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Abstract

Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral 

insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, 

including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging 

and may serve as potential therapeutic targets in age-related disease. In this review, we examine 

the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue 

dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in 

longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity 

may represent a state of accelerated aging. We discuss the potential therapeutic potential of 

targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II 

diabetes and regenerative medicine as examples. We make the case that aging should not be 

neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly 

patients make up a large portion of individuals in need of such therapies.
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1. Adipose Tissue: Relevance in Aging

Adipose tissue is a large and dynamic endocrine, immune, and regenerative organ that can 

readily adapt to changes such as temperature, nutrient availability, beta-adrenergic tone, and 

tissue damage in young, healthy individuals. Adipose tissue is responsible for energy 

storage, nutrient sensing, and temperature regulation and has important functions in immune 

modulation, wound healing, and tissue regeneration. Aging is associated with a decline in 

tissue function and an increase in disease burden, and adipose tissue is no exception. With 

aging, adipose tissue undergoes significant changes in abundance, distribution, cellular 

composition, and endocrine signaling, and plays a central role in the development of insulin 

resistance, metabolic dysfunction, inflammation, and impaired regenerative capacity with 
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age (Fig. 1) (Tchkonia and others 2010). Several fundamental age-related changes occur at 

the cellular level in adipose tissue that may contribute to age-related adipose dysfunction. 

Adipose tissue is often the largest organ, making up over 40% of total body mass for 

example in women with BMI >35 (Bonora and others 1992; Romero-Corral and others 

2008). However even in lean individuals, adipose tissue has systemic influence on 

inflammatory signaling and insulin sensitivity through secretion of adipokines and adipose-

derived hormones (Tilg and Moschen 2006). It can affect the function of other organs 

including muscle, bone, liver, and the brain. Adipose tissue is also being turned to as a key 

source of mesenchymal stem cells, which are being increasingly explored as therapeutics for 

multiple degenerative diseases (Zuk and others 2002). Many interventions that extend 

lifespan in lower organisms and mammals have significant effects in adipose tissue, often 

through the modulation of nutrient availability (Huffman and Barzilai 2010; Picard and 

Guarente 2005; Tchkonia and others 2010). Furthermore, when single-gene mutations found 

to extend lifespan in lower animals are restricted to adipose tissue, similar lifespan extension 

can be seen (Bluher and others 2003; Giannakou and others 2004). Dysfunction of adipose 

tissue, such as that in obesity, is associated with a shortened lifespan and increase in age-

related disease prevalence, including cancer and dementia (Gilbert and Slingerland 2013; 

Kivipelto and others 2005). The abundance of adipose tissue, along with its varied functions, 

importance to whole-body physiology, and constellation of aging changes, makes it a highly 

relevant organ for the study of aging. Further understanding of aging adipose tissue could be 

valuable for the discovery and testing of therapeutic strategies to target fundamental aging 

processes and age-related disease.

2. Age-Related Changes in Adipose Tissue Composition and Function

2.1 Fat redistribution with aging

Through middle- or early old age (e.g., 40–65 years of age), body mass and body fat 

percentage increase in both men and women (Guo and others 1999). This age-related 

increase in adiposity has been suggested to underlie reduced insulin sensitivity with age 

(Karakelides and others 2010). From middle age, the distribution of adipose tissue shifts 

from primarily subcutaneous depots to visceral depots, which are more closely associated 

with development of metabolic syndrome and insulin resistance (Fox and others 2007; Preis 

and others 2010). In addition to metabolic effects, redistribution of adipose tissue is also 

partially responsible for aesthetic changes with aging that are related to subcutaneous fat 

loss, such as sunken cheeks, thinning of the skin over the hands and legs, and increased 

prominence of wrinkles (Coleman and Grover 2006; Donofrio 2000)

The location and function of adipose tissue have been suggested to be more important than 

the absolute amount of adipose tissue in terms of its effect on insulin sensitivity (Jensen 

2008). It is also important to note that insulin resistance occurs even in individuals with 

normal BMI, not only in obese individuals (McLaughlin and others 2004). Gluteofemoral 

adipose tissue is associated with increased insulin sensitivity and lower diabetes and 

cardiovascular disease risk, while increased waist circumference, which reflects visceral 

adipose mass, is associated with insulin resistance and metabolic syndrome (Manolopoulos 

and others 2010; Snijder and others 2003). In fact, waist to hip ratio may be a better 
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predictor of 5-year mortality than BMI alone (Folsom and others 1993). In the elderly, the 

ratio of limb fat to trunk fat was found to correlate positively to insulin sensitivity, while no 

differences in percent body fat or absolute amount of trunk fat were found in the same 

groups (Gavi and others 2007). Increased limb:trunk fat ratio, but not limb fat or trunk fat 

independently, was also correlated with higher levels of adiponectin, an adipose-derived 

hormone associated with improved insulin sensitivity (Gavi and others 2007). This indicates 

that the distribution of adipose tissue may be more important than the amount of adipose 

tissue in the regulation of adiponectin levels.

