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Abstract We present a new method for predicting protein–

ligand-binding sites based on protein three-dimensional

structure and amino acid conservation. This method

involves calculation of the van der Waals interaction

energy between a protein and many probes placed on the

protein surface and subsequent clustering of the probes

with low interaction energies to identify the most ener-

getically favorable locus. In addition, it uses amino acid

conservation among homologous proteins. Ligand-binding

sites were predicted by combining the interaction energy

and the amino acid conservation score. The performance of

our prediction method was evaluated using a non-redun-

dant dataset of 348 ligand-bound and ligand-unbound

protein structure pairs, constructed by filtering entries in a

ligand-binding site structure database, LigASite. Ligand-

bound structure prediction (bound prediction) indicated

that 74.0 % of predicted ligand-binding sites overlapped

with real ligand-binding sites by over 25 % of their vol-

ume. Ligand-unbound structure prediction (unbound pre-

diction) indicated that 73.9 % of predicted ligand-binding

residues overlapped with real ligand-binding residues. The

amino acid conservation score improved the average pre-

diction accuracy by 17.0 and 17.6 points for the bound and

unbound predictions, respectively. These results demon-

strate the effectiveness of the combined use of the

interaction energy and amino acid conservation in the

ligand-binding site prediction.
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Abbreviations

PDB Protein data bank

PSSM Position-specific scoring matrix

SBDD Structure-based drug design

3D Three-dimensional

Introduction

It is well known that the biological function of many

proteins depends on binding to small molecules, termed

ligands. Therefore, the function of a protein can be inferred

by determining what kinds of ligands it binds. In addition,

in recent years, the three-dimensional (3D) structures of

proteins have been used in structure-based drug design.

Because ligands bind to specific sites on the surfaces of

proteins, identification of the ligand-binding sites is an

essential step in these studies. Various methods have been

developed for ligand-binding site prediction, and because

ligand-binding sites are often located in large depressions

(pockets) on protein surfaces, many of these prediction

methods use 3D protein structures to predict ligand-binding

sites. These structure-based methods can be largely clas-

sified into two groups: (a) purely geometric methods [1–4]

and (b) energetic methods [5, 6].

In the purely geometric approaches, the ligand-binding

site is presumed to be located within the largest pocket on

the protein surface. However, when the size of the pocket is
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larger than that of the ligand, the exact binding site cannot

be easily predicted. Furthermore, the spatial range of the

detected pocket varies between the prediction methods,

reflecting differences in the definition of the pocket among

the methods.

The energetic methods are based on the concept that a

ligand binds the site where the interaction energy with the

protein is minimal. To search for such a site, ligands are

virtually placed on the protein surface, and the interaction

energy with protein atoms is calculated at each position to

estimate the stability of the binding site.

Laurie and Jackson’s Q-SiteFinder [6] is one of the most

successful energetic methods for predicting ligand-binding

sites. Q-SiteFinder first places methyl probes (-CH3) in a

grid around a protein molecule and calculates van der

Waals interaction energy between the atoms of the protein

and probes. Probes with low energy are then clustered. The

clustering is repeated until a cluster with the total inter-

action energy of the probes being lower than a defined

threshold is obtained. Clusters thus obtained are ranked

according to the total energy, and the cluster with the

lowest total energy is expected to be the most appropriate

for the ligand-binding site.

However, energy-based methods are not always superior

to purely geometric methods, and adequate precision can-

not be achieved by only defining the ‘‘energetically

stable site.’’ Therefore, improvement of the precision of the

prediction has been attempted by combining new infor-

mation that indicates ligand-binding site-like features with

the conventional methods.

Two sets of information have often been used in prac-

tice. One is amino acid frequency around ligand-binding

sites. Amino acids on a protein surface are more likely to

be in the ligand-binding sites than those buried in the

protein. Accordingly, the likelihood of a site being a

ligand-binding site can be quantified by evaluating the

frequencies of the 20 amino acids for the site and com-

paring them with those for the protein surface and protein

interior [7]. The other set of information is amino acid

conservation. Because ligand-binding sites are the most

important sites for expressing protein function, there is a

strong tendency for amino acids around binding sites to be

conserved among homologues [8].

