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Abstract

Background—Epidemiological findings suggest a relationship between multiple sclerosis (MS)
and cardiovascular disease (CVD) risk factors, although the nature of this relationship is not well
understood.
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Objective—We used genome-wide association study (GWAS) data to identify shared genetic
factors (pleiotropy) between MS and CVD risk factors.

Methods—Using summary statistics from large, recent GWAS (total n > 250,000 individuals),
we investigated overlap in single nucleotide polymorphisms (SNPs) associated with MS and a
number of CVD risk factors including triglycerides (TG), low density lipoproteins cholesterol
(LDL), high density lipoproteins cholesterol (HDL), body mass index, waist-hip-ratio, type 2
diabetes, systolic blood pressure and C-reactive protein level.

Results and Conclusion—Using conditional enrichment plots we found 30-fold enrichment of
MS SNPs for different levels of association with LDL and TG SNPs, with a corresponding
reduction in conditional False Discovery Rate. We identified 133 pleiotropic loci outside the
extended Major Histocompatibility Complex with conditional False Discovery Rate < 0.01, of
which 65 are novel. These pleiotropic loci were located on 21 different chromosomes. Our
findings point to overlapping pathobiology between clinically diagnosed MS and cardiovascular
risk factors and identify novel common variants associated with increased MS risk.

Keywords
multiple sclerosis; pleiotropy; gene discovery; cardiovascular risk factors

INTRODUCTION

Multiple sclerosis is an autoimmune disease characterized by demyelination of the central
nervous system?. A recent systematic review of 6 databases suggests that CVD risk is
increased among patients with MS2. However, it is unclear whether an increased CVD risk is
secondary to lifestyle and environmental variables, such as medication use, dietary factors
and physical activity or due to overlapping pathobiology between CVD risk factors and MS.

Large genome-wide association studies (GWAS) provide valuable insights into the role of
biologic pathways in disease pathogenesis and have identified genetic polymorphisms
associated with a range of human disorders and phenotypes®: 4. Recent GWAS have
identified a total of 110 single nucleotide polymorphisms (SNPs) associated with MS®: 6,
Combining GWAS from multiple disorders and phenotypes provides insights into genetic
pleiotropy (defined as a single gene or variant being associated with more than one distinct
phenotype) and could elucidate shared pathobiology. Using this approach, we have recently
reported genetic overlap between a number of diseases and phenotypes and identified novel
common variants associated with schizophrenia, bipolar disorder, prostate cancer,
hypertension, primary sclerosing cholangitis, and Alzheimer’s disease’~1°. Here, taking
advantage of several large GWASs, we evaluated genetic overlap between MS and a number
of CVD risk factors, including systolic blood pressure (SBP)6, low density lipoprotein
(LDL) cholesterol?, high density lipoprotein (HDL) cholesterol®’, triglycerides (TG)Y7,
type 2 diabetes (T2D)18, body mass index (BM1)19, waist to hip ratio (WHR)20, and C-
reactive protein level (CRP)2L,
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MATERIALS and METHODS

Ethics Statement

The relevant institutional review boards or ethics committees approved the research protocol
of the individual GWAS used in the current analysis and all human participants gave written
informed consent.

Participant Samples

We utilized summary statistics GWAS data (p-values and odds ratios) from the International
Multiple Sclerosis Genetics Consortium (IMSGC), n=27,148)% and from GWAS evaluating
systolic blood pressure (SBP; n=203,056)6, low density lipoprotein (LDL; n=188,577)17,
high density lipoprotein (HDL; n=188,577)17, triglycerides (TG; n=188,577)17, type 2
diabetes (T2D; n=22,044)8, body mass index (BMI; n=123,865)9, waist to hip ratio
(WHR; n=77,167)20 and C-reactive protein level (CRP; n=66,185)%! (for details please see
Supplementary Table 1). All studies were approved by the respective ethical committees and
institutional review boards.

