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Abstract

Background: The management of ovarian cancer remains a challenge. Because of the lack of early symptoms,

it is often diagnosed at a late stage when it is likely to have metastasized beyond ovaries. Currently, platinum based
chemotherapy is the primary treatment for the disease. However acquired drug resistance remains an on-going
problem. As cisplatin brings about apoptosis by intrinsic and extrinsic pathways, this study aimed to determine
changes in activity of platinum drugs when administered in two aliquots as against a bolus and sought to
determine association with changes in GSH, speciation of platinum drugs and changes in protein expression.

Methods: The efficacy of administering cisplatin, carboplatin and oxaliplatin in two aliquots with a time gap was
investigated in ovarian A2780, A2780°% A27807P%*/*R and SKOV-3 cell lines. The cellular accumulation of platinum,
level of platinum —DNA binding and cellular glutathione level were determined, and proteomic studies were
carried out to identify key proteins associated with platinum resistance in ovarian A2780“*" cancer cell line.

Results: Much greater cell kill was observed with solutions left standing at room temperature than with freshly prepared
solutions, indicating that the increase in activity on ageing was related to speciation of the drug in solution. Proteomic
studies identified 72 proteins that were differentially expressed in A2780 and A2780F cell lines; 22 of them were
restored back to normal levels as a result of synergistic treatments, indicating their relevance in enhanced drug action.

Conclusions: The proteins identified are relevant to several different cellular functions including invasion and
metastasis, cell cycle regulation and proliferation, metabolic and biosynthesis processes, stress-related proteins and
molecular chaperones, mRNA processing, cellular organization/cytoskeleton, cellular communication and signal
transduction. This highlights the multifactorial nature of platinum resistance in which many different proteins with
diverse functions play key roles. This means multiple strategies can be harnessed to overcome platinum resistance in
ovarian cancer. The results of the studies can be significant both from fundamental and clinical view points.
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Background

Platinum-based drugs cisplatin (CS), carboplatin (CB),
and oxaliplatin (OX) are routinely used in the clinic to
treat various cancers including testicular, ovarian, lung,
bladder, colon, head and neck cancers [1]. However, effi-
cacy is limited by dose limiting toxicities and acquired
drug resistance [2] that may arise due to decreased cellular
accumulation of platinum drugs, inactivation by conjuga-
tion with glutathione or sequestration involving metallo-
thionein, enhanced tolerance to platinum-DNA adducts
and enhanced DNA repair mechanisms [2, 3].

Cancer related pathways are bound to be highly com-
plex often involving both intrinsic and extrinsic path-
ways [4]. As applied to cell death caused by CS, it was
suggested that depending on the status of the cell, differ-
ent pathways would become more significant at different
time points. We proposed that the administration of first
aliquot of CS would place cancer cells under increased
oxidative stress caused by depletion of cellular thiols due
to their binding with the drug [5] and if so when the
second aliquot was administered after a brief time
period (2 to 4 h), depleted glutathione level would
allow more of the drug to bind with DNA resulting into
increased apoptosis. Thus, the sequenced administration
of CS in two aliquots with a small time gap could be
looked upon as being the combination of two drugs with
somewhat different mechanisms of action [5].

The present study aimed to determine the efficacy of
the administration of CS, CB and OX (Fig. 1) in two ali-
quots with time gaps of 2, 4, 8, 24 h in ovarian tumour
models. We also sought to determine whether the use of
‘aged solutions’ of the drugs (where the solutions for the
second aliquots were left standing at room temperature
for the duration of the time gap) had a similar or greater
effect on cell kill. The rationale behind using both fresh
and aged solutions was to determine the effect of hy-
drolysis of platinum drugs on the combined drug action.
Although platinum — DNA binding is believed to be an
essential step in CS induced apoptosis, the programmed
cell death is brought about downstream by multiple

proteins. Thus, the study also aimed to determine
changes in expression of key proteins associated with
drug resistance in ovarian cancer cell lines.

Methods

Materials

CB and OX were obtained from Sigma Aldrich, Sydney,
Australia. CS was synthesized according to previously
described method [6]. Foetal calf serum (FCS), RPMI-
1640, 200 mM L-glutamine, and 5.6 % sodium bicarbon-
ate were obtained from Trace Biosciences Pty Ltd
Australia. DNA extraction kit JETQUICK Blood DNA
Spin Kit/50 was obtained from Astral Scientific Pty Ltd,
Sydney, Australia. GSH/GSSG-Glo™ assay kit was ob-
tained from Promega, Sydney, Australia. Other chemicals
were obtained mostly from Sigma-Aldrich, Sydney,
Australia. Ovarian cancer A2780, A2780°%, A2780“P*473R
and SKOV-3 cell lines were gifts from Ms. Mei Zhang,
Royal Prince Alfred Hospital, Sydney, Australia. Stock
solutions of platinum drugs were prepared to a final
concentration of 1 mM; CS was first dissolved in
DMF then made up in milli-Q water to a final ratio
of 1:4 DMF to milli-Q water, whereas CB and OX
were prepared in milli-Q water only. Stock solutions
were then filtered to insure sterility.

Cell culture

Human ovarian cancer A2780, A2780°°%, A2780%P*7*}
and SKOV-3 cell lines (Table 1) were seeded in 25 c¢m?
tissue culture flasks in an incubator at 37 °C in a hu-
midified atmosphere consisting of 5 % CO, and 95 %
air. The cells were maintained in logarithmic growth
phase in complete medium consisting of RPMI 1640,
10 % heat inactivated FCS, 20 mM Hepes, 0.11 %
bicarbonate, and 2 mM glutamine without antibiotics
[7]. Each cell line was seeded at a density of 4—6 x
10? cells/well in flat-bottomed 96-well culture plate in
10 % FCS/RPMI 1640 culture medium. The plate was
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Fig. 1 Chemical structures of cisplatin, carboplatin and oxaliplatin

incubated for 24 h at 37 °C in a humidified atmos-
phere allowing cells to attach.

Cytotoxicity assay

MTT reduction assay was carried out to determine cyto-
toxicity of CS, CB and OX administered as a bolus and
in two aliquots with a time gap. Stock solutions of drugs
were subjected to serial dilutions to give final concentra-
tions ranging from 0.16 to 250 pM. The dilutions were
performed using 10 % RMPI-1640 medium without
serum as the vehicle and were added to equal volumes
of cell culture in triplicate wells and then cells were left
to incubate for 72 h. These treatments were carried out
to determine ICs, values i.e. drug concentrations re-
quired for 50 % cell kill. In treatment in two aliquots
with a time a gap, cells were treated with solutions of
CS, CB and OX at three different concentrations based
on their ICs, values. The first aliquot administered at
time zero was that of a freshly prepared solution (de-
noted as ‘fresh’) whereas the second aliquot administered
at 2 h (0/2 h), 4 h (0/4 h), 8 h (0/8 h) or 24 h (0/24 h)
was using either freshly prepared solution (fresh) so that
the combination was termed fresh/fresh or aged solution
left at room temperature for the period of the time gap

Table 1 Human ovarian cancer cell lines used in this study

Cell line Phenotype

A2780 Untreated ovarian tumour

A2780°R CS resistant ovarian tumour

A27807D0473R ZD0473? resistant ovarian tumour

SKOV-3 Oestrogen receptor positive ovarian tumour

2ZD0473 (also known as JM473 and AMD 473) is a sterically hindered platinum
complex with a cis-geometry like cisplatin
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(denoted as ‘aged’) so that the combination was termed
fresh/aged. Cells in drug free medium served as control.
The rationale behind doing experiments with both fresh
and aged solutions was to determine the effect of hy-
drolysis of platinum drugs on the combined drug action.
The period of drug treatment was 72 h counted from
the time of administration of the first dose. Cell growth
inhibition was determined using the MTT reduction
assay. Combination index values (ClIs) were used as mea-
sures of synergism, additiveness or antagonism calcu-
lated using the program CalcuSyn [8—10] and previously
described method [11].

Platinum accumulation and platinum-DNA binding
Cellular accumulation of platinum and platinum - DNA
binding levels in A2780 and A2780“F cell lines were de-
termined as applied to administration of CS in two ali-
quots with a time gap of 2 and 4 h and at a final
concentration of 50 mM, for both fresh/fresh and fresh/
aged combinations. The drug was added to culture plates
containing exponentially growing A2780 and A2780%F
cells in 10 ml 10 % FCS/RPMI 1640 culture medium (cell
density =5 x 10° cells/ml). The cells containing the drug
were incubated for 24 h at the end of which cell mono-
layers were collected and cell suspensions (10 ml) were
transferred to centrifuge tube and spun at 3500 rpm for
2 min at 4 °C. The cells were washed twice with ice-cold
phosphate-buffered saline (PBS) and the pellets were
stored at —20 °C until assayed. At least three independent
experiments were performed.

Cellular accumulation

Following drug incubation the cell pellets were suspended
in 0.5 ml 1 % triton-X, held on ice then sonicated. Total
intracellular platinum contents were determined by
graphite furnace atomic absorption spectrophotometry.

