearson correlation coefficients, semipartial with respect to age. Manifest variables were residualized for sex prior to model fitting. The effect 
of age is controlled for in models at the level of the individual intelligence tests, the first-order EF factors, and the Speed factor. Correlations with 
Common EF were modeled separately from correlations with first-order EF factors because correlations among the first-order EF factors are 
statistically redundant with factor loadings onto a latent variable. Because Full Scale IQ and g are constructed from the same tasks, correlations 
with each measure of intelligence were also estimated in separate models.

*
p ≤ .05,

**
p ≤ .01,

***
p ≤ .001
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Table 6

Univariate Task Twin Correlations

Task MZ DZ

Stroop 0.33 0.09

Mickey 0.18 0.12

Stop Signal −0.04 0.23

Trail Making 0.57 0.24

Plus-Minus 0.41 −0.08

Local-Global 0.46 0.31

Digit Span Back 0.47 0.23

Symmetry Span 0.50 0.42

Listening Recall 0.52 0.43

Running Memory 0.70 0.43

Keep Track 0.40 0.25

2-Back 0.54 0.30

Block Design 0.78 0.50

Matrix Reasoning 0.47 0.41

Vocabulary 0.69 0.58

Similarities 0.62 0.54

FSIQ 0.72 0.43

Pattern Comparison 0.57 0.50

Letter Comparison 0.57 0.50

Symbol Search 0.33 0.09

Note. Pearson correlation coefficients for cross-twin, within-task performance on measures of EF, speed, and intelligence. Variables were 
residualized for age and sex prior to analysis.
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Table 7

Standardized Parameter Estimates from Behavioral Genetic Analyses of EF, Intelligence, and Speed

Models with shared
environmental effects included

Model with shared
environmental effects

omitted

Variance component a c e a e

Behavioral Genetic Model of EF

Common EF .97***
[.80, 1.13]

.10
[−1.24, 1.44]

.24*
[.04, .45]

.97***
[.92, 1.02]

.24*
[.05, .43]

Inhibition-specific .00
[.00, .00]

.00
[.00, .00]

.31
[−.56, 1.18]

.00
[.00, .00]

.28
[−.71, 1.27]

Switching-specific .42***
[.23, .62]

.00
[.00, .00]

.20
[−.22, .63]

.42***
[.23, .62]

.20
[−.22, .63]

Working Memory-
 specific

.00
[.00, .00]

.00
[.00, .00]

.27***
[.13, .40]

.00
[.00, .00]

.27***
[.13, .40]

Updating-specific .00
[.00, .00]

.00
[.00, .00]

.19*
[.01, .37]

.00
[.00, .00]

.19*
[.01, .37]

Stroop-specific .27
[−.16, .70]

.00
[.00, .00]

.87***
[.72, 1.02]

.27
[−.16, .70]

.88***
[.73, 1.02]

Mickey-specific .21
[−.94, 1.35]

.21
[−.64, 1.06]

.91***
[.82, 1.01]

.32*
[.07, .57]

.91***
[.81, 1.00]

Stop Signal-specific .00
[.00, .00]

.31**
[.12, .50]

.94***
[.87, 1.00]

.24
[−.07, .56]

.96***
[.87, 1.04]

Trail Making-specific .22
[−.04, .48]

.00
[.00, .00]

.70***
[.61, .79]

.22
[−.04, .48]

.70***
[.61, .79]

Plus-Minus-specific .08
[−1.64, 1.79]

.00
[.00, .00]

.93***
[.79, 1.08]

.07
[−1.72, 1.87]

.93***
[.78, 1.08]

Local-Global-specific .33***
[.16, .50]

.00
[.00, .00]

.72***
[.64, .80]

.33***
[.16, .50]

.72***
[.64, .80]

Digit Span Back-
 specific

.35
[−.08, .78]

.19
[−.37, .75]

.75
[.66, .83]

.41***
[.28, .54]

.74***
[.66, .82]

Symmetry Span-
 specific

.34*
[.03, .64]

.13
[−.47, .73]

.64***
[.57, .71]

.37***
[.26, .46]

.64***
[.57, .70]

Listening Recall-
 specific

.00
[.00, .00]

.00
[.00, .00]

.61***
[.56, .66]

.00
[.00, .00]

.61***
[.56, .66]

Running Memory-
 specific

.25***
[.10, .40]

.00
[.00, .00]

