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Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS
caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions.
Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease
and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method.The BME reveals that
SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance
model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and
temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most
probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak
distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BMEmodelling demonstrates that SARS
transmission features are affected by spatial heterogeneity, so we analyze potential causes.This may benefit epidemiological control
of pandemic infectious diseases.

1. Introduction

In recent years, emerging infectious disease of severe acute
respiratory syndrome (SARS) has become one of the most
egregious public health problems in 21st-century China.
SARS is caused by a new pathogen that was finally identified
as a coronavirus (SARS-Cov) [1, 2]. SARS-Cov is regarded as
a person-to-person infectious disease that infects suspected
individuals through droplet transmission [3]. After infection,
patients go through a 2-to-10-day incubation period before
typical symptoms (fever, cough, and body aches) appear.
During the incubation period, the patients are contagious to
surrounding people [4]. To date, there is no vaccine for SARS,
no reliable diagnostic test, and no specific treatment. This
leads to the need for refinement of public health controls to
be effective [5, 6].

Much loss of life, a high mortality rate, and substantial
wealth damage were associated with SARS throughout a wide
part of China in 2002 and 2003. The first case of SARS was

identified and confirmed by theNational Laboratory of China
in Foshan, a city in Guangdong Province, South China, on
November 16, 2002. With rapid development over 3 months,
SARS became a disease that was difficult to control, and it
spread to other cities through regular population movement
[7].

According to the World Health Organization (WHO),
after nearly 9 months of spread (November 16, 2002, through
July 13, 2003), 29 countries had been affected by SARS. In
this period, 8096 persons were infected and 774 died, which
caused domestic panic in countries of East and Southeast Asia
[8, 9].

The evidence shows patterns of vast geographic transmis-
sion that distinguish SARS from other epidemic infectious
diseases. Traditionally, epidemiologists focus on the temporal
epidemic evolution and describe it through various types of
mechanical models [4, 10, 11]. Riley et al. admitted the spatial
impact, but theirmodel lacked detailed spatial analysis. How-
ever, because of the wide spread of SARS, typical temporal
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Figure 1: Basic patient information. (a) The occupation distribution as a percentage of all SARS infections. (b) The age percentage of SARS
infections.

models have been unable to effectively explain its dynamics.
As a result, the pandemic cannot be explained as a combi-
nation of endemics. Complex spatial transmission networks
[12], compound period epidemics, and overwhelming gov-
ernment controls inspired epidemiologists to research this
type of person-to-person infectious disease more profoundly
with respect to its geographic features. Dye and Gay [13]
suggested that doing so could lead to variations in average
contact rate. Lloyd-Smith et al. simulated SARS dynamics in
a complex network based on an epidemiological mechanism
with full consideration of population, contact rate, control
strategies, and spatial diffusion [14, 15]. However, their
approach requires the assumption of numerous parameters,
which in turn require the support of detailed data. The
approach makes it difficult to explain overall spatial trans-
missionwithout geographic epidemic analysis.Wang et al. [7]
unveiled the broad existence of spatial clusters during the Bei-
jing epidemic periods, influencing government intervention
[16]. This work inspired us to investigate spatial principles in
SARS transmission, which could include significant indica-
tions for pandemics within a more general perspective.

A study that combines both a temporal epidemic study
and spatial transmission is required to understand SARS
dynamics. Recent advances in geostatistical analysis, which
have been effectively used in infectious disease mapping,
health risk assessment, and epidemiological studies, could be
applied in SARS research for spatiotemporal analysis [17, 18].
The BayesianMaximumEntropy (BME) approach ofmodern
geostatistics incorporates higher-order statistical estimation
for space-time epidemic phenomena and has shown more
accurate mapping results than those derived from linear
kriging geostatistics [19]. We benefited from such advantages
in investigating statistical features of the SARS epidemic and

in simulating geographic transmission aspects on a day-by-
day basis.We focused on exploring and understanding spatial
heterogeneity impacts of SARS transmission and simulating
and mapping the disease temporally. Under the increasing
threat of pandemics in 21st century, the present study illus-
trates actual epidemic spread and provides useful informa-
tion toward establishing government intervention to prevent-
ing pandemics.

2. Materials

The surveillance sanitary system of the Chinese Centre for
Disease Control and Prevention (Chinese CDC) monitored
all SARS infections in mainland China and confirmed them
in the national microbe laboratory. The infections were
recorded cautiously and totaled 5318 cases. The data were
updated and include cases from November 2002 through
June 2003. A confirmation system slightly different from
that of WHO statistics raised the number of cases to 5327.
The recorded information includes basic patient information
(e.g., name, sex, age, and occupation; Figure 1), spatial infor-
mation (including registered permanent residence location,
company, first symptomonset location, current resident loca-
tion, and hospital location), and temporal information (e.g.,
dates of first symptom onset, hospital treatment, recovery, or
death). The daily number of SARS infections and their tem-
poral characteristics were analyzed and are shown in Figure 2.