Statistical analysis

Using recently developed statistical methods to evaluate pleiotropic effects’~11, we evaluated
genetic overlap between MS and CVD risk factors. For given associated phenotypes A and
B, pleiotropic ‘enrichment’ of phenotype A with phenotype B exists if the proportion of
SNPs or genes associated with phenotype A increases as a function of increased association
with phenotype B (see Supplementary Text for details). To assess for pleiotropic enrichment,
we constructed fold-enrichment plots of empirical quantiles of nominal —logq(p) values for
SNP association with MS for all SNPs, and for subsets of SNPs determined by the nominal
p-values of their association with CVD factors (BMI, CRP, HDL, LDL, SBP, T2D, TG and
WHR). In fold-enrichment plots, the presence of enrichment is reflected as an upward
deflection of the curve for phenotype A if the degree of deflection from the expected null
line is dependent on the degree of association with phenotype B. To assess for polygenic
effects below the standard GWAS significance threshold, we focused the fold-enrichment
plots on SNPs with nominal —logo(p) < 7.3 (corresponding to p > 5x1078). The nominal p-
values (-logq(p)) are plotted on the x-axis, and cumulative relative fold enrichment in MS
is plotted on the y-axis (Figure 1).

To identify specific loci associated with MS we computed conditional False Discovery Rates
(FDRs). The standard FDR framework is based on a mixture model of SNPs associated with
the phenotype (either associated; non-null SNPs, or not; null SNPs). The conditional FDR is
an extension of the standard FDR, which incorporates information from GWAS summary
statistics of a second phenotype. Specifically, MS SNPs were stratified on the basis of p
values of each of the CVD factors, separately. Then based on the combination of p values for
SNPs in MS and each of the CVD factors, we assigned a conditional FDR value (FDRMS|
CVD, CVD represent one of BMI, CRP, LDL, HDL, T2D, SBP, TG and WHR) to each SNP
for MS by interpolating into a 2-D lookup table (Supplementary Figure 1). We used a
conditional FDR threshold of 0.01, which means 1 false discovery per hundred. Loci thus
identified can be visualized by a conditional Manhattan plot (Figure 2). It is important to
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note that ranking SNPs by FDR or by p-values both give the same ordering of SNPs,
whereas the conditional FDR re-orders SNPs resulting in a different p-value based ranking if
the primary and secondary phenotype are genetically related.

Low conditional FDR values can be driven by association with both phenotypes or with the
primary phenotype only. To detect true pleiotropic signal (association with both phenotypes)
we computed the conjunctional FDR, computed as the maximum of the two conditional
FDR values (i.e., MS conditional on CVD factors and CVD risk factors conditional on MS).
Similar to conditional FDR, we assigned to each MS SNP a conjunctional FDR value using
a 2-D lookup table (Supplementary Figure 2). We used overall a conjunctional FDR
threshold of 0.05, which means 5 expected false discoveries per hundred. To illustrate the
genomic location of significant loci we constructed the conjunctional Manhattan plots based
on the ranking of conjunctional FDR (Figure 3).

Annotation of new MS associated loci

The list of significant SNPs identified by conditional and conjunctional FDR were binned
into independent loci using the LD structure of the European subpopulation from 1000
Genomes Project at the LD-r2 > 0.2 level and a radius of 1 mega base. In addition, the
extended MHC region (chr6:25652429-33368333) was considered as a single locus and
SNPs close to the same genes were also binned into a single locus. These loci are numbered
(locus #) in Tables 1 and 2 and Supplementary Tables 2, 3 and 4. Genes at or closest to each
SNP locus were obtained from the HGNC gene database. Any loci that did not contain
previously reported MS associated SNPs or genes were deemed as findings adding to the
currently known associations in MS (Tables 1 and 2).

The impact of MHC region on enrichment

To test the possibility that the observed enrichment may be driven by the large extended
MHC region (chr6: 25652429-33368333, xMHC) we removed the XMHC region related
SNPs, defined as SNPs located within the xXMHC or SNPs within 1IMb and in LD (r2 > 0.2)
with such SNPs, and then re-performed the analyses.

Non-genetic confounding

To investigate whether non-genetic confounders between MS and CVD risk factors
contribute to the observed enrichment we used a permutation procedure. Specifically, we
permuted the p values of each of the CVD risk factors 100 times, and reconstructed the fold
enrichment plots using the average empirical cumulative distributions across all iterations.

Gene expression analysis of new MS loci

We used publicly available gene expression data for 170 MS patient and 60 controls??
(NCBI Gene Expression Ontology database (GSE41850)) and mapped the suggested genes
from our conditional analysis of MS on CVD to the assigned genes in this dataset by gene
symbols. We restricted our analyses to the baseline expression level data and applied a two-
sided t-test to baseline expression levels of the mapped genes for patients and controls.
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Pleiotropic enrichment of MS conditioned by association with related phenotypes

As illustrated by the conditional fold enrichment plots, we found a strong enrichment of MS
SNPs conditioned on the nominal p-values of association with several CVD risk factors
(Figure 1). Across all evaluated CVD phenotypes, we found that the polygenic pleiotropic
enrichment was strongest for LDL and TG (approximately 30 fold with respect to whole
genome SNPs). We additionally performed a normal test of the empirical cumulative
distribution of MS SNP p values conditioned on the association level of CVVD phenotypes
(with —log1gP(CVD) >1, 2, 3, and 4 versus the depleted category, —log1gP(CVD) <1), and
found that all four tests were significant (p < 0.05) for HDL and LDL but only 1 or 2 tests
were significant for other the CVD phenotypes (Supplementary Table 5).

