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Abstract

We have measured the alkane and benzene-based molecules with aldehyde and carboxylic acid as anchoring
groups by using the electrochemical jump-to-contact scanning tunneling microscopy break junction (ECSTM-BJ)
approach. The results show that molecule with benzene backbone has better peak shape and intensity than those
with alkane backbone. Typically, high junction formation probability for same anchoring group (aldehyde and
carboxylic acid) with benzene backbone is found, which contributes to the stronger attractive interaction between
Cu and molecules with benzene backbone. The present work shows the import role of backbone in junction,
which can guide the design molecule to form effective junction for studying molecular electronics.
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Background
In recent years, single-molecule junctions have attracted
wide attention because of its potential application in
nano-electronic and molecular electronic device [1–10].
At present stage, it is important to fully understand the
electron transport of single-molecule junctions and its
influence factors [11]. Many factors can affect the
conductance of single-molecule junctions, such as an-
choring group, molecule structure, the contact configur-
ation between molecule and electrode, and temperature
[5, 7, 12–17]. Among them, anchoring group is very
important in forming the molecular junction, and it was
found that different anchoring groups have different
junction formation probabilities [14, 18–20]. However,
another interesting question is still unclear that how
molecular structure would influence the junction forma-
tion probability for same anchoring group.
In this work, we will focus on the junction formation

probability of same anchoring group with different

molecular structures (saturated and conjugated struc-
ture) by using electrochemical jump-to-contact scanning
tunneling microscopy break junction (ECSTM-BJ)
approach (Fig. 1a) [21, 22]. Aldehyde and carboxylic acid
anchoring groups binding to Cu electrode are used in
the current study, for they have been demonstrated to
form effective junctions [23–25]. We use 1,4-benzenedi-
carboxaldehyde, glutaraldehyde, 1,4-benzenedicarboxylic
acid and pentanedioic acid as target molecules (Fig. 1b)
to study the influence of different structures on the
junction formation probability. Those molecules have
different backbones with saturated (alkane) or conjugated
(benzene) structure.

Methods
Na2SO4 (99.995 %) and CuSO4 (99.999 %) were purchased
from Alfa-Aesar, while petanedioic acid, 1,4-benzenedicar-
boxylic acid, glutaraldehyde, and 1,4-benzenedicarboxal-
dehyde were purchased from Sigma-Aldrich. Ultrapure
water (≥18.2 MΩ cm) was used for preparing aqueous
solutions. Naturally formed Au(111) was used as the
substrate, and cut Pt-Ir STM tip was covered with
thermosetting glue to reduce the electrochemical current.
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Meantime, Pt and Cu wires were used as the counter and
reference electrodes, respectively.
The conductance measurement was performed by

ECSTM-BJ approach on the modified Nanoscope IIIa
STM (Veeco, USA); especially, preamplifier with four-
out linear current-to-voltage converters was used [23].
The experiment was carried out in aqueous solution
containing saturated target molecule + 1 mM CuSO4 +
50 mM Na2SO4 as following: Firstly, the tip potential
was set at −5 mV to allow the bulk deposition of Cu.
Secondly, after applying the pulse voltage on z-piezo, the
deposited Cu on the tip would transfer to the substrate
and build a metallic contact due to the tip closed to the
surface. Thirdly, Cu atomic wire could be formed during
the separation of tip and substrate with 20 nm/s, and
then, molecule could simultaneously bridge to the both
electrodes upon the breaking of metal atomic wire. The
tip current vs. distance curves were recorded with sam-
pling frequency of 20 kHz. More detailed procedure can
be seen in our previously reports [22, 23].

Results and Discussion
Comparative Study on Single-Molecule Conductance of
Glutaraldehyde and 1,4-Benzenedicarboxaldehyde with
Cu Electrode
We firstly measure the conductance of Cu-glutaraldehyde-
Cu junction. Conductance curves with obvious step can be
seen in Fig. 2a and then were treated by logarithm and bin-
ning to construct the histogram (Fig. 2c). A peak at 10−3.45

G0 (27 nS) is found in the Fig. 2c. Comparing with glutaral-
dehyde, pronounced peak at 10−3.6 G0 (19 nS) is found for
1,4-benzenedicarboxaldehyde (Fig. 2b, d), and this value is
consistent with our previously report [23]. Obviously, the

peak intensity of 1,4-benzenedicarboxaldehyde is higher
than that of glutaraldehyde. And the different intensity of
peaks between glutaraldehyde and 1,4-benzenedicarboxal-
dehyde in the histograms may show internal property of
benzene and alkane backbone.
Then, we also construct histograms by using linear bin-

size. Obvious difference is again observed for those
molecules in Fig. 3. While rather weak peak can be found
for petanedioic acid (Fig. 3a), pronounced peak is shown
for 1,4-benzenedicarboxaldehyde (Fig. 3b). Conductance
values of 4 and 11 nS are found for 1,4-benzenedicarbox-
aldehyde, which is different from the conductance value
shown in log-scale histogram (Fig. 2d). This is caused by
the different statistical methods between linear and
logarithm bin-size, and different molecule-electrode
configurations are shown in those histograms [23]. As our
previously report, we can also obtain all conductance
values of 4, 11, and 20 nS using data selection with linear
bin-size [23]. However, the linear-bin histograms show
even large difference of intensity between molecules with
benzene and alkane backbone.
Return back to the difference histograms between

benzene and alkane backbone, the weak peak can be
caused by the less probability in the forming the molecu-
lar junctions. Usually, the junction formation probability
can be analyzed by stretched distance distribution [26, 27]
or counting the number of curves with step [28, 29] as pre-
viously reports. Here, we manually analyze the opportunity
of step (typically, the curve with step length longer than
0.05 nm) in conductance curves showing step value smaller
than 10−2 G0, it is found that step opportunity is around
40 % in forming junction of 1,4-benzenedicarboxaldehyde,
while around 22 % for glutaraldehyde. From above, we can