Several approaches have been attempted to improve the

precision of prediction by applying one of these two sets of

information to conventional methods. Kulharia et al. [7]

reported improvement in prediction precision by the

inclusion of amino acid frequency in the prediction by

Q-SiteFinder. In contrast, sequence conservation (amino

acid conservation) has been employed in purely structure-

based methods. In LIGSITEcsc [4], multiple pockets

obtained from a grid search are re-ranked based on the

degree of amino acid conservation in the proteins.

Concavity [9] is a method that employs amino acid con-

servation in pocket searching; this method differs from

LIGSITEcsc in incorporating conservation information

directly into the search for pockets rather than using con-

servation information to postprocess predicted pockets.

Capra et al. [9] states that concavity outperforms LIGSI-

TEcsc because of this difference.

In the present study, we developed a prediction method

that combined amino acid conservation with an energy-

based method. The energy-based pocket search is similar to

Q-SiteFinder and our previous work [18], and the amino

acid conservation is directly incorporated into the ranking

of ligand-binding sites, as in concavity. As for the energy

calculation, we use van der Waals energy as an interaction

energy between a carbon atom probe and the protein. This

energy is not related to a physical protein–ligand-binding

energy and is used only as a tool to identify and rank

protein cavities. Such an abstraction can be useful for

coping with various types of ligands, particularly when the

ligands are not known in advance. We collected a wide

range of test data and performed a general assessment of

prediction precision. Our method successfully predicted

binding sites with a higher precision than a conventional

energy-based method, Q-SiteFinder, clarifying the effect of

amino acid conservation on the prediction precision.

Materials and methods

Dataset construction

Two sets of protein structures corresponding to each other

are developed in the present study: ligand-bound structures

in which ligands are bound to proteins and ligand-unbound

structures that are ligand-free structures of proteins in the

ligand-bound structure set. The list of each protein set was

obtained from LigASite [10], a protein–ligand-binding site

database. A non-redundant version of the list including 391

protein pairs was used. Among them, two proteins were

omitted because ligand-bound coordinates could not be

found. Also, as we only consider homo-multimer proteins,

seven hetero-multimer proteins were omitted. Hence, in the

present study, 382 protein pairs were used in total. For

some pairs, there are multiple ligand-bound structures in

the list. In those cases, one structure was randomly selected

from the list for each pair. Biological oligomeric assem-

blies were obtained from the predicted quaternary struc-

tures using Proteins, Interfaces, Structures and Assemblies

(PISA) [11]. The protein structures used in this study were

determined by X-ray crystallography with a resolution of

B2.4 Å and R-factor B0.25.

According to LigASite [10], the dataset is limited to

binding sites for the clusters of non-water molecules
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appearing in the HETATM records of Protein Data Bank

(PDB) entries within 4 Å that consist of at least 10 heavy

atoms and that make at least 70 interatomic contacts with

protein atoms. This method was adopted to select biolog-

ically relevant ligands in this study. As for the quality of

ligands and ligand-binding site structures of PDB, we

performed the analysis of B-factor and Local Ligand

Density Fit (LLDF). The results of these analyses and a list

of PDBIDs of 382 ligand-bound and ligand-unbound

structures used in the present study are shown in Online

Supplementary Material.

Prediction method outline

Our prediction method includes the following steps, illus-

trated for the example of biotin binding of streptavidin in

Fig. 1a.

1. Addition of hydrogen atoms and construction of

missing side chains of proteins.

2. Placement of carbon atom probes around the protein

(Fig. 1b).

3. Calculation of van der Waals energy.

4. After calculation of interaction energy of all the

probes, if a probe with lower interaction energy is

found or a probe with similarly low interaction energy

is found within 1 Å of another probe, cluster them

together. Expand the size of a cluster until it reaches a

defined size (Fig. 1c).