MS gene loci identified with conditional FDR

As shown in the conditional FDR Manhattan plot for MS and each of the related CVD risk
factors (Figure 2), we identified a total of 133 non-MHC laoci, of which 65 are novel
compared to the GWAS (see Table 1 for not previously reported non MHC loci and
Supplementary Table 2 for all loci).

Overlapping gene loci in MS and CVD risk factors identified with conjunctional FDR

As indicated by the ‘Conjunction FDR Manhattan plot” (Figure 3), we detected loci
significantly associated with both MS and the CVD risk factors on all chromosome
(including chromosome 6) except chromosome 21(see Table 2 and Supplementary Tables 3
and 4). In general, we observed an gpposite direction of effect between MS and TG, LDL,
WHR and T2D and the same direction of effect between MS and BMI (Supplementary
Figure 3 and Supplementary Table 4).

Differential impact of XMHC on pleiotropic enrichment

We found that removing the xMHC-related SNPs resulted in substantial attenuation of the
enrichment of MS conditioned on TG and HDL (Supplementary Figure 4). For the strata
with —log1gP > 3, the fold enrichment for TG was reduced from 30 to about 2 fold and for
HDL from 10 to 2 fold.

Control of non-genetic artifacts

Figure 4 shows the comparison of distributions of genotypic variance (2*(z*(1-p)), p
reference allele frequencies from the 1000 Genomes Project) of SNPs having conditional
FDR < 0.05 for each conditioned trait with all SNPs analyzed. The majority of SNPs with
conditional FDR < 0.05 are common SNPs, i.e., tagging more genotypic variances, for all
conditional analysis. In the Supplementary Figure 5 we show the fold enrichment plot based
on 100 permutations of the p values of each conditioned trait. The observed pleiotropic
enrichment between MS and CVD risk factors disappeared after randomizing the genotype-
phenotype relationship of the conditioned traits indicating that the observed enrichment
between MS and CVD risk factors is not a result of confounders, such as sample overlap or
technical artifacts.
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Gene expression analysis of new MS loci

Out of the 279 unique genes suggested by the conditional analysis of MS on CVD at the
level condFDR (MS|CVD) < 0.01, we found available baseline expression data for 129
genes. Across all 129 genes, we found a significant association between baseline expression
level and MS status for 28 genes (p < 0.05, Table 1).

Pathway analysis for conjunction loci

We investigated the probable pathways involving the loci identified by the conjunctional
analysis of MS with CVD factors using PANTHER23 and Reactome?4. The most enriched
biological pathways were metabolic process (GO:0008152), cellular process (GO:0009987)
and immune system process (GO:0002376) (see Supplementary Figures 6 and 7 and
Supplementary Table 6 for details). We found that 32 genes mapped to known pathways in
PANTHER, among which the Apoptosis signaling pathway, the Integrin signaling pathway,
the Inflammation mediated by chemokine and cytokine signaling pathway and the T cell
activation pathway showed 3 hits and others showed 1 or 2 hits (Supplementary Figure 6).
Consistent with the PANTHER results, we observed that the immune related pathways were
significant (p < 0.05) by Reactome (Supplementary Table 6). Moreover, several signaling
pathways within the immune system, such as Interferon alpha/beta signaling and cytokine
signaling, were also detected.

DISCUSSION

Here, we observed polygenic pleiotropy between MS and several CVD risk factors,
identifying 133 independent loci associated with MS conditioned on CVD risk factors.
Further, we identified 60 genes associated with both MS and CVD risk factors. Considered
together, our findings implicate overlapping genetic factors between MS and several CVD
risk factors.