Drug-DNA binding

High molecular weight DNA from cell pellets were iso-
lated using JETQUICK Blood DNA Spin Kit/50 (Astral
Scientific, Australia) according to the modified protocol
of Bowtell [12]. Platinum contents of the samples were
determined by graphite furnace AAS. A,go/Aqgy ratios
were found to be between 1.75 and 1.8 for all samples,
indicating high purity of the DNA.

Cellular glutathione

As a measure of cellular health and the redox state of
the cells, the levels of total glutathione (GSH and GSSG)
and oxidised glutathione (GSSG) in A2780 and
A2780°F cell lines were determined as applied to treat-
ments with CS and CB administered in two aliquots
with a time gap of 4 h. Drugs made in 10 % RMPI-1640
serum free medium were added to equal volumes of cell
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culture wells of a white wall clear bottom 94 well plate
containing exponentially growing A2780 and A2780°"
cells (cell density = 12 x 10% cells/well). Cells were left to
incubate for 24 h. The medium was aspirated out of the
treatment wells with minimal disturbance of the cell pel-
lets and cells were washed with 200 pl of PBS, then the
levels of glutathione were determined using the GSH/
GSSG-Glo™ Assay kit (Promega, Australia). The plate
was read in a LUMIstar Omega luminometer (BMG
LABTECH, USA).

Mass spectral analysis

Mass spectrometry was used to explore hydrolysis of
OX rather than that of CS as OX and its hydrolysis
products were more sensitive to mass spectral measure-
ments than those of CS. Solution of OX first made in
milli-Q water, was diluted (1:2) with methanol, cell cul-
ture medium, or pH adjusted (neutral) milli-Q water.
The solutions were injected by syringe pump (flow rate
150 ul/h) into a Bruker Apex Qe 7 T Fourier Transform
Ion Cyclotron Resonance Mass Spectrometer (FTICR) in
positive ion electrospray ionization mode. The instru-
ment was optimized and externally mass calibrated be-
fore use. The presence and evolution of OX species was
monitored over a period of 4 h, with measurements
made every hour.

Proteomics

Proteomic studies were carried to determine the pro-
teins that were differentially expressed in the parent
A2780 and cisplatin-resistant A2780*® cell lines but
were restored back due to treatment with CS in two ali-
quots. Ovarian cancer A2780 and A2780°® cell lines
were cultured in 50 cm? petri dishes to produce at least
a million cells per dish. Cells were treated with solutions
of CS (at ICsy) administered as a bolus and in two ali-
quots with 2 h time gap using both aged and fresh solu-
tions (CS+ CS (2/0 h) aged/aged and CS+CS (2/0 h)
fresh/fresh). Untreated control cells were also included.
The period of incubation with the drugs was 24 h. Fol-
lowing drug treatment, cell pellets were collected, rinsed
with ice-cold PBS and centrifuged at 3500 rpm for
2 min at 4 °C. The pellets were lysed in a cell lysis solu-
tion containing 2 M thiourea, 8 M urea, 4 % CHAPS,
65 mM dithiothreitol (BIORAD, Australia). Isoelectric
focusing (IEF) of the sample containing 200 pg of pro-
teins was performed using 11 c¢cm, pH 3-10 non-linear
ReadyStrip™ IPG Strip in Protean i12 IEF cell unit
(BIORAD, Australia) rehydrated in 8 M urea, 2 M thio-
urea, 4 % CHAPS, 60 mM dithiothreitol, 0.2 % carrier
ampholyte, 0.0002 % bromophenol blue and deStreak
(BIORAD, Australia). Two equilibration steps of the IPG
were performed in SDS equilibration buffer containing
SDS, 6 M urea, 50 % glycerol, 1.5 M Tris HCI (pH 8.8),
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and bromophenol blue with the first containing 0.5 g di-
thiothreitol and the second 0.5 g iodoacetamide. Protein
concentration was determined using Bio-Rad Protein
Assay (BIO-RAD, Australia). SDS-PAGE was performed
using 4-20 % SDS Criterion™ TGX™ pre-cast gels in a
Criterion Dodeca™ cell separation unit (BIO-RAD,
Australia) at constant 200 V for 100 min in a Tris-
glycine-HCl buffer system. The gels were stained with
Bio-Safe Coomassie Stain (BIO-RAD, Australia) for
60 min. At least a duplicate of gels containing protein
spots from the same sample were used for analysis. The
gel images obtained by ChemiDoc™ MP Imaging system
(BIO-RAD, Australia) were analysed for protein spots
using Melanie version 7.0 software (GeneBio, Switzeland).
A 2.0 fold change in the expression of a protein across the
matched groups was used as the cut-off for differential
expression. Analysis of variance (ANOVA), a statistical
tool used to detect differences between experimental
group means, was performed using a target significance
level of 0.05.

MALDI-TOF/TOF MS

Protein spots were excised from preparative 2-D gels
stained with Bio-Safe Coomassie Stain (BIO-RAD,
Australia). The spots were destained with 120 pl of
(50 % acetonitrile (ACN)/50 mM NH,HCO3) solution
and heated at 37 °C for 30 min with mild shaking. The
solution was then discarded. The gels were treated with
25 ul ACN and left to dry for 15 min. The solution was
discarded then the spots were left to dry with the lid left
open in the oven at 37 °C for 15 min followed by cooling
at 4 °C. The spots were digested with 10 pl trypsin for
10 min on ice. The trypsin supernatants were placed in
96-well plate at 4 °C followed by 10 ul addition of
25 mM NH4HCOj; for overnight digestion at 37 °C. The
resulting peptides were extracted with 0.1 % trifluoroa-
cetic acid (TFA) then extracted and concentrated by C18
zip-tips (Millipore, p-C18, P10 size) on Xcise (Proteome
Systems). A 1 ul aliquot was manually spotted onto a
MALDI AnchorChip plate with 1 ul of matrix (CHCA,
1 mg/mL in 90 % v/v ACN, 0.1 % TFA) and left to dry
in air. Matrix assisted laser desorption ionisation mass
spectrometry (MALDI-MS) was performed with 4800
plus  MALDI TOF/TOF Analyser (AB Sciex). A
neodymium-doped yttrium aluminum garnet (Nd:YAG)
laser (355 nm) was used to irradiate the sample. Spectra
were acquired in reflectron MS scan mode in the mass
range of 700-4000 Da. The instrument was then
switched to MS/MS (TOF-TOF) mode where the eight
strongest peptides from the MS scan were isolated and
fragmented by collision induced dissociation (CID), then
re-accelerated to measure their masses and intensities. A
near point calibration was applied and would give a typ-
ical mass accuracy of 50 ppm or less. The data on
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peptides masses were analysed using database search
program Mascot (Matrix Science Ltd, London, UK). The
peak lists were searched against Homo sapiens entries in
the SwissProt database. The protein identification was
undertaken at Australian Proteome Analysis Facility
(APAF) the infrastructure provided by the Australian
Government through the National Collaborative Re-
search Infrastructure Strategy (NCRIS).

Results

Cytotoxicity

Figure 2 shows the cell survival fractions versus concen-
tration plots for CS, CB, and OX as applied to the
human ovarian cancer A2780, A2780°F, A27807P*73R
and SKOV-3 cell lines. The ICs, values of CS, CB and
OX are presented in Table 2. As expected, the values
were higher in the resistant A2780*}, A2780“P°*"3R and
SKOV-3 cell lines with OX having the largest value in
SKOV-3. The parent A2780 cell line was most sensitive
to the drugs, A2780“P%73R was least sensitive to CB and
SKOV-3 was least sensitive to OX.

Administration in two aliquots

Figure 1 gave the combination index (CI) values applying
to administration of CS, CB and OX in two aliquots with
a time gap of 2, 4, 8, or 24 h to the ovarian cancer
A2780, A2780°*, A2780”"%7*} and SKOV-3 cell lines
where CI values of <1, =1 and >1 indicated respectively
synergism, additivity and antagonism in combined ac-
tion. Cells were treated with solutions of CS, CB and
OX at three different concentrations based on their ICs,
values. When CS was administered in two aliquots
(fresh/aged), the killing of A2780 cells was most pro-
nounced when the time gap was 8 h; all other time gaps
were found to be additive to antagonistic. In A2780F
cell line, much pronounced cell kill was observed for
time gaps of 2, 4 and 8 h and antagonism was observed
when it was increased to 24 h. In A2780“P%*73R cell line
also, extremely pronounced cell kill was observed for
time gaps of 2, 4 and 8 h and reduced cell kill was ob-
served when this was increased to 24 h. In SKOV-3 cell
line, synergistic cell kill was observed only for the 24 h
time gap. When CB was administered in two aliquots
(fresh/aged) in A2780 cell line synergistic kill was ob-
served when the time gap was 4, 8 or 24 h. It was most
pronounced when the time gap was 4 and 8 h but antag-
onistic when the time gap was 2 h. In A2780°R cell line,
pronounced cell kill was observed for the time gaps of 2,
4 and 8 h and reduced cell kill was observed when it
was 24 h. In A27807P%73R cell line also, extremely
pronounced cell kill was observed for time gaps of 2, 4
and 8 h and reduced cell kill was observed when this
was increased to 24 h. In SKOV-3 cell line, antagonism
was observed for all time gaps.
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Fig. 2 Cell growth inhibition following increasing concentrations of
platinum drugs. Cell survival fractions of ovarian cancer A2780, A2780°F,
A2780°%%3R and SKOV-3 cell lines following treatrent with increasing
concentrations of a CS, b CB and ¢ OX for 72 h were determined using
MTT assay and spectrophotometric measurement. Error bars represent
the standard deviation (where straight lines or curves containing the
dot points are meaningless)
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Table 2 Summary of the ICsy values (uM) and resistance factors
(RF) for CS, CB and OX as applied to the ovarian cancer A2780,
A2780%R A27807P%73F and SKOV-3 cell lines. ICs, is the drug
concentration required for 50 % cell kill and RF is the ratio of
the 1Csp value in the resistant A2780°F and A27807P%%3R cel|
lines over that in the responsive parent A2780 cell line