5. Calculation of amino acid conservation.

6. Weighting of interaction energy with amino acid

conservation.

7. Ranking of clusters in ascending order according to

total probe interaction energy within a cluster (Fig. 1d,

e).

Addition of hydrogen atoms and construction of missing

side chains of proteins

Normally, 3D coordinates obtained from PDB and PISA

does not include hydrogen atoms if they were determined

by X-ray crystallography. In the proposed method, a

hydrogen addition tool, protonate, in the molecular

dynamics software AMBER10 was used to add hydrogen

atoms to proteins for calculating van der Waals energy

between all atoms and probes of a protein. With regard to

proteins with side chains whose complete atomic coordi-

nates were not registered, a side chain modeling tool,

SCWRL3 [12], was used to reconstruct the missing side

chain before the addition of hydrogen atoms.

Placement of carbon atom probes around the protein

Carbon atom probes were placed in a grid around a protein

with 0.5 Å intervals. The van der Waals interactions

commonly appear in the protein–ligand binding, and we

calculated the van der Waals interaction energy between a

carbon atom and the protein. This interaction energy is not

directly related to real ligand-binding energy; it is only

used for obtaining a position with minimum energies.

Carbon atoms are simple and have lower precision than all-

atom methane or methyl probes; however, in this model,

coordinates of hydrogen atoms that change because of

Fig. 1 Ligand-binding site

prediction. a An example using

the protein (streptavidin) and

the ligand (biotin), PDBID:

1stp. b Placement of probes

around the protein and

calculation of interaction

energies between probes and the

protein. c Forming clusters of

probes. d Ranking clusters.

e Clusters of the top three

ranking. Steps related to amino

acid conservation are not shown
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atomic rotation need not be considered, indicating an

advantage of reduced computational complexity.

Calculation of van der Waals energy

Van der Waals energy between probe–protein atoms was

calculated using the equation, Lennard–Jones 6–12 poten-

tial Evan:

Evan
i;j ¼ ffiffiffiffiffiffiffi

ejej
p � Ri þ Rj

rij

� �12

�2 � Ri þ Rj

rij

� �6
( )

In this equation, i and j represent probe and protein

atom, respectively, whereas rij indicates the distance

between two atoms, R the van der Waals distance (Å), and

e the van der Waals depth (kcal/mol). Each atom has its

unique R and e. In the present study, van der Waals energy

was calculated based on a force field parameter, parm94

[13]. To reduce computation cost, van der Waals energy

between a probe and protein atoms located within 10 Å of

the probe was calculated for each probe.

Clustering of probes

Interaction energy with protein atoms was calculated for

each probe, and probes were clustered using the value of

the interaction energy. First, the probe with the lowest

energy was found, and its energy was used as the energy

threshold. Next, the energy threshold was increased by

0.1 kcal/mol, and probes with energy lower than the energy

threshold were searched for. If such probes were found,

probes with energy lower than the energy threshold and

located within 1 Å of that probe were clustered together.

The cluster can be merged during this step. The distance

between clusters was defined as the distance between two

probes in the clusters nearest to each other. When no more

probes were found for clustering, the energy threshold of

the search was broadened by 0.1 kcal/mol. The maximum

number of probes that could be included in a cluster was

defined as Pnum, and when the total number of probes

within a cluster reached Pnum, the clustering process was

completed.

Calculation of amino acid conservation

PSI-BLAST, with up to three iterations against the NCBI

non-redundant (nr) database, was used to compare the

sequence similarity between the amino acid sequence of

the target protein and the sequences of its homologues, and

the resulting position-specific scoring matrix was used to

calculate amino acid conservation.

When P indicates amino acid frequency in a protein and

Q indicates the amino acid frequency in the background,

the Kullback–Leibler divergence can be obtained [14] as

the difference between the mean frequency and both P and

Q. Furthermore, the Jensen–Shannon divergence may be

derived [15] by calculating the mean of Kullback–Leiber

divergences and was defined as the degree of amino acid

conservation, Cscore.