Subcutaneous and visceral adipose depots are very different in terms of their effects on 

metabolism (Atzmon and others 2002; Jensen 2008; Tchkonia and others 2013a). In mice, 

transplantation of subcutaneous fat into the visceral depot of recipient mice caused 

improvements in glucose homeostasis as well as decreased body weight and fat mass, 

whereas the opposite experiment, visceral adipose tissue transplanted to the subcutaneous 

depot of recipient mice, had little effect (Tran and others 2008). Adipose tissue dysfunction 

is likely to originate in subcutaneous fat, which is a larger depot than visceral fat in young 

individuals. With age, macrophages accumulate in subcutaneous fat, but no significant 

change is seen in visceral depots, which suggests that the sentinel site of inflammation with 

aging is likely the subcutaneous fat (E. Jerschow 2007; Lakowa and others 2015). Telomere 

length is also shorter in subcutaneous versus visceral adipose tissue, independently of BMI 

or diabetic status, and this difference is localized to the stromovascular fraction, not 

adipocytes (Lakowa and others 2015; Tchkonia and others 2006b). Accordingly, 

subcutaneous but not visceral adipose telomere length shortens with aging, and also 

correlates with obesity and diabetes (Lakowa and others 2015). This shorter basal length and 

age-related shortening of telomeres in subcutaneous depots may make subcutaneous adipose 

tissue a key contributor to increasing senescent cell burden with aging. Because of the 

impact that subcutaneous fat has on systemic metabolism, sentinel changes in subcutaneous 

fat with aging could be the harbinger for metabolic dysfunction, and represent an 

opportunity for intervention that could have significant impact on age-related disease.

Identification of the amount and distribution of adipose tissue that is healthy in elderly 

individuals has been difficult. Loss of subcutaneous fat is a common feature with advancing 

age (Sepe and others 2011). Although visceral fat is associated with worse metabolic 

phenotypes in younger individuals, the maintenance of adipose tissue seems to be beneficial 

in old age, sometimes independently of its location. For example, one study found that 

elderly individuals classified as “robust” according to their functional status had increased 

visceral and pericardial adipose tissue, normally considered to be sites of ectopic lipid 

deposition, compared to their “frail” counterparts (Idoate and others 2015). However, 

increased waist diameter was associated with the highest frailty within each BMI category in 

another study, indicating that adipose distribution favoring visceral adipose is still harmful 

when normalized for total adipose tissue (Hubbard and others 2010). The relationship 

between frailty and BMI is U-shaped, with extremely low and extremely high BMI 

predicting frailty and mortality (Allison and others 1997; Blaum and others 2005; Hubbard 

and others 2010). Interestingly, certain interventions that improve frailty in mice also 

maintain adipose tissue mass (Xu and others 2015a; Xu and others 2015b).
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2.2. Chronic, sterile inflammation

Sterile inflammation, or the presence of inflammation in the absence of known, identifiable 

infection, is a common feature of aging and is certainly increased in aging adipose tissue. 

Adipose tissue is thought to be a major contributor to the chronic, low-grade inflammation 

seen in aging (Tchkonia and others 2010; Wu and others 2007). A variety of endogenous 

substances or stimuli, for example hypoxia, excess nutritional elements such as fatty acids, 

or products of cell death, which is persistent at a low level in obesity, may trigger sterile 

inflammation in adipose tissue (Chen and Nunez 2010; Itoh and others 2011). Adipose-

derived cytokines and chemokines, termed adipokines, play a key role in immune cell 

recruitment to adipose tissue. Adipose tissue macrophages (ATMs) represent a significant 

source of pro-inflammatory substances such as IL-6 with aging (Tilg and Moschen 2006; 

Wu and others 2007). Numbers of ATMs increase in human subcutaneous fat until 30–35 

years of age and then slightly decline in lean individuals (Ortega Martinez de Victoria and 

others 2009). ATMs in visceral adipose tissue do not change substantially in number during 

aging, but the ratio of pro-inflammatory M1 macrophages to anti-inflammatory M2 

macrophages appears to increase with aging (Garg and others 2014; Lumeng and others 

2011). Adipose tissue T cell populations also change with aging. Specifically, CD4+ T-

lymphocytes, particularly regulatory T cells (Tregs), increase in visceral adipose tissue in 

aging mice, along with an increase in CD8+ T-cells (Lumeng and others 2011). Senescent 

cells also accumulate significantly with age in adipose tissue. Through their senescence-

associated secretory phenotype (SASP), senescent cells are themselves the source of many 

pro-inflammatory cytokines and chemokines (Lumeng and others 2011; Xu and others 

2015a; Xu and others 2015b).