A2780 A2780%%  RF A2780°P%73R RF SKOV-3
CS 054003 82406 177  60+05 130 102+05
(B 140+14 489+39 35 646+32 46 434+39
OX 024001 04+002 19  04+003 21 436+30

When OX was administered in two aliquots (fresh/
aged), cell kill in A2780 cells was pronounced when the
time gap was 4, 8 and 24 h and reduced cell kill was ob-
served when the time gap was 2 h. In A2780°*® and
A2780%“P%*73R 41l the time gaps (especially 4 and 8 h)
produced pronounced cell kill. When OX was adminis-
tered in two aliquots (fresh/aged) to SKOV-3 cell line,
cell kill was pronounced when the time gap was 2 h,
additive when it was 4 h and reduced cell kill was ob-
served when it was increased to 8 and 24 h. The results
indicate the administration of CS, CB, and OX in two al-
iquots, with the first aliquot fresh and the second aliquot
aged, generally caused enhanced cell kill especially in the
resistant A2780“*F and A2780%“P%*7*R cell lines. In con-
trast, administration of CS, CB and OX in two aliquots
with both being fresh, produced mostly reduced cell kill
in A2780, A2780°*" and A2780”"%"*% cell lines. In
SKOV-3 cell line, enhanced cell kill resulted when the
time gap was 2, 4, and 8 h and reduced cell kill resulted
when it was 24 h (Fig. 3).

Platinum accumulation

To determine whether the enhanced cell kill was associ-
ated with an increase in platinum accumulation, the
levels of platinum accumulation following the adminis-
tration of CS in two aliquots with a time gap of 2 and
4 h in A2780 and A2780°*F cell lines were determined,
using both fresh and aged solutions (Fig. 4). It was found
that both fresh/fresh and fresh/aged combinations were
associated with significantly higher platinum accumula-
tions in A2780 cell line. The highest platinum accumula-
tion resulted from fresh/aged combination with 4 h time
gap. In the resistant A2780*F cell line, only the aged so-
lution resulted in increased platinum accumulation.

Platinum-DNA binding

As a key step in the antitumour action of platinum drugs
is their binding with DNA (that initiates downstream
processes in the cell cycle leading to apoptosis),
platinum - DNA binding levels in A2780 and A2780°}
cell lines were determined applying to administration of
solutions of CS in two aliquots with a time gap of 2 and
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4 h, using both fresh/fresh and fresh/aged combinations.
Figure 2 gave platinum — DNA binding levels in ovarian
cancer A2780 and A2780°“F cell lines as applied to
the administration of CS in two aliquots with a time
gap of 2 and 4 h.

The platinum - DNA binding levels in A2780*% cell
line were generally found to be greater from administra-
tion in two aliquots than from the bolus for both 2 and
4 h time gaps, as applied to both fresh/fresh and fresh/
aged combinations but more so for the latter. In the par-
ent A2780 cell line, only the fresh/aged combination re-
sulted in greater Pt - DNA binding level (for both 2 and
4 time gaps) than the bolus (Fig. 5).

Cellular glutathione

Since oxidative stress is like a double edged sword in can-
cer that can lead to both programmed cell death and cell
survival, the effect of nature of administration of CS and
CB on the cellular glutathione level was also investigated.
Specifically, the effect of administration of the drug as a
bolus and in two aliquots applying to both fresh/fresh and
fresh/aged solutions of CB and CS was investigated. The
levels of total glutathione (GSH plus GSSG) and the
oxidized glutathione (GSSG) in A2780 and A2780°*" cell
lines were determined (Fig. 6a, b). In line with reported
result [13—15], total glutathione was found to be higher in
the CS-resistant A2780“*F cell line than in the parent
A2780 cell line before and after drug treatment. There
was a significant decrease in total glutathione level follow-
ing treatment of A2780 and A2780°“ cells with solutions
of CS and CB. This was found to be true for both bolus
administration and that in two aliquots but more so for
the bolus. The results indicate that bolus administration
of CS and CB produced a greater oxidative stress in the
cells than that in two aliquots. As noted earlier, there was
an increase in cell kill due to the administration of CS and
CB in two aliquots using fresh/aged combinations.

Platinum speciation

With the idea that the greater cell kill resulting from
administration of CS, CB and OX in two aliquots using
fresh/aged combinations could be due to speciation of
the drugs (resulting in the production of more cytotoxic
species), mass spectral analysis of solutions of OX in cell
culture media were performed. Figure 7 gave magnified
mass spectrum showing major peaks of OX dissolved in
cell culture medium. The major peaks observed in the
mass spectra are given in Table 3.

Peak with m/z=420.0493 is believed to be due to
the molecular ion [Pt(DACH)(C,O,) +Na]® where
Na* is from the culture media. Peak with m/z=
436.0233 is believed to be due to the molecular ion
[Pt(DACH)(C,0,) + K]* where K* is from the culture
media. Peak with m/z = 478.0080 is due to Pt(DACH)(Pyr)
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Fig. 3 Combination Index (Cl) values following the administration of a CS, b CB and ¢ OX in two aliquots with a time gap of 2, 4, 8, or 24 h as applied to
the ovarian cancer A2780, A2780°R A27807°%473R and SKOV-3 cell lines using both fresh/fresh and fresh/aged combinations. Cl values were calculated
following 72 h treatments. Cl values of <1, =1 and >1 indicate respectively synergism, additivity and antagonism in combined drug action
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(where Pyr = pyridoxine (vitamin Bg)), believed to be
formed in the cell culture media. The peak with m/z =
680.1303 may be due to Pt(DACH)(SCH3)(GSH) formed
in the culture media and that with m/z=795.0480 is
believed to be due to dimeric species consisting of two
Pt(DACH) units catenated by two oxalate ligands. Finally,
the peak with m/z=940.2129 is believed to be due to
Pt(DACH)(GSH),.

Proteomics
As stated earlier, proteomic studies were carried out
to identify the proteins differentially expressed in the

resistant A2780°"F cell line as compared to the levels
found in parent A2780 cell line. 2-D gels resolved
over 390 proteins of which 72 were found to be
differentially expressed in A2780“*" cell line as com-
pared to the parent A2780 cell line (Fig. 8). Adminis-
tration of CS in two aliquots with a time gap was
found to restore the expression of at least 22 proteins
to the levels found in the parent cell line, of which
12 were down-regulated and 10 up-regulated prior to
drug treatment. A summary of the proteins, their
possible functions, and associations with neoplasia are
given in Table 4. The proteins belong to seven groups
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Fig. 4 Cellular platinum accumulation in ovarian cancer A2780 and A2780°*% cell lines resulting from administration of CS in two aliquots using
both fresh/fresh and fresh/aged combinations of CS with a time gap of 2 and 4 h. Cells were treated with the drugs for 24 h followed by
collection, lysis and finally Pt was determined using AAS. Data was statistically analyzed using the paired Student’s t test: * p < 0.05 indicates significant
difference from control. Error bars represent the standard deviation

based on cellular functions namely: invasion and
metastasis, cell cycle regulation and proliferation,
metabolic and biosynthesis processes, stress-related
proteins and chaperones, mRNA processing proteins,
cellular organization/cytoskeleton, cellular communi-
cation and signal transduction (Fig. 9). The proteins
are believed to be associated with platinum resistance

in ovarian cancer. A more detailed description of
their functions as applied to platinum resistance in
ovarian cancer is given in the discussion.