Cscore and Evan [in Eq. (1)] obtained as described above

were used for calculating the weighted score. The weighted

score of probe i is defined as follows:

Ei ¼
X

n

j¼1

w1E
van
i;j þ w2Cscorej þ w3E

van
i;j Cscorej

� �

ð1Þ

where n is the number of the protein atoms that interact

with probe i and j denotes their index. Cscore is defined for

each amino acid residue and is applied to all the atoms of

that residue.

In this equation, w1, w2, and w3 indicate the weights on

the respective terms. We changed the values of w2 and w3

with the value of w1 fixed to 0 or 1. Only Evan of protein

atoms within 10 Å of a probe and Cscore were weighted.

This is because the amino acids distant from a ligand were

considered to have low influence on the stable binding of

the ligand. Accordingly, for the second term of Eq. (1),

amino acids found B6 Å from a probe was used by cal-

culating Cscore, and amino acids located [6 Å away from

the ligand were not used.

Ranking of clusters

All clusters obtained were arranged in the ascending order

of the sum of the probe scores Ei in them. For multimeric

proteins, similar clusters with similar energy values were

obtained for corresponding sites of all chains. In these

cases, we consider only one cluster with the lowest energy

value among them.

Methods for assessment and comparison

of prediction results

Two measures were used to assess the performance: the

proportion of predicted clusters that spatially overlap with

actual ligands above chosen threshold (hereafter referred to

as ligand-binding space prediction) and the degree of

agreement between amino acids around a cluster and the

exact amino acid around the ligand (hereafter referred to as

ligand-binding residue prediction).

Assessment of the results of ligand-binding space

prediction

For ligand-bound structures, a method of calculating the

proportion of clusters that spatially cover ligands [6] was
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used for performance assessment. We determine that a

probe in a cluster overlaps with the ligand if the probe is

located within 1.6 Å from one of the heavy atoms of the

ligand. We adopted the same value 1.6 Å as that of

Q-SiteFinder to compare the performance directly.

The term ‘‘precision’’ used here defines the proportion

of probes in a cluster that overlap with ligands. When the

value is C25 %, the cluster is regarded as a success. A

precision of 100 % means that all probes in the cluster are

located within 1.6 Å of one of the heavy atoms of the

ligand, and when the cluster is larger, the precision

decreases. In some cases, the prediction results even with

small precision values are useful; however, if we regard a

cluster with a precision [0 % as a success, a very large

cluster that accidentally includes a small number of probes

within 1.6 Å from the ligand will also be a success. To

avoid such cases, we referred to Laurie et al. and defined a

precision threshold of C25 %.

As for the ligand-unbound structures, the ligand coor-

dinates are not available, so ligand coordinates should be

copied to the ligand-unbound structure from its pair (i.e.,

ligand-bound structure) to obtain a pseudo-binding site.

However, superposition of proteins is difficult when large

structural changes occur upon ligand binding. Therefore,

we instead used a method that compares residues around a

ligand-binding site that is generally applicable to ligand-

unbound structures.

Assessment of the results of ligand-binding residue

prediction

The assessment method of the results of ligand-binding

residue prediction employed in the present study, which is

similar to the assessment score calculation used in the

ligand-binding site prediction category [16] of the Critical

Assessment of Structure Prediction (CASP, http://www.

predictioncenter.org/), is as follows:

(1) Residues located within 5 Å of each probe in a

cluster are regarded as the ligand-binding residues of

the cluster.

(2) Calculate the following values: the number of

residues predicted correctly as ligand-binding resi-

dues (true positive), the number of residues correctly

predicted as nonligand-binding residues (true nega-

tive), the number of residues incorrectly predicted as

ligand-binding residues (false positive), and the

number of residues incorrectly predicted as nonli-

gand-binding residues (false negative). Finally, cal-

culate scores, Sresidue, defined as the proportion of

correctly predicted ligand-binding residues among

all the positively predicted ligand-binding residues

and Matthew’s correlation coefficient (MCC) based

on the above values.