In addition to the chronic changes in adipose inflammatory signaling and macrophage 

populations with aging, adipose tissue immune system components can also undergo acute 

changes in response to nutrient status, stress, or other short-term changes. For example, 

M2/M1 macrophage ratios have been shown to increase in response to a 24-hour fast in mice 

(Asterholm and others 2012). Interestingly, these acute changes are dampened in mice on a 

high fat diet, suggesting an impairment of adipose tissue to respond to acute changes when 

under metabolic stress (Asterholm and others 2012).

2.3. Progenitor cell function decline

Adipose tissue is composed of many different cell types, generally divided into two 

fractions: the adipocyte fraction (AF), which contains primarily mature adipocytes, and the 

stromovascular fraction (SVF), which comprises progenitor cells, lymphocytes, endothelial 

cells, pericytes, and fibroblasts. Adipose progenitor cells isolated from old individuals have 

reduced function and adipogenic potential compared to progenitors isolated from their 

young counterparts (Caso and others 2013; Karagiannides and others 2001; Tchkonia and 

others 2010). This is also seen in progenitors isolated from obese subjects when compared to 

lean age-matched controls (Tchkonia and others 2010).

Preadipocytes acquire insulin sensitivity during differentiation to adipocytes through 

increased expression of the critical transcription factors peroxisome proliferator-activated 

receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα) (Hamm 
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and others 1999). Preadipocytes that are less able to differentiate appear with aging and may 

contribute to the limited ability of adipose tissue to be insulin responsive. This may be a 

significant contributor to the insulin resistance of old age, in addition to contributions from 

other organs (e.g. pancreas, skeletal muscle, and liver) (Tchkonia and others 2010).

Additionally, the replication and differentiation of preadipocytes is crucial for hyperplasia 

and hypertrophy, the two ways that adipose tissue responds to an increased demand for 

energy storage. Decline in adipogenic potential has been postulated to drive insulin 

resistance by limiting the ability of adipose tissue to expand in the face of excess nutrients 

(Danforth 2000). In addition, inability to recruit progenitor cells to the adipogenic lineage to 

execute hyperplasia can lead instead to hypertrophy of existing adipocytes. The resulting 

increase in adipocyte size has been associated with insulin resistance, especially in obesity 

(Gustafson and others 2015). Limited plasticity of adipose tissue with aging, leading to 

adipocyte hypertrophy in the face of nutrient excess, may be one mechanism by which older 

individuals are predisposed to insulin resistance (Kim and others 2014).

Targeting age-related changes in adipose tissue, such as cellular senescence, has some 

promise in improving adipose progenitor function (Xu and others 2015a) and can prevent or 

reverse age-related fat loss in mice (Xu and others 2015a). Individuals with Hutchinson-

Gilford progeria syndrome suffer from lipodystrophy, which may be explained in part by 

progenitor exhaustion in the adipose tissue (Mansilla and others 2011; Mazereeuw-Hautier 

and others 2007). Similarly, mice with progeria have dysfunctional progenitor cells and 

lipodystrophic features, which may be attributable to progenitor dysfunction, cellular 

senescence, or immune clearance of cells with persistent DNA damage (Baker and others 

2008; Karakasilioti and others 2013).

In addition to having implications for regenerative medicine, as will be discussed, adipose 

progenitor cell function plays a crucial role in lipid handling, adipose tissue expansion, and 

insulin sensitivity. Further study is needed to understand the role that age-related adipose 

tissue progenitor cell decline plays in age-related metabolic disease. Progenitor cell function 

decline with age in other organs, such as skeletal muscle, may also have contributory or 

independent roles in age-related insulin resistance. The respective contributions of reduced 

adipogenesis, versus dysregulation of lipid metabolism and/or glucose metabolism, to the 

development of age-related insulin resistance is unknown. In addition, it is not known what 

percentage of progenitor cells become dysfunctional with age, what threshold of progenitor 

dysfunction is necessary to cause physiologic changes such as lipodystrophy or insulin 

resistance, or whether progenitor dysfunction alone is sufficient to cause such changes 

(Kirkland and Dobson 1997; Kirkland and others 2002).

2.4. Cellular Senescence

Adipose tissue is a site of considerable senescent cell accumulation, in the settings of both 

obesity and aging (Tchkonia and others 2010). Cellular senescence is an essentially 

irreversible cell fate, in which cells stop dividing in response to an insult such as telomere 

shortening, oncogene activation, or metabolic stress (Tchkonia and others 2013b). Senescent 

cells adopt an enlarged phenotype, exhibit positivity for senescence-associated beta 

galactosidase, and can secrete a multitude of chemokines, cytokines, growth factors, and 
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matrix metalloproteinases, comprising the SASP (Coppe and others 2008). SASP factors are 

expressed in vivo, as demonstrated in experiments where PAI-1 and IL-6 expression were 

increased in p16-positive cells isolated from mouse inguinal fat (Baker and others 2011). In 

addition, the SASP has been identified in vivo in mouse models of wound healing, liver 

fibrosis, and embryonic development (Demaria and others 2014; Krizhanovsky and others 

2008; Storer and others 2013). The composition of the SASP may vary based on the 

senescent cell type, tissue, or senescence inducer, an area that merits further research.