.55***
[.48, .62]

.25***
[.10, .40]

.55***
[.48, .62]

Keep Track-specific .14
[−.20, .48]

.00
[.00, .00]

.77***
[.69, .84]

.14
[−.19, .48]

.77***
[.69, .84]

2-Back-specific .38***
[.23, .52]

.00
[.00, .00]

.64***
[.55, .74]

.38***
[.23, .52]

.64***
[.55, .74]

Behavioral Genetic Model of Full Scale IQ

FSIQ .74***
[.55, .92]

.40**
[.14, .66]

.55***
[.46, .64]

.85***
[.79, .90]

.53***
[.45, .61]

Behavioral Genetic Model of g a

g .88***
[.63, 1.12]

.34
[−.17, .87]

.34**
[.13, .54]

.95***
[.88, 1.01]

.32***
[.13, .52]
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Models with shared
environmental effects included

Model with shared
environmental effects

omitted

Variance component a c e a e

Block Design-specific .60***
[.51, .70]

.03
[−.13, .18]

.47***
[.39, .54]

.53***
[.41, .66]

.46***
[.38, .54]

Matrix Reasoning-
 specific

.28***
[.14, .42]

.26***
[.10, .41]

.66***
[.60, .73]

.16
[−.02, .33]

.65***
[.57, .74]

Vocabulary-specific .12
[−.13, .19]

.27*
[.02, .52]

.49***
[.42, .56]

.45***
[.34, .56]

.49***
[.43, .56]

Similarities-specific .19
[−.07, .46]

.29*
[.05, .53]

.57***
[.50, .64]

.47***
[.36, .57]

.57***
[.51, .63]

Behavioral Genetic Model of Speed

Speed .53***
[.44, .62]

.00
[.00, .00]

.39***
[.28, .50]

.53***
[.44, .62]

.39***
[.28, .50]

Pattern Comparison-
 specific

.15
[−.46, .76]

.14
[−1.24, 1.51]

.55***
[.35, .74]

.22**
[.07, .37]

.54***
[.46, .62]

Letter Comparison-
 specific

.05
[−.03, .12]

.56**
[.18, .93]

.15
[−1.29, 1.58]

.19*
[.03, .35]

.54***
[.47, .62]

Symbol Search-
 specific

.09*
[.02, .16]

.66***
[.60, .72]

.02
[−.67, .71]

.29***
[.16, .42]

.60***
[.51, .68]

Note. Standardized regression coefficients for separate behavioral genetic analyses of EF, speed, and intelligence. 95% confidence intervals are 
reported in brackets. Manifest variables were residualized for sex prior to model fitting. The effect of age is controlled for at the level of the 
individual intelligence tests, the first-order EF factors, and the Speed factor. Loadings of the individual intelligence tests and the first-order EF 
factors on their respective superordinate factors are standardized with respect to total factor variance. EF = executive function, a = additive genetics, 
c = shared environment, e = non-shared environment, g = general intelligence.

a
Residual ACE correlations for Block Design and Matrix Reasoning: rA = 1.00 (p < .001), rC = 1.00 (p < .001), rE = .03 (p = .71). Residual AE 

correlations for Block Design and Matrix Reasoning: rA = .97 (p < .001), rE = .08 (p = .42). Residual ACE correlations for Vocabulary and 

Similarities: rA = 1.00 (p < .001), rC = 1.00 (p < .001), rE = .27 (p < .001). Residual AE correlations for Vocabulary and Similarities: rA = .77 (p 

< .001), rE = .27 (p < .001).

*
p ≤ .05,

**
p ≤ .01,

***
p ≤ .001
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Table 8

Standardized Parameter Estimates for Bivariate Cholesky Models of Individual EFs and g

EF entered as
upstream variable

AE factors
operating on EFs

Regression
coefficient for g onto

AE factors of EF

Residual ACE factors
operating on g

a e β a β e a c e

Inhibition .22
[−.03, .47]

.45*
[.04, .86]

.91***
[.69, 1.13]

.32**
[.12, .53]

.00
[.00, .01]

.27
[−.37, .90]

.01
[−.44, .45]

Switching .72***
[.60, .85]

.19
[−.24, .62]

.77***
[.61, .92]

.04
[−.37, .45]

.42
[−.06, .89]

.36
[−.02, .74]

.33
[.14, .53]

Working Memory .57***
[.47, .67]