Information about residues around ligands (i.e., correct

ligand-binding residues) was obtained from LigASite. In

addition to MCC, we used Sresidue as an assessment score to

indicate the proportion of correctly predicted residues

around ligands.

Parameter selection using cross-validation

In ligand-binding space prediction, fivefold cross-valida-

tion was performed using the 382 ligand-bound structures;

these structures were randomly divided into five subsets of

equal size, and four of them were used for training

parameters as described in the Results section and then one

was used for testing. This process is repeated five times,

each time using a different subset for testing and the other

four subsets for training. The performance was assessed as

the average of each success rate and average precision.

Ligand-binding residue prediction can be used to assess the

results of prediction of both ligand-bound and ligand-un-

bound structures. Therefore, fivefold cross-validation was

first performed using ligand-bound structures, and the

parameters showing the best performance were further used

to predict residues for ligand-unbound structures. The

procedure was evaluated with respect to the successful

prediction of correct ligand-binding sites using ligand-un-

bound proteins.

Results

The parameters for the proposed method were the maxi-

mum number of probes within a cluster (Pnum) and the

weights for the amino acid conservation (w1, w2, w3) in the

probe energy [Eq. (1)].

In ligand-binding space prediction, the optimum value

Pnum was searched first at intervals of 100 in the range

100–600, and fivefold cross-validation was performed for

the 382 ligand-bound structures. Pnum = 500 was selected

because it yielded the highest success rate.

Next, with Pnum = 500, the weights (w1, w2, w3) were

determined by fivefold cross-validation, and the mean

values of the highest success rate and the corresponding

mean precision in each cross-validation were calculated.

Among the five parameter sets with a highest success rate

at each test step in the cross-validation, the most frequently

observed combination (w1, w2, w3) = (1, -0.05, 9) was

used as the optimal weights.

Table 1 shows the results of ligand-binding space pre-

diction. Excluding proteins containing over 10,000 atoms,

which are not accepted by the Q-SiteFinder server, 342
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ligand-binding sites were used for the assessment as their

ligand-bound and ligand-unbound structures were both

available. The predicted clusters are ranked according to

the score defined in Eq. (1). The method denoted as ‘‘Our

method (without Cscore)’’ uses the score with w2 and w3

zero. In Table 1, ‘‘Top1’’ indicates the best cluster per

structure and ‘‘Top3’’ indicates a cluster in the three best

clusters per structure.

With regard to the ligand-binding space prediction, the

success rate was confirmed to be higher than that of

Q-SiteFinder under each criterion of success. More

specifically, the success rate for the clusters in the first

prediction rank with precision C25 % increased from 52.0

to 74.0 % and that for the clusters within the first three

prediction ranks with precision C25 % increased from 71.9

to 88.0 %. With regard to average precision, sometimes

Q-SiteFinder was superior depending on the criteria of

success; however, even in those cases, the values from the

two methods were similar. When our method with amino

acid conservation [Cscore in Eq. (1)] was compared with

that without conservation, the success rate for the cluster in

the first prediction rank with precision C25 % increased

from 57.0 to 74.0 % and that for the clusters within the first

three prediction ranks with precision C25 % increased

from 73.7 to 88.0 %. These results show that the effect of

using amino acid conservation was pronounced.

Table 2 shows the results of ligand-binding residue

prediction. Here 348 ligand-unbound structures were used

for the assessment as their ligand-bound and ligand-un-

bound structures were both available. As in ligand-binding

space prediction, the predicted clusters are ranked

according to the score defined in Eq. (1). The method

denoted as ‘‘Our method (without Cscore)’’ uses the score

with w2 and w3 zero. With regard to ligand-binding residue

prediction, success rate, average precision, and average

MCC were confirmed to be higher than those of

Q-SiteFinder under all the criteria of success.