In co-culture experiments, senescent cells have been shown to affect the function of adipose-

derived progenitors as well as impair insulin sensitivity of adipose tissue (Xu and others 

2015a; Xu and others 2015b). Therapeutic targeting of the SASP may be beneficial in 

alleviating age-related insulin resistance (Xu and others 2015a; Xu and others 2015b). We 

recently reported that removing senescent cells from older mice allows for improved 

adipogenesis (Xu and others 2015a). Removing senescent cells might therefore facilitate 

adipose tissue expansion in the face of nutrient excess, concurrent with improved insulin 

sensitivity, promoting a “metabolically healthy obesity” phenotype. Indeed, adipose tissue 

expansion occurs in humans after treatment with thiazolidinediones, which activate PPARγ, 

or JAK1/2 inhibitiors, which we recently reported to be SASP inhibitors (Xu and others 

2015b), both of which improve insulin sensitivity (Fonseca 2003; Verstovsek and others 

2010), On the other hand, senescent cell removal may allow for proper nutrient handling, 

mitochondrial function, and lipolysis that would limit expansion. However, the effects of 

senescent cell removal on adipose tissue dynamics have yet to be tested.

Strategies for selective elimination of senescent cells are beginning to emerge (Roos and 

others 2016; Zhu and others 2015a; Zhu and others 2015b). These advances follow the 

discovery that genetic clearance of senescent cells in mice is effective in preventing or 

reversing age-related dysfunction including loss of subcutaneous adipose tissue (Baker and 

others 2011; Xu and others 2015a). Because strategies to eliminate senescent cells generally 

only remove a portion of senescent cells, the effects of removing all senescent cells from a 

tissue is unknown. However, reduction of 30–70% of senescent cells does not appear to have 

detrimental effects on health of experimental animals (Baker and others 2011; Demaria and 

others 2014). In addition, several beneficial roles of senescent cells have been identified, for 

example in wound healing, which may have implications for adipose tissue remodeling 

(Demaria and others 2014). If they exist, detrimental effects of senescent cell clearance 

could be avoided through the use of strategic, intermittent treatment, which is possible with 

senolytic therapies (Roos and others 2016). This is in contrast to SASP inhibitors such as 

JAK1/2 inhibitors, which would need to be continually administered to exert their effects. 

The high burden of senescent cells found in adipose tissue, and its role at the nexus of aging, 

obesity, and insulin resistance, makes adipose tissue senescence a promising target for 

alleviating age-related metabolic dysfunction (Palmer and others 2015; Tchkonia and others 

2013b).

2.5. Ectopic lipid deposition

Aged preadipocytes are less able to differentiate and properly store lipid, leading to a 

spillover of toxic free fatty acids that can cause ectopic lipid deposition in sites such as the 
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liver, muscle, and pancreas (Cartwright and others 2007; Guo and others 2007; Marcus and 

others 2010; Tchkonia and others 2006a). This infiltration of lipid into non-adipose tissues 

can cause lipotoxicity and accelerate age-related disease. For example, ectopic lipid 

deposition may contribute to the increased prevalence of non-alcoholic fatty liver disease 

with aging, in addition to other risk factors such as increased fasting glucose and serum 

triglycerides (Koehler and others 2012). In the pancreas, lipotoxicity can cause apoptosis of 

beta cells, having a significant impact on an individual’s ability to produce insulin (Unger 

and Zhou 2001). Intermuscular adipose tissue, which increases with aging, can contribute to 

declining muscle quality, a feature of sarcopenia and frailty (Delmonico and others 2009). 

Some have proposed that the increase in visceral adipose tissue with aging is also a type of 

‘ectopic’ lipid deposition, resulting from overflow of toxic free fatty acids due to the 

inability of subcutaneous depots to properly store lipid due to age-related dysfunction 

(Jensen 2008). Another site of fat infiltration with age is the bone marrow, where adipocytes 

are thought to have a negative impact on hematopoiesis, which could have implications for 

bone marrow transplantation in patients of advanced age (Naveiras and others 2009).

2.6. Adipose-derived hormone secretion and sensitivity change with age

Prevalence of insulin resistance and type II diabetes risk increases with age, mainly due to 

decreased peripheral insulin sensitivity and age-related pancreatic beta cell dysfunction 

(Chen and others 1985; Defronzo 1979). In addition to insulin resistance, aging predisposes 

to resistance to other metabolic hormones, such as leptin. Leptin levels increase with aging 

in rodents and humans, suggesting that leptin sensitivity declines with age (Gabriely and 

others 2002). Old rats given recombinant leptin do not have a decrease in visceral fat, as 

occurred in young rats, and do not suppress leptin gene expression in adipose tissue as well 

as young rats (Ma and others 2002). In contrast to other adipose-derived hormones, 

adiponectin, which is produced by mature adipocytes, is positively correlated with metabolic 

health. Adiponectin improves preadipocyte differentiation and enhances insulin sensitivity 

(Fu and others 2005). Adiponectin levels decline with aging, but are positively correlated 

with longevity. For example, one study found that centenarians had higher levels of 

circulating adiponectin than BMI-matched young controls (Atzmon and others 2008). 