The current results suggest that multiple loci in the xMHC region are overlapping between
MS, and TG and HDL. These loci seem mainly located in the XMHC region, and due to the
high and complex LD pattern in this region, it is difficult to interpret the results in a
functional setting. Interestingly, the polygenic overlap observed between MS and LDL, and
also some of the overlap between MS and the other CVD factors seem less dependent on the
XMHC region (Supplementary Figure 4). This strongly suggest that there are also non-MHC
genes shared between MS and CVD risk factors. This may further indicate that genetic
factors may play a role in the immune activation found in several cardiovascular diseases.
On a methodological note, unlike epidemiological studies, co-heritability analyses2>: 26 or
LD regression?’, one strength of our current approach is the ability to detect genetic effects
even when there is no correlation of the signed effects (mixed directionality of effect); the
method presented in this work can detect SNPs that have a non-null effect in one trait and
that also tend to have a non-null effect in another trait, independent of directionality4 28,
Taken collectively, these findings illustrate that the genetic relationship between
cardiovascular disease risk factors and MS may not be straightforward; considerable work
will be required to carefully characterize the biological mechanisms underlying how each
cholesterol-associated genetic variant influences MS pathobiology.
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Although the method robustly identifies new variants, the functional mechanisms behind
SNP associations to disease remain elusive. However, the fact that these polymorphisms
influence both MS and CVD risk suggests the possibility of shared mechanisms for these
shared variants. Such functional effects should be studied for each risk polymorphism
individually and strategies for such investigations are dependent on the genes that are
putatively affected by this polymorphism. The current results suggest a complex pattern of
pathological pathways, involving both xMHC and other parts of the genome. Further, the
results of the conjunctional FDR identify specific overlapping gene variants between MS
and CVD risk factors. Inflammatory processes play an important role in MS, and
associations to both HLA class | and I loci are well established?®. Recently, a large number
of non-HLA markers have also been associated with MS risk, and immunologically relevant
genetic loci were significantly overrepresented among these®. Most of the pleiotropic loci
between MS and the CVD risk factors were located on chromosome 6, suggesting
involvement of HLA genes also in several CVD risk factors. This is in line with previous
findings of the involvement of immunological mechanisms also in CVD. On the other hand,
immune related mechanisms have been implicated in the pathology of several CVVD30-32 and
vascular pathology33: 34, Our approach further elucidates other possible common
mechanisms between MS and CVD risk factors. For instance, this may be related both to
vascular and lipid biology or inflammatory processes shared between MS etiology and CVD
risk factors, although the exact mechanisms may vary between polymorphisms. The
interesting recent reports of a relation between body mass index and MS susceptibility3>: 36
also support the existence of common mechanisms between this CVD risk factor and MS.

The current findings of new genetic variants in MS conditional on CVD risk factors show
the feasibility of using a genetic epidemiology framework that leverages overlap in genetic
signals from independent GWASSs to improve statistical power for gene discovery. In the
original MS GWAS sample, > 52 loci were significantly associated with MS susceptibility.
By combining the original MS sample with independent GWAS of selected CVD risk
factors, we identified abundant pleiotropic signal (total of 133 loci). Several of these genetic
risk loci have not been previously reported in MS, whereas one of the loci not reported in the
GWAS was genome wide significant in the later immunoChip analysis. Our findings
demonstrate the increased power of the combined analytical approach. It is important to note
that by applying the conjunctional FDR method3’, we minimized concerns that our results
were solely driven by a strong signal in one phenotype.

Our analysis is based on results from GWAS of different phenotypes, and there might be
some overlapping individuals included in several of the primary studies. Since the analysis is
restricted to summary statistics, we could not identify the specific individuals. However, we
performed standard single phenotype GWAS genomic corrections38 for genetic stratification
before our pleiotropy analysis. The fact that the pleiotropic loci were located at different
sites for different CVD risk factors, suggest that our findings are not driven by conditional
genetic effects and rather by true increases in risk for MS or association to the CVD risk
factors. Moreover, when the genotype-phenotype association in CVD risk factors were
perturbed, the observed enrichment disappeared (Supplementary Figure 5) indicating that
the identified pleiotropic structure is not the result of overlapping samples or non-genetic
confounders. It is known that relative rare variants suffer more from technical artifacts,
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however the SNPs we identified are concentrated in common variants (Figure 4) further
suggesting that our results are not artifacts. It is also important to note that our conditional
FDR is capable of identifying the majority of the established MS risk loci, thereby showing
the power and specificity of the method. The current study only analyzed SNPs reported by
both MS and CVD risk factors GWAS studies which excluded the large number of SNPs
analyzed in the latest immunoChip study of MS®. Thus the low replication rates of the SNPs
reported by immunoChip study of MS is reasonable. Finally we hypothesize that when new
and larger GWAS data appear for these phenotypes, more pleiotropic loci are expected to be
identified.