Discussion
In this study, the efficacy of administering CS, CB and
OX in two aliquots with a time gap was investigated

25 4

Pt-DNA binding (nmol/mg DNA)

= A2780
= A2780°R

CS CS+CS CS+CS CS+CS CS+CS
(2/0 h) (4/0 h) (2/0 h) (4/0 h)
Fresh/Fresh Fresh/Aged

Fig. 5 Platinum — DNA binding in ovarian cancer A2780 and A2780°F cell lines as applied to the administration of CS in two aliquots using both
fresh/fresh and fresh/aged combinations of CS with a time gap of 2 and 4 h. Cells were treated with the drugs for 24 h followed by collection,
DNA extraction and finally pt detection using AAS. Data was statistically analyzed using the paired Student's ¢ test: * p < 0.05 indicates significant
difference from control. Error bars represent the standard deviation
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Fig. 6 Levels of a total glutathione (GSH plus GSSG) and b oxidized glutathione (GSSG) in relative luminescence units (RLU x 10% in A2780 and
A2780°°F cells before and after their treatments with solutions of CS and CB administered as a bolus and in two aliquots with time gaps of 2 and
4 h using fresh/fresh and fresh/aged combinations. Cells were treated for 24 h and glutathione content was determined using GSH/GSSG-Glo
Assay kit. Data was statistically analyzed using the paired Student's t test: * p < 0.05 indicates significant difference from control. Error bars represent the
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with the idea that results may provide information about
the processes that take place during platinum-based
chemotherapy practiced in the clinic. In particular, the
results might provide valuable insight into the molecular
aspect of administering the same drug in cycles. As
noted earlier [11], among the three platinum drugs, OX
was most active against the ovarian cancer A2780,
A2780°*F and A27807"*"* cell lines but had the lowest
activity against SKOV-3 cell line. The higher activity of
OX as compared to CS against A2780, A2780°*® and
A27807P™73R cell lines, could be due to differences in
both the leaving groups and the carrier ligands in OX
and CS (oxalate in OX as against chloride in CS and
trans-R,R-diaminocyclohexane abbreviated as DACH in
OX as against ammonia in CS). This difference allows
several conformational differences to exist in the intras-
trand 1,2-(GpG) adducts formed by CS and OX [16, 17].
Whereas the CS crosslink preferentially undergoes
hydrogen bonding with the 5’ side of adduct (that causes

a greater structural distortion to the base pair at the 5’
end), OX does so with the 3’ end of the intrastrand
crosslink. Also, in the case of OX there is a strong
hydrogen bond between the NH, group of the DACH
ligand and the O6 oxygen atom of the 3’ guanine nucleo-
base. It has been suggested that the conformational
differences between OX — DNA and CS - DNA adducts
may be responsible for differences in their protein recog-
nition and cellular processing [16]. The low activity of
OX against SKOV-3 cell line may lie in the p53-null
status of the cells [18, 19].

As applied to the administration of CS, CB and OX in
two aliquots with a time gap, experiments were done
using both fresh/fresh and fresh/aged solutions. The pur-
pose behind using both fresh and aged solutions was to
determine the effect of speciation of activity of platinum
drugs. Hydrolysis of platinum drugs produces highly re-
active mono- and di-aquo species that can deprotonate
and polymerise to produce species with multiple metal
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centres. The presence of the species is believed to alter
the nature of interaction with DNA (as well as that with
other cellular platinophiles). For example, multi-nuclear
platinum species may carry a greater net positive charge
making them more easily attracted to the negatively
charged DNA. Furthermore, unlike CS that binds
predominantly to one strand of DNA, multinuclear
species may bind more significantly to both the
strands of DNA [20, 21].

When CS, CB and OX were administered in two
aliquots with a time gap than as a bolus, it was found
that there was a greater cell kill with fresh/aged combin-
ation. The extent of cell kill was dependent on the
duration of the time gap with 8 h time gap producing
most pronounced cell kill in the parent A2780 cell line.
In A2780°F and A27807“P*"3R resistant cell lines, time

gaps of 2, 4, and 8 h all caused pronounced cell death.
In contrast, in SKOV-3 cell line, 24 h time gap was addi-
tive in action whereas 2 to 8 h time gaps were antagonis-
tic. Additiveness to antagonism observed with fresh/fresh
combinations and synergism seen with fresh/aged com-
binations, suggest that the increased cell kill associated
with the latter may be due to the formation of more
cytotoxic species resulting from hydrolysis, deproton-
ation and polymerisation reactions and the rates of these
processes are considered to be greater at the ambient
temperature than under the frozen condition. In line
with the idea, it was found that when solutions of CS
were left standing at room temperature, the cell killing
effect increased with time (data not shown) as was ob-
served by others (Yachnin [21]). To gain a better under-
standing of the speciation of platinum drugs in solution
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Table 3 Major peaks in the mass spectra of aged solution of OX in cell media

m/z No. of possibilities Formula Relative intensity (x10°) Suggested structure
398 1 Pt(CsH14N)(C0.) 16 (0]
NH,O0-_~
\7/
A
NH,07X
420.0493 4 [Pt(C6H14N2)(Czo4) + Na]* 46 NHZO /O Na
\N7
Pt
/ \
i: :NHZO o
4360233 2 Pt(CsH1aN), — 3H 7.2 NH%N H,
\
Pt
/ \
NH,NH,
4780080 14 [Pt(CoH1aN2)(CgH11NO3)T™ 8 OH
(L
Pt—N
M, Y4 on
HsC OH
680.1303 67 [Pt(CoH 4N (CroH17N306S)(CH3CH,SH) + 2H]* 26 CHa
N, /5 Q. —cooH
Pl—s NH
NH, \—?;
NH
—COOH
HN
738.0889 157 [Pt(CgH14N)(Cy0H17N306S)(C3H,NOL )T 9 HaN oH
< \O
NH, /S Q /fCOOH
Pt—S NH
SN
NH
o
COOH
H,N
795.0480 277 [Pto(CeHy4NL)5(Co04), + HIT 21 Q 92
b M
S
\Pt Pt/
VY 4™
H 7/ & H
o o
940.2129 377 [Pt(CoH1aN2)(CroH17N3065),01" 19 <°°°”
NH
o} COOH
NH

in terms of hydrolysis and formation of more cytotoxic
species, limited mass spectral measurements with solu-
tions of OX were carried out. The results are discussed
latter in the paper.

Also whether the enhanced cell kill due to the adminis-
tration of platinum drugs in two aliquots with a time gap
was associated with a corresponding increase in cellular

accumulation of platinum and consequently a greater level
of platinum — DNA binding or it was due to speciation of
platinum drugs in cell culture medium at the ambient
temperature, the cellular platinum accumulation and plat-
inum - DNA binding levels associated with the adminis-
tration of CS in two aliquots with a time gap (2 and 4 h)
were determined, as applied to both fresh/fresh and fresh/
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this study are marked with their spot number ID

Fig. 8 2-DE pattern of whole-cell proteins in A2780 cell line. The 2-D gel was stained with coomasiee brilliant blue (11 cm, pH 3-10 non-linear,
4-20 % SDS-PAGE, 200 pg proteins). The protein spots differentially expressed in A2780“" compared to the parent A2780 cell line identified in

high

Molecular Weight

aged combinations. It may be noted that although plat-
inum - DNA binding is a necessary step in the pro-
grammed cell death due to platinum drugs, it is not
sufficient as the programmed cell death is actually carried
out by downstream processes in the cell cycle in
which many proteins are involved. In any case, the
drugs must enter the cells before they can bind with
DNA or be deactivated due to binding with cellular
platinophiles [3, 22].

Figures 4 and 5 gave the cellular accumulation and
platinum — DNA binding levels resulting from adminis-
tration of CS in two aliquots with time gaps of 2 and 4 h
in A2780 and A2780R cells, as applied to both fresh/
fresh and fresh/aged combinations. It was found that
fresh/aged combination produced greater platinum accu-
mulation than the fresh/fresh combination suggesting
that there were either greater influx or reduced efflux or
both. Since the species formed are likely to be positively
charged, they are more likely to be transported by or-
ganic cationic transporters rather than by passive diffu-
sion and copper transporter 1 that is also known to
transport CS into the cell (CTR1) [23]. As applied to
platinum — DNA binding level, it was found that in the
parent A2780 cell line administration in two aliquots
with a time gap resulted in a lower platinum — DNA
binding level with fresh/fresh combination than the bolus
but a greater level from fresh/aged combination. In the
CS-resistant A2780°*F cell line, both fresh/fresh and
fresh/aged combinations resulted in significantly greater
platinum - DNA binding levels than the bolus. The
results indicate that (regardless of the ageing status of
the solution) the administration of platinum drugs in

two aliquots with a time gap may be better able to over-
come mechanism of platinum resistance in the CS-
resistant cell line, giving support to the merit of cycle
regimens used in the clinic.

Cellular glutathione levels were also determined as a
measure of changes in redox status of the cell. Figure 6a
and b respectively gave the levels of total glutathione
(GSH and GSSG) and oxidized glutathione (GSSG) in
A2780 and A2780°F cell lines following their treat-
ments with solutions of CS and CB administered as a
bolus and in two aliquots with a 4 h time gap. Although
the level of total glutathione in both A2780 and
A2780°F cell lines after drug treatments was lower than
the levels before treatment (irrespective of whether the
drug was administered as a bolus or in two aliquots), the
decrease was greater for the bolus than the administra-
tions in two aliquots. CB was found to be more effective
than CS in lowering the level of GSH in the CS-resistant
A2780"F cell line although a kinetic study suggested
that rates of reaction CS and OX with GSH were 5-fold
greater than that of CB [24].