Adiponectin signaling has therefore been explored as a therapeutic target in obesity and 

diabetes (Yamauchi and Kadowaki 2013). More research is needed to determine whether 

modulation of adipose-derived hormones could have an impact on age-related metabolic 

dysfunction or other age-related diseases.

2.7. Adipose tissue miRNA processing declines with age

Increased stochasticity in gene expression with aging occurs in several tissues and may 

contribute to the loss of resilience, or ability to properly respond to external stressors, with 

age (Raj and van Oudenaarden 2008). Differential expression of one particular class of gene 

regulatory elements, microRNAs (miRNAs), is a generalized phenomenon in aging and has 

been identified in multiple tissues including adipose, brain, liver, and skeletal muscle (Pincus 

and others 2011). Expression of Dicer, which processes miRNAs, declines with aging in the 

adipose tissue of mice, the intestine (primary fat storage organ) of C. elegans, and human 

preadipocytes (Mori and others 2012). In mice, an adipose-specific knockout of dicer, with 

reductions of dicer expression in subcutaneous, perigonadal, and brown adipose tissues, 
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caused lipodystrophy. These mice exhibited decreased white adipose tissue mass and 

“whitening” of the brown adipose tissue, as well as inflammation and insulin resistance 

(Mori and others 2014). Remarkably, dicer was also found to be downregulated in patients 

with HIV, who exhibit a similar partial lipodystrophy syndrome. Caloric restriction, which 

extends lifespan, prevented age-related downregulation of dicer, and knockdown of dicer led 

to premature senescence in murine preadipocytes (Mori and others 2012). Downregulation 

of miRNAs may impair the ability of adipose tissue to respond to metabolic stress or 

fluctuation and may play a role in age-related metabolic dysfunction. Therefore adipose 

miRNA processing may represent a useful target for drugs that modulate fundamental aging 

processes and age-related metabolic disease (Mori and others 2012).

2.8. Brown and beige adipose changes with age

Although activation of brown adipose tissue is known to occur most significantly in response 

to cold exposure, it may also offer a defense against age-related weight gain by increasing 

energy expenditure. A significant amount of functional brown fat is present in adult humans 

in the interscapular fat depot (Cypess and others 2009; van Marken Lichtenbelt and others 

2009; Virtanen and others 2009), which shares characteristics of beige fat, rather than 

classical brown fat (Wu and others 2012). UCP1 expression declines with aging in rodents in 

subcutaneous white fat, suggesting that brown-like adipose tissue function (“beige” or 

“brite” adipocytes) is reduced with aging (Rogers and others 2012; Tan and others 2015). 

Additionally, brown fat itself may become dysfunctional with age (Saito and others 2009; 

Yamashita and others 1999; Yoneshiro and others 2011). The absolute amount of brown 

adipose tissue is decreased in elderly humans, and its activation as measured by FDG-PET 

during cold exposure is dampened in old versus young individuals (Saito and others 2009). 

Whether loss of brown-like features of adipose tissue might predict the development of 

insulin resistance with aging is not clear. In mice, age-related decline in BAT function is 

prevented by dietary restriction, which is known to delay age-related dysfunction in other 

tissues (Valle and others 2008). Brown fat may play a role in preventing age-related 

dysfunction and disease, but this remains to be established (Mattson 2010).

3. Adipose Plays an Integral Role in Longevity

3.1. Interventions that improve longevity impact adipose tissue

The majority of interventions that are known to affect lifespan, including single gene 

mutations (e.g., in the GH/IGF-1 axis) and dietary or pharmacologic interventions (e.g., 

caloric restriction, metformin, rapamycin, 17α-estradiol, acarbose) affect fat tissue directly 

or indirectly, often through pathways related to nutrient signaling or processing. For 

example, growth-hormone-deficient and -resistant mice, which exhibit lifespan extension, 

have less ectopic lipid deposition, reduced cellular senescence in adipose tissue, and 

improved adipose progenitor function (Stout and others 2014). Caloric restriction, which 

extends lifespan in species ranging from flies to primates, acts partially through a decrease 

in total adipose tissue mass, in addition to intracellular mechanisms within adipose tissue 

such as decreasing inflammation, increasing autophagy and DNA repair mechanisms, 

reducing cellular senescence, and preventing age-related changes in gene expression 