.43***
[.30, .55]

.95***
[.82, 1.08]

.08
[−.06, .23]

.00
[.00, .00]

.11
[−.78, 1.00]

.29**
[.08, .50]

Updating .76***
[.69, .83]

.28***
[.13, .43]

.94***
[.87, 1.01]

.04
[−.21, .28]

.00
[.00, .00]

.01
[−.31, .32]

.34***
[.16, .51]

Note. Standardized regression coefficients for separate Cholesky decompositions modeling relationships between g and the AE factors of 
Inhibition, Switching, Working Memory, and Updating. 95% confidence intervals are reported in brackets. Manifest variables were residualized for 
sex prior to model fitting. The effect of age is controlled for at the level of the individual WASI-II tests and the EF factors. Relations between each 
EF and g are partial with respect to age. EF = executive function, a = additive genetics, c = shared environment, e = non-shared environment, g = 
general intelligence.

*
p ≤ .05,

**
p ≤ .01,

***
p ≤ .001
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Table 9

Standardized Parameter Estimates for Bivariate Cholesky Decompositions of EFs, Perceptual Reasoning, and 

Verbal Comprehension

EF entered as
upstream variable

AE factors operating
on EFs

Regression
coefficient for

composite onto
AE factors of EF

Residual ACE factors
operating on composite

a e β a β e a c e

Cholesky Decompositions of EFs and PRI

Common EF .97***
[.92, 1.02]

.25**
[.06, .43]

.54***
[.46, .63]

.31*
[.06, .55]

.49**
[.19, .80]

.28
[−.09, .65]

.54***
[.38, .69]

Inhibition .20
[−.08, .48]

.45
[−.13, 1.02]

.71***
[.45, .96]

.21
[−.23, .66]

.00
[.00, .01]

.34
[−.01, .70]

.58***
[.38, .78]

Switching .73***
[.61, .85]

.17
[−.32, .66]

.49***
[.36, .63]

.23
[−.47, .92]

.48**
[.15, .82]

.37*
[.08, .66]

.58***
[.31, .85]

Working Memory .55***
[.43, .67]

.45***
[.31, .58]

.64***
[.50, .78]

.11
[−.03, .24]

.29
[−.37, .95]

.35*
[.03, .68]

.61***
[.49, .73]

Updating .77***
[.69, .85]

.27**
[.10, .44]

.55***
[.45, .65]

.19
[−.03, .40]

.51***
[.21, .82]

.22
[−.28, .72]

.59***
[.47, .71]

Cholesky Decompositions of EFs and VCI

Common EF .97***
[.92, 1.01]

.25**
[.06, .43]

.62***
[.55, .70]

.09
[−.14, .31]

.00
[.00, .00]

.46***
[.38, .54]

.63***
[.55, .70]

Inhibition .23
[−.05, .50]

.44
[−.15, 1.02]

.64***
[.45, .83]

.22
[−.25, .69]

.00
[.00, .00]

.44***
[.21, .67]

.59***
[.40, .77]

Switching .72***
[.59, .84]

.18
[−.29, .65]

.48***
[.34, .63]

−.02
[−.42, .45]

.36
[−.01, .73]

.48***
[.34, .63]

.64***
[.57, .70]

Working Memory .57***
[.47, .67]

.43***
[.30, .55]

.65***
[.54, .75]

.01
[−.12, .14]

.00
[.00, .00]

.44***
[.30, .57]

.62***
[.57, .68]

Updating .77***
[.70, .85]

.25**
[.08, .42]

.67***
[.59, .75]

−.17
[−.07, .41]

.00
[.00, .00]

.40***
[.29, .51]

.60***
[.50, .70]

Note. Standardized regression coefficients for separate Cholesky decompositions modeling relationships between WASI-II composites and the AE 
factors of Common EF, Inhibition, Switching, Working Memory, and Updating. 95% confidence intervals are reported in brackets. Manifest 
variables were residualized for sex prior to model fitting. The effect of age is controlled for at the level of the composites and the first order EF 
factors. Relations between each EF and WASI-II composites are partial with respect to age. EF = executive function, a = additive genetics, c = 
shared environment, e = non-shared environment, PRI = WASI-II Perceptual Reasoning Index, VCI = WASI-II Verbal Comprehension Index.

*
p ≤ .05,

**
p ≤ .01,

***
p ≤ .001
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