A smaller decrease in GSH level observed in both
A2780 and A2780R cells after treatment with CS and
CB given as a bolus than in two aliquots (with a time
gap), rebuts the hypothesis that the first aliquot would
decrease glutathione level enabling more of the second
aliquot of platinum to bind to DNA. This means that
the greater cell kill resulting from administration of plat-
inum drugs in two aliquots with a time gap can be due
to speciation of platinum drugs rather than changes in
cellular glutathione level. Thus, other changes such as
differential expression of proteins may be responsible for



Table 4 In total, 22 proteins with differential expression (2-fold increase or decrease, ANOVA p < 0.05) between A2780°F and the parent A2780 cell line due to treatment with
CS in two aliquots with a time gap of 2 h using fresh/fresh and fresh/aged combinations were identified by MALDI-TOF/TOF

Spot ID Full name MALDI location Expression in Post treatment Function Tumour association
A2780°%R expression
S CS+CS
fresh  aged
3 COX5A  Cytochrome c oxidase Score: 63 Mitochondria Down Regulated PR PR OR Ribosome biogenesis; Breast [77]; cervix [78]; colon [77];
subunit 5A, mitochondrial ~ Mass: 16752 mitochondrial respiratory gastric [31]; Kidney [79]; Lung [80-82];
pl 6.30 chain Nasopharyngeal [32]; Oesophageal [77];
Coverage: 11 % Ovarian [77]; Prostate [77]; Thyroid [83]
19 COF2 Cofilin-2 Score: 127 Cytoplasm, Down Regulated R R OR Actin polymerization Pancreatic [84]; Prostate [85]
Mass: 18725 cytoskeleton
pl: 7.66
Coverage: 39 %
34 1433G  14-3-3 protein gamma Score: 315 Cytoplasm Down Regulated PR PR OR Adapter protein Breast [86]
Mass: 28285
pl- 4.80
Coverage: 44 %
41 MARET  Microtubule-associated Score: 62 Cytoplasm Down Regulated - R OR  Microtubule cytoskeleton Colon [87]; lung [88]; gastric [89];
protein RP/EB family Mass: 29980 dynamics; cell migration. oesophageal [90];
member 1 pl 5.02
Coverage: 29 %
50 NPM Nucleophosmin Score: 68 Nucleoplasm Down Regulated - R OR Chaperone; ribosome Bladder [91]; breast [92]; Colon [93];
Mass: 32555 biogenesis; p53 and ARF gastric [94]; haematopoietic [40];
pl: 4.64 regulation ovarian [95]; prostate [96]
Coverage: 26 %
51 ANXAT  Annexin Al Score: 369 Nucleus, cytoplasm Down Regulated R R OR Calcium/phospholipid- breast [97]; gastric [98]; HNSC [36];
Mass: 38690 binding protein lung [99]; oesophageal [100, 101];
pl 6.57 prostate [100, 102];
Coverage: 53 %
62 RSSA 40S ribosomal Score: 311 Cell membrane, Up Regulated R R - laminin receptor; fate Breast [103]; cervical [104]; colon
protein SA Mass: 32833 cytoplasm, nucleus determination; tissue [54, 55, 105]; melanoma [106]
pl-4.79 morphogenesis
Coverage: 34 %
65 ACTB Actin, cytoplasmic 1 Score: 767 Cytoplasm Up Regulated PR R PR cell motility Colon [107]; gastric [108]; liver [109];
Mass: 41710 sarcoma [110]
pl: 529
Coverage: 53 %
70 CALU Calumenin Score: 141 Sarcoplasmic, Up Regulated - OR PR Vitamin K-dependent Colon [111]; gastric [112]; glioblastoma
Mass: 37084 endoplasmic reticulum carboxylation [113]; prostate [114];
pl- 447
Coverage: 14 %
72 HNRPF  Heterogeneous nuclear Score: 342 Nucleus Down Regulated R OR R processing of pre-mRNAs; Gastric [115]; thyroid [116]
ribonucleoprotein F Mass: 45643 alternative splicing events
pl 538

Coverage: 33 %
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Table 4 In total, 22 proteins with differential expression (2-fold increase or decrease, ANOVA p < 0.05) between A2780°*" and the parent A2780 cell line due to treatment with
CS in two aliquots with a time gap of 2 h using fresh/fresh and fresh/aged combinations were identified by MALDI-TOF/TOF (Continued)

76

85

92

100

103

104

127

139

149

170

ENOA

ATPA

PDIA3

HNRPK

CH60

TCPQ

GRP75

GLU2B

HSP74

HNRPC

Alpha-enolase

ATP synthase subunit
alpha, mitochondrial

Protein disulfide-
isomerase A3

Heterogeneous nuclear
ribonucleoprotein K

60 kDa heat shock
protein, mitochondrial

T-complex protein 1
subunit theta

Stress-70 protein,
mitochondrial

Glucosidase 2 subunit
beta

Stress-70 protein,
mitochondrial

Heterogeneous nuclear
ribonucleoproteins

Score: 471
Mass: 47139

pl: 7.01
Coverage: 47 %

Score: 391
Mass: 59714
pl:9.16
Coverage: 29 %

Score: 525
Mass: 56747

pl: 598
Coverage: 54 %

Score: 123
Mass: 50944

pl: 539
Coverage: 26 %

Score: 762
Mass: 61016
pl:5.70
Coverage: 39 %

Score: 200
Mass: 59583

pl 542
Coverage: 24 %

Score: 839
Mass: 73635

pl- 5.87
Coverage: 33 %

Score: 80

Mass: 59388

pl: 4.33
Coverage: 11 %

Score: 187
Mass: 94271

pl 511
Coverage: 10 %

Score: 142
Mass: 33650
pl: 495
Coverage: 8 %

Cytoplasm

Mitochondria

Endoplasmic reticulum

Cytoplasm, nucleus

Mitochondria

Cytoplasm

Mitochondria, nucleus

Endoplasmic reticulum

Cytoplasm

Nucleus

Down Regulated

Up Regulated

Down Regulated

Up Regulated

Up Regulated

Down Regulated

Down Regulated

Up Regulated

Down Regulated

Up Regulated

PR

PR

OR

PR

OR

PR

OR

OR

OR

PR

OR

OR

R

OR

PR

PR

OR

Glycolysis; hypoxia tolerance;
tumour suppressor

Production of ATP from ADP

endopeptidase; electron
carrier;

Pre-mRNA-binding proteins;
p53 response to DNA
damage

macromolecular assembly;
stress working chaperone

chaperone

Cell proliferation; cellular
aging; chaperone

Regulatory subunit of
glucosidase Il

Stress response; cell
proliferation, differentiation

mRNA processing and
translation

Breast [117]; lung [118];
nasopharyngeal [119];

Breast [120]; colon [121]; gastric [122];
leukemia [123]; thyroid [124];

Lung [125]; ovarian [48]; Prostate [46];
retinoblastoma [126]

Breast [127]; colon [128]; Leukemia
[129, 130J; lung [131]; Oropharyngeal
[132]; pancreatic [133];

Bronchus [134]; Colon [135]; leukemia

[136]; prostate [137]

Colon [138]; liver [139];

Brain, Breast, colon, kidney, lung,

ovarian [140]

Colon [138, 141]; sarcoma [142];

Breast [143]

Breast [144]; colon [145]; lung [146];
pancreatic [147];
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Table 4 In total, 22 proteins with differential expression (2-fold increase or decrease, ANOVA p < 0.05) between A2780°F and the parent A2780 cell line due to treatment with
CS in two aliquots with a time gap of 2 h using fresh/fresh and fresh/aged combinations were identified by MALDI-TOF/TOF (Continued)

215 CALR Calreticulin Score: 246 Endoplasmic, Up Regulated - R OR Calcium-binding Bladder [69]; breast [148]; colon [149];
Mass: 48112 sarcoplasmic reticulum chaperone gastric [150]; glioblastoma [69]; liver
pl- 429 [151]; ovarian [69]; pancreas [152];
Coverage: 17 % prostate [153]

246 VIME Vimentin Score: 539 Cytoplasm Up Regulated p - OR - Filaments attached to Breast [154]; gastric [155]; lung [156];
Mass: 53619 nucleus and endoplasmic pancreas [157]
pl: 506 reticulum

Coverage: 81 %

(-) indicates that the spot was either not visible on the gel or that the treatment had no effect on the expression of the protein
R Restored, PR Partially Restored, OR Over Restored
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Fig. 9 Grouping of proteins and enzymes based on the cellular functions that were found to be differentially expressed in the resistant A278
cell line as compared to the parent A2780 cell line and that have undergone further changes in expression after treatment with the administration of
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enhanced cell kill. The level of oxidised glutathione
(GSSQ) is also found to decrease following treatment of
cells with CS and CB suggesting enhanced efflux of con-
jugated products through MRPs.