(Fontana and Klein 2007; Linford and others 2007). 17α-estradiol, which has lifespan 
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extension effects in male mice, reduces inflammation in visceral adipose and decreases 

visceral adiposity (Stout and others 2016). Metformin, which causes modest yet significant 

lifespan extension in rodents and may have lifespan-extending effects in humans, reduces 

body mass in humans mainly through a decrease in adipose tissue (Martin-Montalvo and 

others 2013; Stumvoll and others 1995). The effects of metformin on lifespan in humans 

have recently been demonstrated by a surprising increase in survival of diabetic patients 

treated with metformin beyond that of age-matched, non-diabetic controls (Bannister and 

others 2014). However, these data should be interpreted in light of a 4–9% rate of 

undiagnosed type II diabetes in the general population over 65, the onset of which can occur 

years before symptoms emerge or a diagnosis is made (Harris and others 1992; Menke and 

others 2015). In sum, these examples indicate that adipose tissue is a useful target for the 

development of therapies to extend healthspan and alleviate or delay age-related disease.

3.2. Adipose-specific interventions affect longevity

In lower animals, lifespan-extending mutations that are restricted to adipose tissue can 

confer the same lifespan extension as whole-organism mutations (Katic and others 2007). 

Other than the brain, adipose tissue is arguably the only tissue in which organ-specific 

interventions extend lifespan. For example, reduction of insulin/insulin-like growth factor 

signaling specifically in the fat body of female Drosophila extends lifespan (Giannakou and 

others 2004). Fat-specific insulin receptor knockout (FIRKO) mice are leaner and exhibit a 

significant lifespan extension, as also occurs in whole-body insulin receptor knockout 

animals (GIRKO). Because FIRKO mice have similar food intake to WT mice, this suggests 

that adiposity itself has some effect on longevity (Bluher and others 2003). Bariatric surgery, 

which causes caloric restriction and reduction in adipose tissue mass, reduces mortality in 

severely obese individuals (Sjostrom and others 2007). Interestingly, it does not seem that 

surgical removal of adipose tissue in humans has the same benefits for metabolism as 

reduction of adipose tissue by other methods such as caloric restriction or exercise (Klein 

and others 2004). However, these experiments have been focused on removal of 

subcutaneous fat by liposuction. The effects of removing adipose from different depots, such 

as visceral adipose tissue, may have different effects. For example in rats, selective surgical 

removal of visceral adipose tissue increased median and maximum lifespan (Muzumdar and 

others 2008). Removal of omental adipose also showed beneficial effects on insulin 

sensitivity in healthy dogs (Lottati and others 2009). Experiments to remove omental 

adipose tissue in humans were conducted in obese, diabetic individuals undergoing gastric 

bypass surgery and did not find additional beneficial effect on metabolic health (Fabbrini 

and others 2010; Herrera and others 2010). However, it may be possible that removal of 

visceral adipose tissue would be beneficial in different contexts, for example in aging or 

before the development of diabetes (Tchkonia and others 2013a). Therefore more research is 

needed to determine whether visceral adipose tissue is a useful target for interventions to 

alleviate age-related metabolic diseases in humans (Huffman and Barzilai 2009). Similarly, 

little is known about the effects that interventions to reduce adipose tissue mass or create 

negative energy balance, such as exercise, bariatric surgery, or calorie restriction, may have 

on markers of aging, for example cellular senescence. Research is underway to address these 

questions.

Palmer and Kirkland Page 9

Exp Gerontol. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Obesity: Accelerated Aging?

4.1. Markers of aging increase in obesity

Several changes seen in aging adipose tissue also occur in the setting of obesity. For 

example, plasma and adipose tissue from obese mice exhibit increased oxidative stress 

compared to lean mice, and systemic markers of oxidative stress are elevated in obese 

humans (Furukawa and others 2004). Adipose tissue from obese individuals also contains an 

increased burden of senescent cells compared to lean age-matched controls (Minamino and 

others 2009; Tchkonia and others 2010). In addition, telomere shortening is found in white 

blood cells and in subcutaneous adipose tissue from obese patients (Valdes and others 2005). 

As in aging, chronic, low-grade sterile inflammation of adipose tissue develops in obesity, 

with elevated production of adipokines and decreased adiponectin levels (Fernandez-Real 

and others 2003). Brown adipose UCP1 expression also decreases in obesity and is lower in 

obese humans with diabetes than obese humans without diabetes (Timmons and Pedersen 

2009). More research is needed to determine the relationship of these markers of aging to 

the development of obesity, namely to understand whether they have a pathogenic role in 

obesity, or whether they are markers of established disease. Another interesting question is 

whether or not markers of aging, for example senescent cell numbers, are lower in 

individuals with “healthy” obesity versus obese individuals with metabolic syndrome. 

Efforts to understand aging mechanisms in adipose tissue may inform strategies to improve 

outcomes in obesity, and vice versa.