More specifically, the success rate for the cluster in the

first prediction rank with Sresidue C 25 % increased from

56.3 to 73.9 % and that for the clusters within the first three

prediction ranks with Sresidue C 25 % increased from 74.4

to 85.6 %. Average Sresidue was found to be greater than

Q-SiteFinder for all criteria. When our methods with amino

acid conservation were compared with that without con-

servation, the success rate for the cluster in the first pre-

diction rank with Sresidue C 25 % was improved from 53.4

to 73.9 % and that for the clusters within the first three

prediction ranks with Sresidue C 25 % increased from 76.1

to 85.6 %. These results show that, again, the effect of

using amino acid conservation was pronounced.

Figures 2 and 3 show examples of prediction results

from both our proposed method and Q-SiteFinder.

Discussion

The main differences between the proposed method and

Q-SiteFinder include force field parameters, energy

threshold of clustering, and the use of amino acid

conservation.

With respect to the force field parameter, for ligand-

binding site prediction based on interaction energy calcu-

lation, we found that prediction with AMBER parm94

yields a higher success rate than GRUB [17], employed by

Q-SiteFinder [18].

The energy threshold of clustering is an important

parameter governing the size of a cluster. If it is too low,

clusters are unlikely to be formed and sensitivity will be

degraded; conversely, if it is too high, more probes with

small interaction energies can be formed. Q-SiteFinder

uses 1.4 kcal/mol as the fixed energy threshold. However,

the interaction energy between a protein and a probe should

be different for each protein. Therefore, we instead used

the upper limit of the number of probes in a cluster, Pnum,

Table 1 Comparison of prediction results from our proposed method and Q-SiteFinder (for ligand-binding space prediction, 342 ligand-bound

structures)

Top1, precision C25 % Top1, precision[0 % Top3, precision C25 %

Ratio (%) Average precision (%) Ratio (%) Average precision (%) Ratio (%) Average precision (%)

Our method 74.0 64.4 80.1 60.5 88.0 66.4

Our method (without Cscore) 57.0 59.7 66.1 53.5 73.7 62.7

Q-SiteFinder 52.0 66.0 58.5 60.2 71.9 66.9

The results of ‘‘our method’’ are highlightened in bold

‘‘Precision’’ indicates the proportion overlapping with ligands, and the overlap indicates that a probe in a cluster is located within 1.6 Å from one

of the ligand heavy atoms. The predicted clusters are ranked according to the score defined in Eq. (1). The condition ‘‘Top1, precision C25 %’’

indicates the best cluster with precision C25 %, ‘‘Top1, precision[0 %’’ indicates the best cluster with precision[0 %, and ‘‘Top3, precision

C25 %’’ indicates that at least one cluster in the best three clusters has precision C25 %. ‘‘Ratio’’ is the number of proteins with the specified

condition divided by the number of proteins in the dataset. ‘‘Average precision’’ is the average precision of the proteins with the specified

condition
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Table 2 Comparison of prediction results from our proposed method and Q-SiteFinder (for ligand-binding residue prediction, 348 ligand-

unbound structures)

Top1, Sresidue C25 % Top1, Sresidue C0 % Top3, Sresidue C25 % Top1

Ratio

(%)

Average Sresidue

(%)

Ratio

(%)

Average Sresidue

(%)

Ratio

(%)

Average Sresidue

(%)

Average

MCC

Our method 73.9 61.3 86.2 54.3 85.6 61.6 0.51

Our method (without

Cscore)