This work has clinical implications. The present results revealed a large number of genetic
loci associated with MS. Careful work will be required to further characterize the candidate
genes detected in this study and how these impact MS risk on an individual basis. Although
no single variant may be informative clinically, identifying shared loci with cardiovascular
risk factors will elucidate more of the polygenic architecture of a complex disease and may
offer novel insights into lipid-lowering primary and secondary prevention trials in MS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pleiotropic enrichment of MS and CVD factors
Fold enrichment plots of enrichment versus nominal —logyg p-values in

multiple sclerosis

(MS) below the standard GWAS threshold of p < 5x1078 as a function of the association
level with body mass index (BMI), C-reactive protein level (CRP), High density Lipoprotein
cholesterol (HDL), Low density Lipoprotein cholesterol (LDL), systolic blood pressure
(SBP), type 2 diabetes (T2D), triglycerides (TG) and Waist Hip Ratio (WHR) at the level of
—logy(p) = 0, —logyp(p) = 1, —log1p(p) = 2, —logyp(p) = 3 correspondingtop<1,p<0.1,p

<0.01, p <0.001, respectively. Successive upward elevation in terms of

all SNPs (=log1o(p)

>0, blue horizontal line) demonstrate pleiotropic enrichment of MS association conditioned
CVD factors. The figure also shows that the fold enrichment of MS (y axis is also a
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monotonic increasing function of the nominal P value (x axis). All data are first genome
corrected by intergenic SNPs.
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Figure 2. ‘Conditional FDR Manhattan plot’ of multiple sclerosis (MS) on cardiovascular disease
risk factors
The unconditioned -logyg (FDR) values for multiple sclerosis (MS) alone (black) and

conditioned on given cardiovascular disease risk factors triglycerides (TG; MS|TG), Low
density Lipoprotein cholesterol (LDL; MS|LDL), High density Lipoprotein cholesterol
(HDL; MS|HDL), systolic blood pressure (SBP; MS|SBP), body mass index (BMI; MS|
BMI), waist hip ratio (WHR; MS|WHR), type 2 diabetes (T2D; MS|T2D) and C-reactive
protein (CRP; MS|CRP) were plotted against the genomic locations of SNPs. SNPs with
conditional —logyp FDR > 2 (i.e. FDR < 0.01) are shown with large points. A black line
around the large points indicates the most significant SNP in each LD block and this SNP
was annotated with the closest gene which is listed above the symbols in each locus (except
for the xMHC region on chromosome 6). Genes replicated in this study were marked by
stars (“*’). Details for not previously reported non-MHC loci with —log;g FDR > 2 (i.e. FDR
< 0.01) are shown in Table 1.
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Figure 3. ‘Conjunctional FDR Manhattan plot’ for multiple sclerosis (MS) and cardiovascular
disease risk factors

Conjunctional —logyg (FDR) values for multiple sclerosis (MS) given the cardiovascular
disease risk factors triglycerides (TG; MS&TG), Low density Lipoprotein cholesterol (LDL;
MS&LDL), High density Lipoprotein cholesterol (HDL, MS&HDL), systolic blood pressure
(SBP, MS&SBP), body mass index (BMI, MS&BMI), waist hip ratio (WHR, MS&WHR),
type 2 diabetes (T2D, MS&T2D) and C-reactive protein level (CRP, MS&CRP). SNPs with
conditional —log;o FDR > 1.3 (i.e. FDR < 0.05) are shown with large points. A black line
around the large points indicates the most significant SNP in each LD block and this SNP
was annotated with the closest gene which is listed above the symbols in each locus (except
for the MHC region on chromosome 6). The figure shows the localization of 60 loci on a
total of 21 chromosomes. Genes previously reported for MS are marked by stars (“*”) and
details for the not previously reported non-MHC loci with —log,g FDR > 1.3 (i.e. FDR <
0.05) are shown in Table 2.
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Figure 4. Distribution of tagged genotypic variance of identified SNPs at conditional FDR < 0.05
Comparison of the distribution of tagged genotypic variance (y axis) by SNPs identified by

conditional FDR < 0.05 of MS conditional on cardiovascular risk factors (x axis):
triglycerides (TG), Low density Lipoprotein cholesterol (LDL), High density Lipoprotein
cholesterol (HDL), Waist Hip Ratio (WHR), body mass index (BMI), type 2 diabetes (T2D),
systolic blood pressure (SBP) and C-reactive protein level (CRP), with all SNPs analyzed

(All).
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