Fig. 1 The schematic diagram of ECSTM-BJ and molecular structure. a Schematic diagram of electrochemical jump-to-contact scanning
tunneling microscopy break junction (ECSTM-BJ) approach in solution containing target molecule. b Molecular structures of glutaraldehyde,
1,4-benzenedicarboxaldehyde, pentanedioic acid and 1,4-benzenedicarboxylic acid
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conclude that the anchoring group of aldehyde with ben-
zene backbone has high junction formation probability
than that with alkane backbone connecting with Cu elec-
trode, and we will discuss it later.

Comparative Study on Single-Molecule Conductance of
Pentanedioic Acid and 1,4-Benzenedicarboxylic Acid with
Cu Electrode
In order to prove the role of backbone in forming
molecular junction, we also use carboxylic acid as the
anchoring group to comparing difference between
petanedioic acid and 1,4-benzenedicarboxylic acid. As
shown in Fig. 4, similar behavior is also found that 1,4-
benzenedicarboxylic acid shows more pronounced peak

comparing with petanedioic acid. Again, different con-
ductance values are found in different statistical method
between linear and log bin-size. According to Fig. 4, the
junction formation probability of 1,4-benzenedicar-
boxylic acid is higher than that of petanedioic acid in
both linear-scale and log-scale statistical histograms. We
found that the step opportunity of 1,4-benzenedicar-
boxylic acid and petanedioic acid is around 51 % and
33 %, respectively, which illustrates the similar results as
the 1,4-benzenedicarboxaldehyde and glutaraldehyde. How-
ever, molecules with carboxylic acid have larger junction
formation probability than those with aldehyde anchor-
ing group; this may be caused by that carboxylic acid
can also bind to the Cu through carboxylate form with

Fig. 2 Single-molecule conductance histograms of pentanedioic acid and glutaraldehyde. A log-scale conductance curves of a Cu-glutaraldehyde-Cu
junctions and b Cu-1,4-benzenedicarboxaldehyde-Cu junctions. Log-scale conductance histogram of c Cu-glutaraldehyde-Cu junctions and d
Cu-terephthalaldehyde-Cu junctions

Fig. 3 Comparison of the linear-scale conductance histograms of glutaraldehyde and 1,4-benzenedicarboxaldehyde. a The linear-scale conductance
histogram of a Cu-glutaraldehyde-Cu junctions and b Cu-1,4-benzenedicarboxaldehyde-Cu junctions
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two O atoms binding to the electrode, while only one O
atom can bind to the electrode for aldehyde group.

The Role of Backbone in Forming Molecular Junction
According to above results, those molecules with
benzene backbone have higher junction formation
probabilities than those with alkane backbone con-
necting with Cu electrode, which should be caused by
the stronger interaction between anchoring group and
Cu in 1,4-benzenedicarboxaldehyde and 1,4-benzene-
dicarboxylic acid.
Taking carboxylic acid as example, carboxylic acid

binds to the Cu electrode through carboxylate group
[30]. It was reported that the bond length of Cu-O for
benzene system is shorter than that of alkane system,
which may reveal that benzene-based molecule and Cu
system has stronger attractive interaction than that of
alkane-based molecule and Cu system [30, 31]. This can
explain our result that the junction formation probability
of 1,4-benzenedicarboxylic acid is higher than that of
petanedioic acid. We deduce the similar situation for
molecules with aldehyde anchoring group, since similar
Cu–O bond is formed in the junctions [23]. The current
work shows the import role of backbone in forming
molecular junctions and may help the design of
molecule in studying the electron transport of single-
molecule junction.

Conclusions
In this work, we have measured the single molecular junc-
tion conductance of molecules with aldehyde and carbox-
ylic acid anchoring groups. It has been found that the
structure of backbone can influence the junction forma-
tion probability for same anchoring group (aldehyde and
carboxylic acid), which contributes to the stronger attract-
ive interaction between Cu and molecules with benzene
backbone. Those results can guide the design molecule to
form effective junction for studying molecular electronics.
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Fig. 4 Comparison of linear-scale and log-scale conductance histogram of 1,4-benzenedicarboxylic acid and petanedioic acid. The log-scale con-
ductance histograms of a Cu-1,4-benzenedicarboxylic acid-Cu junctions and b Cu-petanedioic acid-Cu junctions. The linear-scale conductance his-
tograms of c Cu-1,4-benzenedicarboxylic acid-Cu junctions and d Cu-petanedioic acid-Cu junctions
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