56.3 58.2 74.7 47.0 76.1 58.6 0.39

Q-SiteFinder 53.4 60.4 69.3 49.2 74.4 60.1 0.33

The results of ‘‘our method’’ are highlightened in bold

For ligand-binding residue prediction, Sresidue is used as the measure of precision. The condition ‘‘Top1, Sresidue C25 %’’ indicates the best cluster

with Sresidue C25 %, ‘‘Top1, Sresidue[0 %’’ indicates the best cluster with Sresidue[0 %, and ‘‘Top3, Sresidue C25 %’’ indicates that at least one

cluster in the best three clusters has the Sresidue C25 %. ‘‘Ratio’’ is the number of proteins with the specified condition divided by the number of

proteins in the dataset. ‘‘Average precision’’ is the average precision of the proteins with the specified condition

a 

b 

c 

Protein structure Our method Q-SiteFinder

Fig. 2 Comparison of prediction results from our proposed method

and Q-SiteFinder (for ligand-binding space prediction). From left,

crystal structures of protein–ligand complex, prediction results from

the proposed method, and prediction results from Q-SiteFinder. Green

proteins; gray ligands; orange clusters in the first prediction rank; and

blue clusters in the lower than second prediction ranks. a Prediction

results of PDBID: 1mka (ligand: 2-decenal n-acetyl cysteine).

Precision of the proposed method: 93.2 %, precision of Q-SiteFinder:

86.3 %. Ligand-binding site was predicted with higher precision by

the proposed method. b Prediction results of PDBID: 1fcv (n-acetyl-

D-glucosamine). Precision of the proposed method: 59.0 %, precision

of Q-SiteFinder (blue): 100 %. The cluster correctly predicted by

Q-SiteFinder was in the sixth prediction rank, whereas that by our

proposed method was in the first prediction rank. c Prediction results

of PDBID: 2wn7 (ligand: nicotinamide adenine dinucleotide). Preci-

sion of the proposed method (blue): 38.3 % and precision of

Q-SiteFinder: 34.7 %. The cluster correctly predicted by our proposed

method was in the second prediction rank
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to restrict the size of the cluster. Of course, this solution is

not perfect: for proteins that bind small ligands, our method

tends to generate clusters larger than the size of the ligands.

This tendency affects the precision. As seen in Tables 1

and 2, the average precision and average Sresidue of our

method without the amino acid conservation score (Cscore)

were lower than those of Q-SiteFinder. This is ascribed to

the use of the fixed Pnum value larger than the size of the

small ligands.

In Fig. 4, the mean values of amino acid conservation

(Cscore) around ligand-binding sites are plotted against the

mean value of amino acid conservation in entire protein

sequences. In proteins with multiple ligand-binding sites,

residues around all binding sites were treated as ligand-

binding residues. Points above the lines indicate proteins

for which the mean values of amino acid conservation

around ligand-binding sites are greater than those of the

entire sequence. In contrast, points below lines indicate

proteins for which mean values of amino acid conservation

around ligand-binding sites are smaller than those of the

complete sequence. This figure shows that in both ligand-

bound proteins (Fig. 4a) and ligand-unbound proteins

Protein structure Our method Q-SiteFinder
a

b

c

Fig. 3 Comparison of prediction results from our proposed method

and Q-SiteFinder (for ligand-binding residue prediction). From left,

crystal structures of protein–ligand complex, prediction results from

the proposed method, and prediction results from Q-SiteFinder.

Orange cluster predicted in the first prediction rank, green correctly

predicted residues (true positive, TP), red incorrectly predicted

residues (false positive, FP), and yellow unpredicted residues (false

negative, FP). a Prediction results of PDBID: 1y2q. Proposed method:

Sresidue, 93.3 % and MCC, 0.701. Q-SiteFinder: Sresidue, 86.3 % and

MCC, 0.859. The results show that many residues were not predicted

by the proposed method, whereas Q-SiteFinder incorrectly predicted

many residues. b Prediction results of PDBID: 1cwy. Proposed

method: Sresidue, 68.2 % and MCC, 0.667. Q-SiteFinder: Sresidue,

10.0 % and MCC, 0.078. Q-SiteFinder formed a cluster deviating to

the left of the correct binding site. c Prediction results of PDBID:

2b78. Proposed method: Sresidue, 15.4 % and MCC, 0.096. Q-SiteFin-

der: Sresidue, 61.3 % and MCC, 0.662. Our proposed method formed a

cluster deviating to the left of the correct binding site. MCC,

Matthew’s correlation coefficient
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(Fig. 4b), there are more proteins lying above than below

the lines, irrespective of the feasibility of prediction, that is,

most of the proteins used for evaluation in the present study

showed higher amino acid conservation around ligand-

binding sites than in entire sequences. The numbers of such

proteins were 309 (=244 ? 65) for ligand-bound structures

and 315 (=247 ? 68) for ligand-unbound structures.