Although in this study the mass spectral analysis of
platinum speciation has been attempted primarily to find
out about speciation of platinums on ageing i.e. when
left standing at ambient temperature, it is important to
note that platinum speciation especially in solution in
the biological matrix gained increasing focus when it be-
came clear that (1) the active drugs were the hydrolysed
products rather than the intact molecules and that (2)
the drugs are inactivated due to conjugation with pro-
teins and peptides (such as glutathione) [25]. When so-
lutions of OX made in buffered cell culture media were
left standing at room temperature, a number of peaks
were observed indicating that OX in solution underwent
hydrolysis followed by further speciation. It should
however be noted that many possible matches in terms
of structure could be found for a given peak in the mass
spectrum (having defined mass to charge ratio, mass
error of less than 2 ppm and isotopic splitting pattern).
For example the peak with m/z =420 had four possible
matches whereas that with m/z =940 had 377 matches.
Notwithstanding the multitudes of structural possibilities
for the observed peaks, it can be seen that OX in
solution had underwent hydrolysis and that the products
of hydrolysis conjugated with components present in the
cell culture media. A detailed description of the peaks in
terms of suggested structures is given as follows. It
should be noted when the drug enters the cell, other

compounds are likely to be formed due to binding with
the cellular constituents. For example, formation of in-
active complexes such as Pt(DACH)(GSH),
Pt(DACH)(Cys) and Pt(DACH)(Met) due to binding of
the Pt(DACH) unit with cellular constituents GSH, Cys
and methaionine (Met) have been reported [26]. The ad-
ducts may be inactive if they are inert towards binding
with DNA. However, formation of such adducts within
the cell may lead to oxidative stress and the resulting side
effects due to depletion of cellular thiols [27]. A more de-
finitive statement about the cytotoxicity of adducts can be
made when they are isolated using a suitable method of
separation e.g. reverse phase HPLC. It is possible that di-
meric species Pty(CgH14N5)2(C204), can be a potent DNA
binder with enhanced cytotoxicity. It is appropriate to
note that many more dimeric and trimeric species were
formed in the aged solution of OX in mQ water i.e. in the
absence of culture media than in its presence. One
important difference between speciation of OX in the
buffered cell culture media and in solution in mQ water
was that a greater number of hydrolysed products e.g.
hydroxy, aqua and oxalate bridged dimeric, trimeric,
tetrameric and even pentameric species were formed in
the aged solution of OX in milli-Q water. The paucity
of such multimeric species in the cell culture media,
may indicate that complexation with constituents of the
media had served to hinder the polymerisation reac-
tions. It is also possible that the background noise in
the spectra might have served to mask their presence.
Finally, the presence of dimeric species was also re-
ported in the aged solution of cisplatin [28].
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Proteomics

Proteomics involving 2-D gel electrophoresis and mass
spectrometry were employed to identify key proteins as-
sociated with drug resistance in A2780°*F ovarian cancer
cell line. It was based on the idea that proteins associ-
ated with drug resistance would undergo marked
changes in expression in the resistant A2780°* cell line
as compared to that in the parent A2780 cell line. It was
also thought that the proteins in question might be re-
stored back to normalcy after treatment with drugs in
two aliquots that caused enhanced cell kill (although the
involvement of multiple pathways both in apoptosis and
cell survival may mean not all of the proteins need to be
concurrently targeted to bring about the cell death).
However, the difficulty in the extraction of hydrophobic
proteins including transmembrane proteins means that
the identification of proteins such as CTR1 and other
platinum influx transporters may remain elusive. Fur-
thermore, proteomic results provide only a static picture
at a selected time point (or points) whereas the cells be-
ing dynamic in nature would undergo continual changes.
Other drawbacks of proteomics include difficulty in ex-
traction of proteins that are low in abundance and in-
ability to provide a complete picture at the levels of
organs and organisms [29]. Notwithstanding these limi-
tations, in this study 390 proteins were identified of
which 72 underwent significant changes in expression in
the resistant A2780F cells compared to the levels
found in the parent A2780 cells. Administration of CS in
two aliquots with a time gap restored the expressions of
at least 22 proteins to levels comparable to those found
in the parent cell line, of which 12 were down-regulated
and 10 up-regulated prior to drug treatment. A sum-
mary of the proteins, their possible functions, and asso-
ciations with neoplasia were given in Table 4.

One of the proteins undergoing differential expression
is mitochondrial cytochrome c¢ oxidase subunit 5A
(COX5A) which is one of the 13 subunits that make up
cytochrome c oxidase (COX), the terminal enzyme of
the mitochondrial electron transport chain. It was
down-regulated in untreated A2780°*} cell line as com-
pared to the parent A2780 cell line, over-restored due to
treatment with aged solution of CS administered in two
aliquots with 2 h time gap but only partially-restored
when the same treatment was given with fresh solution.
Although the three largest subunits COX1, COX2 and
COX3 form the catalytic core of cytochrome oxidase,
COX5A coupled to COX4 is essential for the assembly
of the entire unit [30] so that a decrease in the expres-
sion of COX5A may be an indicator of under perform-
ance of the entire enzyme. COX5A was found to be
down-regulated in other cancers such as nasopharyngeal
and gastric carcinomas [31, 32]. Thus, the up-regulation
of COX5A in A2780°R cells following treatment with
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solutions of CS administered in two aliquots with a time
gap can be a factor responsible for the pronounced cell
kill. Cofilin-2 (COF-2) was also down-regulated in
A2780°F cell line as compared to the parent A2780 cell
line. Administration of fresh solution of CS in two aliquots
with a 2 h time gap caused its full restoration whereas that
with the aged solution led to over-restoration. The results
indicate that COF-2, which is the major component of
intranuclear and cytoplasmic actin rods that plays a crit-
ical role in the regulation of actin filament dynamics in eu-
karyotes [33], may be associated with platinum resistance
in ovarian cancer and that the employed treatments have
been able to overcome the mechanism of resistance apply-
ing to the protein. Another protein found to be down-
regulated in A2780°*" as compared to that in A2780 cell
line was 14-3-3y. Present abundantly in the cytoplasm,
14-3-3 proteins participate in a wide variety of activities
including DNA repair, apoptosis, the onset of cell differen-
tiation and senescence, and the coordination of cell adhe-
sion, motility, intracellular signalling and cell cycle control
[34]. Administration of CS in two aliquots with 2 h time
gap caused its partial restoration when fresh solutions
were used but led to over-restoration with aged solutions.
The results indicate that 14-3-3y may be a key protein as-
sociated with platinum resistance in ovarian cancer. An-
other protein of interest is MARE1 that belongs to the
microtubule-associated protein RP/EB family. It is a
prototypic member of microtubule plus-end tracking pro-
teins (+T1IPs) that control microtubule dynamics and are
associated with different cellular structures. MARE1 was
down-regulated in A2780°*® ovarian cancer cell line as
compared to A2780 cell line. The administration of CS in
two aliquots with 2 h time gap led to its full restoration.
Although down-regulation of MAREL1 inhibits the forma-
tion of stable microtubule, the role of MARELI in inducing
chromosomal instability remains unclear [35]. The next
identified protein was Annexin Al that belongs to the
annexin family of proteins that have been implicated in
many molecular and cellular processes, including modula-
tion of phospholipase A2 and kinase activities in signal
transduction, maintenance of cytoskeleton and extracellu-
lar matrix integrity, tissue growth and differentiation, in-
flammation, and blood coagulation [36—38]. ANXA1 was
found to be down-regulated in the CS-resistant A2780"
cell line as compared to the parent A2780 cell line. The
administration of CS in two aliquots with 2 h time gap
fully restored ANXAI. The results indicate that ANXA1
may be playing an important role in drug resistance in
ovarian cancer and that the administered combinations
have been able to overcome associated mechanism of re-
sistance. Another protein found to be down-regulated in
the CS-resistant A2780® cell line, was nucleophosmin
(NPM), also known as nucleolar phosphoprotein B23. The
administration of CS in two aliquots caused its full
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restoration when fresh solutions were used but caused its
over-restoration with the aged solution. The over-
expression of the protein in A2780F cells due to treat-
ment with the aged solution can be a reason why a greater
cell kill was produced from the aged solution than fresh
counterpart. A number of studies suggest that NPM is in-
volved in cancer pathogenesis. In mice, inactivation of
NPM in the germ line leads to a host of developmental de-
fects that cause embryonic lethality at mid-gestation.
Haploid-insufficiency of NPM leads to unrestricted
centrosome duplication and genomic instability with mice
developing myelodysplasia with an acceleration of onco-
genesis [39]. Moreover, disruption of the NPM gene by
translocation is frequently found in human hematopoietic
malignancies [40]. The fact that NPM contributes to
oncogenesis by activating the oncogenic potential of the
fused protein partner, suggests that the down-regulation
of NPM may also indicate the under-regulation of the
tumour suppressors p53, Rb and ARF [41, 42]. Alpha-
enolase (ENOA) was also down-regulated in A2780“F cell
line as compared to the parent A2780 cell line. The pro-
tein acts as a transcriptional repressor and possibly func-
tions as a tumour suppressor. Partial restoration occurred
when A2780°F cells were treated with fresh solutions of
CS administered in two aliquots with 2 h time gap
whereas the same with aged solutions caused its full res-
toration. The results indicate that the treatments in two
aliquots using aged solutions of CS were able to overcome
mechanism of resistance associated with ENOA. Another
protein found to be down-regulated in CS-resistant
A2780R cell line as compared to its CS sensitive coun-
terpart was PDIA3. Partial and over-restoration of PDIA3
occurred when cells were treated respectively with fresh
and aged solutions of CS administered in two aliquots. Al-
though the expression of PDIA was found to be up-
regulated in some cancers such as breast, it was found to
be down-regulated in other cancers such as gastric and
prostate cancers [43—46]. Besides its role as a chaperone,
it was suggested that PDIA3 might be functioning as a
pro-apoptotic protein in prostate cancer; a decrease of
caspase activity was related to due to down-regulation of
PDIA3 in prostate cancer cell lines [46]. Down-regulation
of PDIA3 might be playing a role in the late onset of pros-
tate cancer progression. Down-regulation of PDIA3 also
correlated with increased tumour invasion and advanced
stage of gastric cancer. Hence PDIA3 has been proposed
to be a negative prognostic marker [45]. In addition to its
role in the ER stress pathway, PDIA3 has also gained at-
tention due to its association with the major histocompati-
bility complex (MHC) class I pathway. In PDIA3 deficient
mice, MHC I is impaired and negatively influences pres-
entation of antigenic peptides helping tumours to escape
from immune surveillance by cytotoxic T cells [47]. Al-
though PDIA3 was found to be over-expressed in YDOV-
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139 ovarian cancer cell line [48], in this study, CS-
resistant ovarian cancer cell line showed decreased levels
of the protein compared to the parent cell line suggesting
its involvement in resistance to cisplatin. As PDIA3 is re-
ported to be up-regulated by hypoxia [49], low levels of
PDIA3 found in A2780°F cells indicate that the cells may
not be under hypoxic stress.