4.2. Obesity predisposes to age-related diseases including cancer

Age is the leading risk factor for most chronic diseases, including dementia, cardiovascular 

disease, type II diabetes, and cancer, even in lean individuals. Age-related diseases are more 

prevalent in obese individuals at younger ages than lean individuals, suggesting that obesity 

predisposes to age-related disease and is in some ways a state of premature aging. Might 

adipose tissue dysfunction, seen in both aging and obesity, be the common denominator? An 

increased understanding of adipose tissue dysfunction with aging could help in 

understanding the predisposition to age-related diseases in obesity, and in identifying 

strategies to prevent these comorbidities.

As in aging, there is a significantly increased risk of cancer deaths in obesity, and this is not 

due to an increase in hormonally regulated cancers alone (De Pergola and Silvestris 2013; 

Samanic and others 2004; Wolk and others 2001). Rather, it is due to a general increase in 

age-related cancers. Individuals with a BMI over 40 have over 50 percent higher cancer 

death rates than their lean counterparts, and 14–20 percent of cancer deaths in individuals 

over 50 years old are estimated to be due to obesity (Calle and others 2003). Obesity-

induced inflammation in adipose tissue may be one driver of cancer risk, with certain 

adipokines (e.g., CCL2, VEGF, IL-6, and IL-8) serving as chemoattractants that enhance 

migration of tumor cells and support metastasis (Gilbert and Slingerland 2013). In addition, 

senescent cells, which increase in aging and obesity, are known to potentiate tumorigenesis 

of epithelial cells, likely mediated by SASP components (Laberge and others 2015; 

Parrinello and others 2005; Tchkonia and others 2010). These examples highlight how 
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fundamental aging mechanisms that occur with greater frequency in obesity could help to 

drive tumorigenesis.

Interestingly, calorie restriction, which is known to decrease tumor incidence in 

experimental animals, was unable to affect tumor incidence when hunger signals were 

dampened by blocking neuroendocrine pathways (Minor and others 2011). This hints that 

the relationship of nutrient intake and cancer incidence is complicated and may be affected 

more by the post-absorptive state than has been previously appreciated. Accelerated aging in 

obesity may not be solely due to the effects of nutrient excess and body composition, but 

may also be affected by mechanisms in place during the post-absorptive state.

5. Treating Age-Related Adipose Tissue Dysfunction

5.1. Targeting age-related adipose tissue dysfunction in type II diabetes

Experimental strategies to target adipose tissue-specific mechanisms such as macrophage 

infiltration and adipokine secretion have shown some efficacy in improving metabolic 

function in mouse models of diabetes (Kanda and others 2006; Lumeng and others 2007; 

Okada-Iwabu and others 2013). Senescent cell burden is increased in the adipose tissue of 

diabetic patients, and senescent cells have been identified as a potentially useful therapeutic 

target in type II diabetes, especially in the setting of novel senolytic agents (Palmer and 

others 2015; Tchkonia and others 2013b; Xu and others 2015a; Zhu and others 2015a; Zhu 

and others 2015b). On the other hand, some of the most effective therapeutics for diabetes, 

especially metformin, have significant effects on fundamental aging mechanisms, and show 

lifespan-extending effects in rodents (Martin-Montalvo and others 2013). This impact on 

longevity may also be present in humans as discussed previously (Bannister and others 

2014). Treatment of age-related adipose tissue dysfunction may impact diabetes in several 

ways, for example prevention of lipotoxicity by improving adipogenic capacity and lipid 

storage, or improvement of peripheral insulin sensitivity by reducing pro-inflammatory 

adipokine release.

5.2. Impact of aging on adipose-based regenerative strategies

Adipose-derived progenitors have been increasingly utilized in regenerative medicine 

strategies, and could overtake bone marrow-derived stem cells (BMSCs) as an abundant 

source of progenitor cells (Strioga and others 2012; Zuk and others 2002). Adipose-derived 

mesenchymal stem cells (ADSCs) have been suggested to be superior to BMSCs in some 

orthopedic applications (Wyles and others 2015). However, most studies of this type have 

been conducted in subjects less than 60 years of age. It is possible that effects of aging may 

complicate this picture, and that strategies to mitigate effects of aging on these cells will 

need to be employed to optimize their use in older individuals. Progenitors isolated from 

different adipose depots within the same individual have different properties, and these 

properties can be affected by aging (Schipper and others 2008; Tchkonia and others 2013b). 

Aging is a significant hurdle for the advancement of regenerative medicine strategies, 

because many patients needing this type of intervention will be members of the growing 

elderly population. It is possible that age-modifying treatments will need to be given to 

patients before isolating progenitor cells, or to cells in vitro before being returned to the 
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patient (Fig. 2). In the context of allogeneic applications, transplantation of young or 

revitalized progenitor cells into old recipients may also have limited efficacy due to the 

effects of an aging microenvironment (Conboy and others 2005).