In mapping all cases, the location of infection onset is
an elaborate process. Even though some cases were recorded
at locations using various scales, the records were eventually
sorted at county level to facilitate processing. Considering
that population movement is one of the effects on SARS
diffusion, the following order was observed in the geocoding
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Figure 2: Daily number of SARS infections and temporal characteristics. (a) Number of SARS infections each day. The two outbreak peaks
caused by disease spreading in Guangzhou and Beijing are clearly distinguishable in the plot. (b) Histogram of period from SARS onset to
treatment (unit: day). The average period is 3.96 days, which indicates fast and rigorous health service for SARS treatment. (c) Histogram of
period from treatment to recovery (unit: day). The average treatment takes 25.19 days. This period corresponds exactly to half the size of an
outbreak circle.

process: (1) registered permanent residence; (2) temporary
residence (work address); (3) onset location; and (4) report-
ing unit location. Tomaintain rigorous containment, sanitary
departments collected minute information for spatial index-
ing. Thus, the registered permanent residence was selected
as the first index for the benefit of data integrity and for
monitoring the impact of mass population movement. On
February 1, 2003, during the period of SARS outbreaks,
the Spring Festival took place. People commonly travel to
join family for this traditional Chinese festival, returning to
their permanent residence after 1–4 weeks. This population
movement increased the probability of cross infection among
family members and travellers. Consequently, with some
exceptions, the temporary residence, onset, and reporting
unit locations could be additional spatial information in
geocoding the infections. Some cases lacked records of both
permanent residence and workplace, and the only available
addresses for these were syndrome onset locations. If all the
above addresses were void, the hospital address was used as
the only thread to locate the patient, although this was rare
in our research. We focused on outbreak regions for conve-
nience and clarity in the process.There are 194 counties in the
focus area, which is described in greater detail in subsequent
sections. Among them, Beijing, Guangzhou, and Taiyuan

experienced themost severe SARS outbreaks.We used a 2002
county-level digital map to illustrate the epidemic (Figure 3).

In temporal mapping, we also sorted the cases chrono-
logically. All records were sorted at daily level. The onset
date of patients was set as the optimal time index. Prior
to this date, there was a 2–8-day incubation period [8, 20],
which is generally intractable. The period from onset to hos-
pitalization, including the incubation period, was considered
the contagion period. Because it is impossible to know the
infection date accurately for a patient, incubation period data
are unavailable. Therefore, onset date was the first temporal
index in our research. If this date was unavailable, then the
hospitalization date was used as a secondary index.

3. Methods

3.1. BME Model. Typical modes of investigation in health
research focus on discovering spatial patterns or establishing
a time series to study the principles that govern health
phenomena. Separation of the space-time domain into spatial
and temporal components permits analysis of those subdo-
mains individually but ignores principles and correlations
that may exist because of the composite spatiotemporal
structure [21]. In infectious disease research, and especially
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Figure 3: Spatial pattern of the SARS outbreaks.

the study of person-to-person contagious diseases, epidemic
conditions are closely related to both spatial and temporal
dimensions. Thus, proper relationships must be constructed
to combine and account for the space-time continuum.

BME provides an effective stochastic method, based on
a cogent theoretical and technological strategy, to analyze
relationships of SARS outbreaks in the composite space-time
domain. It comprises not only epidemiological knowledge
bases but also spatiotemporal statistics and dynamic mod-
elling aspects for study. It also offers a software framework
for modelling and prediction of epidemic conditions across
space-time [22, 23]. Details include the following.

(1) BME integrates knowledge from epidemiology into
Geographic Information System science by assimilat-
ing epidemic laws, empirical relations, and statistical
calculations in SARS studies.

(2) BME considers spatial heterogeneity in SARS out-
breaks, which broadens the traditional epidemic
research field from the temporal to space-time
domain.

(3) BME simulates SARS transmission and predicts diffu-
sion tendency. The resultant study of these processes
can reflect interesting underlying principles behind
SARS spread.

For stochastic representation of the outbreaks, we con-
sidered the daily number of outbreaks as a random variable
within a three-dimensional space-time random field (S/TRF)
[24]. Then each of the SARS records is a single realization
out of all possible values that can be observed at a specific
space-time location. Two of the S/TRF dimensions corre-
spond to geographic coordinates of the records, and the
third dimension axis represents the temporal dimension. In
this sense, we studied the SARS outbreaks in a composite
spatiotemporal domain, in which each observed record is
uniquely represented by the space-time vector𝑝 = (𝑠, 𝑡). BME
takes these records as individual S/TRF points, to which each
is assigned a spatial location and temporal instance.