Calumenin (CALU) was also up-regulated in the re-
sistant A2780“*® as compared to that in A2780 cell line.
It is a ubiquitous calcium-binding protein localized in
the endoplasmic reticulum and involved in such func-
tions as protein folding and sorting [50]. Although the
exact role of CALU is yet to be elucidated, the functions
of the calcium-binding family are well understood. They
have been associated with resistance to chemotherapeu-
tic drugs [51, 52]. In this study, administration of fresh
solution of CS in two aliquots with a 2 h time gap
caused its over-restoration whereas that with aged solu-
tion of CS led to its partial-restoration. The results indi-
cate that CALU may be associated with drug resistance
and that the employed drug combinations have been
able to overcome the associated mechanism. Another
protein that was up-regulated in the A2780“*F as com-
pared to the parent A2780 cell line was the 40S riboso-
mal protein SA (RSSA). The administration of CS in two
aliquots using fresh solution fully restored its expression.
The elevated expression of RSSA in the resistant
A2780°R cell line and its restoration back to normalcy
due to synergistic treatments give support to the idea
that the receptor is associated with metastasis and drug
resistance. Laminin has been implicated in a wide variety
of biological processes including cell adhesion, differen-
tiation, migration, signalling, neurite outgrowth and me-
tastasis. The protein also serves as a major adhesion
substrate for invasive cancer cells. Indeed, there is a dir-
ect correlation between the ability of malignant cells to
attach to laminin and their metastatic potential [53].
Thus, over-expression of RSSA was observed in many
cancers indicating its potential role in tumour progres-
sion. Highly metastatic cancer cells are found to express
at their surface significantly more laminin receptors than
do their much less metastatic or benign counterparts
[54]. Breast, cervical, colorectal and gastric carcinomas
are found to express high levels of RSSA [54, 55]. Over-
expression of this receptor is not restricted to epithelial
tumours. For example, melanomas and lymphomas also
display increased expression of the receptor [56, 57].
Next protein that was up-regulated in A2780°*F as com-
pared to A2780 cell line was ACTB that is a member of
the actin family. Actins are essential for a large range of
cell functions including cell division, migration, junction
formation, chromatin remodelling, transcriptional regu-
lation, vesicle trafficking, and cell shape regulation [58].
Administration of CS in two aliquots using fresh
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solution caused its full restoration in A2780°F cell line
but partial restoration when aged solutions were used.
The results indicate the employed treatments were able
to overcome the associated mechanism of resistance.
Three HNRNP proteins identified in this study were
HNRPC, HNRPF and HNRPK. HNRPF was down-
regulated whereas HNRPC and HNRPK were up-
regulated in the A2780*F cell line compared to the
parent A2780 cell line. Although the proteins were dif-
ferentially expressed in the resistant cell line, there does
not appear to be a direct relationship between HNRNPs
and cellular resistance to platinum drugs. ATPA and
ATPB were up-regulated in the CS-resistant A2780%}
cell line as compared to the parent A2780 cell line. Ad-
ministration of both fresh and aged solutions of CS in
two aliquots with 2 h time gap caused over-restoration
of ATPB. ATP synthase has been implicated in angio-
genesis, cellular immunity, cholesterol uptake and cellu-
lar pH regulation [59]. A novel approach by Juan et al.
targeted the deregulation and over-expression of ATP
synthase in breast cancer using an ATP synthase inhibi-
tor [60]. It may be noted that the spot corresponding to
ATPA was positioned in a cluster of spots that were
closely placed and were of poor quality after treatment
so that some uncertainty remained about ATPA. Further
experiments would be needed to ascertain changes in
expression of ATPA. However, ATP synthase appears to
be associated with drug resistance and that the employed
treatments were able to completely inhibit the expres-
sion of ATPB. The protein coded as T-complex protein
1 subunit theta (TCPQ/CCTO) was down-regulated in
A2780°*R as compared to the level found in parent
A2780 cell line. Although evidence is emerging about
the diverse roles played by the complex, relatively little
is known about the functional divergence of the individ-
ual subunits, and how this may relate their role in
tumour development and progression. Treatment with
solutions of CS given in two aliquots with 2 h time gap
caused its over-restoration with fresk solution and partial
restoration with aged solution. Another protein glucosi-
dase 2 subunit beta coded as GLU2B was up-regulated
in the A2780% cell line as compared to the A2780 cell
line. Though the exact function of GLU2B in cell differ-
entiation is yet to be determined, it may be influencing
glycosylation process of newly synthesized proteins and
may act as a regulator of distinct developmental pro-
cesses [61]. It was reported by Otto Warburg about
70 years ago that tumour cells exhibited an altered me-
tabolism, characterized by increased glucose uptake and
elevated glycolysis [62]. Indeed, an increase in the rate of
glycolysis is one of the metabolic alterations found in
most cancer cells [63, 64]. GLU2B was over-restored in
A2780F cell line due to the administration of fresh so-
lution of CS given in two aliquots with a time gap but
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the same with aged solutions had no effect on the ex-
pression of GLU2B. The results suggest that GLU2 may
be associated with drug resistance in ovarian cancer al-
though the enhanced cell kill associated with aged solu-
tions cannot be related to the protein. Calreticulin
(CALR) that is a multifunctional protein that acts as a
major calcium-binding protein in the lumen of the endo-
plasmic reticulum [65], was up-regulated in the CS-
resistant A2780F cell line as compared to the parent
A2780 cell. It is involved in a wide variety of cellular
processes including modulation of calcium signals, stor-
age and buffering of calcium, regulation of steroid-
dependent gene expression via direct interaction with
steroid receptors, cell adhesion via direct binding to
integrin o, a chaperone in protein folding, autoimmune
response and long-term neuromodulations [66]. Down-
regulation of CALR by antisense was found to increase
sensitivity of neuroblastoma x glioma NG-108-15 cells
to cytotoxic calcium overload [67]. In contrast, up-
regulation of CALR has been shown to protect HeLa
cells from apoptosis [66]. Nakajo et al. reported that the
expression of CALR markedly decreased before the
apoptosis event in human leukemia HL-60 cells [68].
Furthermore, increased expression of CALR was a poor
prognostic factor in diverse tumours including neuro-
blastoma, bladder cancer, and non-Hodgkin’s lymphoma
[69]. Interestingly, CALR is thought to function as a
pro-phagocytic signal highly expressed on the surface of
several human cancers, but minimally expressed on nor-
mal cell counterparts line [69]. The protein was fully-
restored due to treatment with fresh solutions of CS
given in two aliquots with a time gap whereas treatment
with the aged solutions caused its over-restoration. The
results can be seen to indicate that CALR may be associ-
ated with platinum resistance in ovarian cancer. Next
protein that was found to be up-regulated in CS-
resistant A2780F cell line as compared to the parent
A2780 cell line was vimentin (VIME). VIME is ubiqui-
tously expressed in normal mesenchymal cells and
known to maintain cellular integrity and provide resist-
ance against stress. Increased expression of VIME has
been reported in many epithelial cancers including mel-
anoma, prostate, gastric, oesophageal, hepatocellular,
pancreatic and breast carcinomas [70-73]. The over-
expression of VIME in cancer is extensively reported to
correlate with increased tumour growth, invasion, me-
tastasis and poor prognosis [74]. In contrast, down-
regulation of VIME inhibits carcinoma cell migration
and adhesion [75]. VIME has gained much importance
as a marker of epithelial-mesenchymal transition (EMT);
a cellular reprogramming process in which the epithelial
cells acquire a mesenchymal phenotype that renders the
cells to significantly alter their shape and show increased
motility [76]. It was over-restored due to treatment with
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fresh solutions of CS administered in two aliquots with a
time gap whereas the same with the aged solutions had
no significant effect on its expression. The results sug-
gest that VIME may be associated with platinum resist-
ance and that the increase in its expression may be
associated with poor prognosis in platinum refractory
ovarian cancer. A number of heat shock proteins (HSP)
were also found to be differentially expressed in A2780%F
cell line as compared to A2780 cell line. The first was
chaperonin 60 kDa (CH60) also known as HSP60. It was
up-regulated in A2780°*} cell line as compared to A2780
cell line. The protein was restored back when the cells
were treated with solutions of CS administered in two ali-
quots — over-restored in the case of fresh solution and
partially restored in the case of aged solution. The results
indicate that the over-expression of HSP60 may provide
the cells with survival advantage by making them more
tolerant against drugs and that the employed drug treat-
ments were able to overcome the associated mechanism
of resistance. Three HSPs belonging to the HSP-70 family
(HSP-70s) namely HSP7C, HSP74 and GRP75 were also
identified in the study. HSP74 was down regulated in
A2780°F cell line as compared to the parent A2780 cell
line. It was over-restored due to treatment with fresh solu-
tion of CS administered in two aliquots and partially re-
stored when the same was given using aged solution.
HSP7C did not show any change in expression in
A2780°R cell line as compared to A2780 cell line. The re-
sults of the study show that whereas HSP74 may be asso-
ciated with CS resistance in the tested ovarian cancer cell
lines, HSP7C may not be so. GRP75 was also slightly
down-regulated in A2780“*F as compared to A2780 cell
line. It was partially and fully-restored when the cells were
treated with fresh and aged solutions of CS administered
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in two aliquots respectively. The expression pattern of
GRP75 suggests that the protein may not be a major
player in CS resistance.