Comparison of the prediction results of our proposed

method and Q-SiteFinder indicates that several red points

lying above the lines in Q-SiteFinder graphs have changed

to blue points in the graphs produced by our proposed

method. In particular, when the difference between amino

acid conservation between entire sequences and ligand-

binding sites is high (proteins located further from the line

in the upper left graph), more proteins were successfully

predicted in the present study. These results show that our

proposed prediction method is likely to succeed for pro-

teins in which the amino acids around the ligand-binding

sites are highly conserved.

However, these results do not indicate that higher amino

acid conservation around the ligand-binding site will

always result in higher prediction precision. The optimal

weights, which determine the contribution of the van der

Waals energy term (Evan) and the amino acid conservation

term (Cscore), depend on the training dataset but the results

show that the contribution of van der Waals energy is

larger than the amino acid conservation; the amino acid

conservation alone does not yield a better result than the

van der Waals energy alone.

Proteins for which prediction failed

Figure 5 indicates the number of proteins for which pre-

diction by our proposed method, Q-SiteFinder, or both

methods failed. Both the proposed method and Q-SiteFin-

der failed to predict 62 ligand-bound and 63 ligand-un-

bound structures. In these proteins, the prediction of

ligand-binding site based on interaction energy calculation

was indicated to be difficult. In addition, prediction of

almost 30 proteins of either type failed only when the

proposed method was used.

Fig. 4 Correlation of the mean

values of amino acid

conservation (Cscore) around

ligand-binding sites with the

mean value of amino acid

conservation in entire protein

sequences. Blue points represent

successfully predicted proteins,

whereas red points represent

proteins for which prediction

failed. Lines correspond to equal

mean values of amino acid

conservation between the entire

sequence and around ligand-

binding sites. a Prediction

results for 342 ligand-bound

structures (for ligand-binding

space prediction). b Prediction

results for 348 ligand-unbound

structures (for ligand-binding

residue prediction)
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Prediction failure can be attributed to two major causes.

First, prediction failed when there was no ligand at the

predicted site, but one of its homologue proteins has a

ligand at the corresponding site (i.e., the predicted site was

one of the potential ligand-binding sites). Among failed

structures, 19 ligand-bound structures and 23 ligand-un-

bound structures were categorized as this type. Accord-

ingly, 5–7 % of proteins in the dataset for which prediction

of our method failed were practically successful. Second,

the conservation of ligand-binding sites was low, and

another site with higher conservation was incorrectly pre-

dicted. Among failed structures, 11 proteins were catego-

rized as this type.

Summary

Our method predicts ligand-binding sites using van der

Waals energy and amino acid conservation calculated from

alignment with homologous sequences. In a comparison of

our proposed method with Q-SiteFinder, a ligand-binding

site prediction method based on interaction energy calcu-

lation, a much higher success rate (proportion of success-

fully predicted proteins) was obtained by our method than

that by Q-SiteFinder. The present study indicates that

amino acid conservation is an important factor in the suc-

cess of ligand-binding site prediction, and that its combi-

nation with interaction energy calculation enables more

precise site prediction. One of the binding sites of proteins

with multiple ligand-binding sites was correctly predicted;

however, applying the proposed method to a protein with

less-conserved ligand-binding sites sometimes resulted in

failure. This result suggests that in some cases, when the

conservation of ligand-binding sites is low, the weighting

of amino acid conservation can result in prediction failure.

In this study, we did not explicitly filter out the suspicious

ligands. The selection of ligands using the results of

B-factor and LLDF described in Supplementary Material

would be a future work.
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