For example, TGFβ family members interfere with stem cell function and have been 

implicated in age-related progenitor dysfunction (Carlson and others 2009; Conboy and 

others 2015). A member of the TGFβ superfamily, activin A, increases in plasma with aging, 

and is secreted by senescent adipose progenitor cells. Blocking activin A in vitro using 

neutralizing antibodies or receptor blockers improves adipogenic potential of adipose-

derived progenitor cells (Xu and others 2015a). JAK 1/2 inhibitors prevent activin A 

secretion by senescent cells, and reduce circulating activin A in vivo, as does senescent cell 

elimination in old INK-ATTAC mice (Xu and others 2015a). JAK 1/2 inhibitors restored fat 

mass and insulin sensitivity in old mice, and also restored adipogenic capacity of adipose-

derived progenitors to express transcription factors necessary for differentiation (Xu and 

others 2015a). Thus, TGFβ family members secreted by senescent cells contribute to 

adipose-derived progenitor dysfunction, and this is amenable to pharmacologic intervention. 

Administration of therapies that target age-related dysfunction, for example senolytics, to 

patients receiving transplanted cells may mitigate host effects that could dampen the 

regenerative potential of transplanted cells (Fig. 2) (Kirkland and Tchkonia 2014; Zhu and 

others 2015a; Zhu and others 2015b).

Cell-free regenerative strategies represent a unique opportunity to circumvent these aging 

“seed vs. soil” barriers by distilling the therapeutic potential of progenitor cells into 

deliverables not containing cells. For example, secretome components or exosomes could be 

administered, avoiding the use of cells isolated from aging patients (Katsuda and others 

2013; Ranganath and others 2012). More investigation of these regenerative strategies is 

necessary to determine their efficacy in age-related disease.

Significant work is needed in preclinical and human studies to characterize ADSCs isolated 

from aged and obese individuals. Aging effects on progenitor quality require more study, 

and potential therapeutics to mitigate these effects to enhance regenerative potential should 

be carefully tested in preclinical models. Understanding the effects that aging has on 

regenerative capacity of progenitor cells as well as the potential of a recipient to garner 

benefit from these therapies will be essential for application of regenerative medicine 

approaches to the elderly population.

6. Looking Forward: Adipose Tissue as a Therapeutic Target in Aging

Many classical aging mechanisms, for example cellular senescence, chronic inflammation, 

and mitochondrial dysfunction, occur in adipose tissue. Therefore, emerging interventions 

that target fundamental aging mechanisms should have an effect on adipose tissue. This 

opens the possibility of using adipose tissue as an indicator of the efficacy of such therapies. 

In addition, adipose tissue itself may prove to be a worthwhile target for novel technologies 

that target fundamental aging mechanisms. Therapies that extend lifespan and target 

fundamental aging mechanisms tend to have major effects on adipose tissue. Conversely, it 

may be possible to use our knowledge of adipose tissue aging in order to design therapies 
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that specifically target aging mechanisms that operate in fat. Because adipose tissue function 

is so intricately linked to insulin sensitivity and inflammation, targeting adipose tissue aging 

could be a new frontier for therapies to combat age-related type II diabetes, metabolic 

syndrome, and their complications. Frailty and age-related fat loss could be other 

applications of therapies that specifically target fundamental aging processes in adipose 

tissue. Better understanding of adipose tissue aging and its effects on progenitor cell 

function could also have broad implications for regenerative medicine. Thus, adipose tissue 

aging is valuable for the study of basic aging mechanisms, and is a potent therapeutic target 

for the development of new therapies to combat effects of aging and age-related disease.
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Highlights

• Adipose tissue is a highly relevant organ for the study of aging.

• Age-related changes occur in adipose tissue.

• Adipose tissue function impacts lifespan and healthspan.

• Obesity and aging have shared mechanisms and effects on adipose 

tissue.

• Improved knowledge of adipose tissue aging could impact diabetes 

treatments and regenerative medicine.
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Figure 1. Adipose tissue changes with aging
With aging, adipose tissue undergoes numerous changes, affecting distribution, 

inflammatory status, progenitor function, senescent cell burden, deposition of lipid in 

ectopic sites, adipose-derived hormone production and action, miRNA processing, and 

brown and beige adipose function.

Palmer and Kirkland Page 23

Exp Gerontol. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Possible points of intervention for adipose-derived stem cell therapies in aged 
individuals
Adipose-derived stem cells are becoming increasingly utilized in regenerative medicine. 

Many patients who would benefit from such therapies are elderly, and the effects of aging on 

adipose tissue and progenitor function may reduce efficacy of these therapies. This may be 

due to both inherent dysfunction of isolated progenitor cells and the aged microenvironment 

of the recipient. Strategies to mitigate effects of aging on these cells may need to be used to 

optimize their use in older individuals. Points at which such strategies could be employed 

include (A) before isolating progenitor cells, (B) in vitro before returning cells to the patient, 

and (C) in allogeneic applications, administration of age-modifying therapy to the recipient 

before transplantation of young or revitalized progenitor cells.
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