In summary belongingness of the 22 identified pro-
teins to various functional groupings such as invasion
and metastasis, cell cycle regulation and proliferation,
metabolic and biosynthesis processes, stress-related
proteins and chaperones, mRNA processing, cellular
organization/cytoskeleton, cellular communication and
signal transduction highlights that platinum resistance is
multifactorial in nature in which many proteins with di-
verse functions may be playing key roles; inevitably the
loss of control of functions can endow tumour cells with
the ability to escape programmed cell death and prolifer-
ate without control. The results also indicate that mul-
tiple strategies can be gainfully employed to overcome
the resistance.

Putting into context

With the idea that the effect of administration of plat-
inum drugs in two aliquots with a time gap may induce
changes in multiple parameters, in addition to changes
in the combined drug action, cellular accumulation of
platinum, level of platinum - DNA binding, cellular
glutathione level and changes in protein expression were
also determined. Whereas the combined drug action was
quantified for all aliquoted administrations, the cellular
accumulation of platinum, level of platinum — DNA, cel-
lular glutathione levels and proteomic studies were car-
ried out for a subset of the experiments. It was thought
that a careful consideration of the results for the subset
might lead to more meaningful conclusions. Table 5 pro-
vides a summary of all the results for the subset.

Table 5 Summary of results following treatment of A2780°R cell line with CS administered in two aliquots with 2 h time gap

Cytotoxic effect Cellular accumulation DNAbinding Proteomics®
Fresh Aged Fresh Aged Fresh Aged Fresh Aged

CS+CS

2h Antagonistic Synergistic Unchanged Increased Increased Greater increase COF2 (DR), COX5A (D,OR),
MARE1 (DR), COF2 (D,OR),
NPM (DR), 1433y (D,OR),
ANXA1 (DR), MARE1 (D,OR),
RSSA (UR), NPM (D,OR),
ACTB (UR), ANXA1 (D,OR),
CALU (U,OR), HNRPF (D,OR),
HNRPF (DR), ENOA (DR),
ATPA (U,OR), ATPA (U,0R)
HNRPK (U,OR), PDIA3 (DR),
CH60 (UOR), TCPQ (DR),
TCPQ (D,OR), GRP75 (DR),
GLU2B (U,OR), HNRPC (UR),
HSP74 (D,OR), CALR (U,0OR)
HNRPC (UR),
CALR (UR),
VIME (U,OR).

2The proteins listed have been fully/over restored in A2780F due to the selected combinations as compared to the parent A2780 cell line. Keys: U = up-regulated,

D =down-regulated, OR = over-restored, R = fully-restored
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Although treatment with fresh solution was found to
be less synergistic to antagonistic (whereas that with
aged solution was more synergistic), both the cellular ac-
cumulation of platinum and the level of platinum -
DNA binding were elevated due to treatment of
A2780F cells with the fresh solution of CS in two ali-
quots. The failure of the increased cellular accumulation
of platinum and more importantly that of the increased
level of platinum - DNA binding to translate into en-
hanced cell death highlights the fact that although plat-
inum - DNA binding can be a necessary step towards
programmed cell death, it is not sufficient as apoptosis
is brought about by downstream processes in the cell
cycle in which many proteins may be playing key roles.
The presence of crosstalk between pro-apoptotic and
anti-apoptotic pathways can also be seen to complicate
the situation.

For the antagonistic administration of CS in two ali-
quots using fresh solution, the following proteins: ACTB,
CALU, CH60, GLU2B, HSP74 and VIME in treated
A2780°F cells were fully or over restored to the levels
found in the parent A2780 cell line. In contrast, for the
administration of CS in two aliquots using aged solution
which was synergistic in action, the following proteins:
COX5A, 1433y, ENOA, ATPA, PDIA3 and GRP75 were
fully or over restored in treated A2780* cells as com-
pared to the levels found in untreated A2780 cells. This
is illustrated in the Venn diagram below (Fig. 9) where
the proteins listed in red namely COX5A, 1433y, ENOA,
PDIA3 and GRP75 are considered to be characteristic of
incubation of cells with aged solution CS in two aliquots
with 2 h time gap (Fig. 10).

COX5A, 1433G, ENOA, PDIA3 and GRP75 that are
characteristic of synergistic administration of aged solu-
tion CS in two aliquots with 2 h time gap were initially
down-regulated in the resistant cell line but up-

Fig. 10 Venn diagram listing the proteins expressed in A2780°"
cells that were restored or over restored compared to the levels found
in A2780 cells after treatment of cells with aged (synergistic) and fresh
(antagonistic) solutions of CS in two aliquots with 2 h time gap
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regulated following the drug treatment indicating that
these proteins may be playing a pro-apoptotic role so
that their down-regulation served to dampen cell death.
In contrast, the proteins: MARE1, ANXAI, RSSA,
ACTB, CALU, CH60 and HSP7C that were restored due
to treatment with both synergistic and antagonistic com-
binations, may not be so critically associated with syner-
gistic drug action in spite of them being a hallmark of
cancer cell biology and platinum drug resistance. The re-
sults of the present study can be seen to confirm that
synergistic administration of drugs may provide a means
of overcoming drug resistance due to the reestablish-
ment of cellular control functions.

Conclusion

The results of the present study show that when plat-
inum drugs are administered in two aliquots with a time
gap, a greater cell kill is produced from treatment with
aged solutions than that with fresh ones. A smaller
decrease in cellular GSH level in both A2780 and
A2780R cells after treatment with CS and CB given in
two aliquots than as a bolus, indicates that the increased
activity resulting from administration in two aliquots
cannot be due to changes in GSH. The increased activity
on ageing is believed to be related to speciation of the
drug in solution. Proteomic studies have identified 72
proteins that were differentially expressed in A2780 and
A2780R cell lines, 22 of them were restored back to
the levels found in the parent cell line as a result of syn-
ergistic treatments, indicating their relevance in syner-
gistic drug action. Among them COX5A, 1433G, ENOA,
PDIA3 and GRP75 that were down-regulated in the re-
sistant A2780°® cell line as compared to that in parent
A2780 cell line but up-regulated after synergistic treat-
ments, are considered to play a more critical role in
bringing about apoptotic cell death. In contrast, MAREL,
ANXA1, RSSA, ACTB, CALU, CH60 and HSP7C which
were restored due to treatment with both synergistic
and antagonistic combinations, may not be so critically
involved in apoptosis or escape from it, in spite of them
being a hallmark of cancer cell biology and platinum
drug resistance. Finally, it should be stated that a major
limitation of the study is that it gives a static picture.
However, cells are dynamic in which changes (especially
for proteins) are constant.
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