To illustrate the composite spatiotemporal approach, con-
sider a spatial-only map at the time instance 𝑡

0
, represented

by

𝑥map (0) = (𝑥1, . . . , 𝑥𝑚, 𝑥𝑘1, . . . , 𝑥𝑘𝑛) , (1)

where [𝑥
1
, . . . , 𝑥

𝑚
] denotes observation points at 𝑡

0
and

[𝑥
𝑘1
, . . . , 𝑥

𝑘𝑛
] represents the estimation points at the same 𝑡

0
.

We computed SARS distribution maps across a time interval
of such 𝑛 instances [𝑡

1
, . . . , 𝑡

𝑛
], and we eventually obtained a

joint set of maps 𝑝map = [𝑥map(1), . . . , 𝑥map(𝑛)].
The BME method operates in three successive stages to

analyze the stochastic epidemic process. In the first stage,
structural characteristics of a space-time random field are
incorporated in the analysis by means of all available epis-
temic information about the S/TRF. This information comes
from theoretical or empirical sources related to the procedure
and is known as the general knowledge base or G-KB. At the
end of the first stage, the input allows the computation of
probability density functions (PDFs) that describe the S/TRF
based on the G-KB. In the case of the SARS outbreaks, we
used the observations to explore general structural charac-
teristics of the SARS S/TRF, that is, the existence of mean (or
surface) trends in the space-time domain, and to explore the
underlying temporal and spatial structure of the S/TRF with
suitable covariance functions.

The second stage relates to the selection of case-specific
information so that BME can assess characteristics and per-
form inference given the particular S/TRF realization facili-
tated by the recorded information.This information is known
as the specific knowledge base or S-KB. The SARS sampling
dataset that was described in the previous section consists of
𝑚 sampling points (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑚
) and comprised the S-KB

in this study.
In the final stage, BME integrates the G-KB and S-KB

to compute updated prediction PDFs at selected space-time
locations. The prediction or posterior PDFs provide a com-
plete statistical description of the health attribute distribution
in space-time, and they enable selection of a predictor of
choice for assessment of the SARS outbreak distribution.
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In traditional analysis, health attributes exhibit higher
similarity for closer occurrences. Consequently, spatial dis-
tance is typically considered as the sole substantial factor that
describes and demonstrates autocorrelation and the underly-
ing disease field structure. However, the epidemic time is also
important in the study of disease spread, which could extend
further with rapid transportation and population movement.
The previous discussion leads us to define a composite space-
time distance, 𝑑𝑝, as

󵄨󵄨󵄨󵄨𝑑𝑝
󵄨󵄨󵄨󵄨 = 𝐺 (𝑑𝑠, 𝑑𝑡) , (2)

which depends on both spatial and temporal distances (𝑑𝑠
and 𝑑𝑡, resp.), connected through an appropriate spatiotem-
poral metric 𝐺.

Hence, the distance combined with temporal effects is
more representative in epidemic analysis. In our research,
𝑑𝑠 = 𝑠

1
− 𝑠
2
and 𝑑𝑡 = 𝑡

1
− 𝑡
2
for two S/TRF points 𝑝

1
(𝑠
1
, 𝑡
1
)

and 𝑝
2
(𝑠
2
, 𝑡
2
). Once distances are defined within the S/TRF,

permissible functions can be used to describe correlations in
space-time. The covariance function that yields spatial and
temporal autocorrelation between two points, 𝑝 and 𝑝

󸀠, is
given by

𝑐
𝑥
(𝑝, 𝑝
󸀠
) = [𝑋 (𝑝) − 𝑋 (𝑝)] [𝑋 (𝑝󸀠) − 𝑋 (𝑝󸀠)]. (3)

In this function, 𝑋(𝑝) and 𝑋(𝑝󸀠) represent a pair of realiza-
tions (possibilities) at𝑝 and𝑝󸀠 in the SARS outbreak S/TRF. It
is expected that the observation data sample statistics should
be the same as the S/TRF. For example, the data mean model
should coincide with the average statistic, and the empirical
covariancemodel should follow the covariance statistic of the
field. Let 𝑐

𝑥
be the arithmetic covariance. 𝑐

𝑥
is presumed to

be a theoretical function that is the same as the traditional
covariance models in kriging analysis, such as the spherical,
exponential, and nugget models. Following this initial setup,
the classic Bayesian model is then incorporated, as shown by

𝑓 (𝑋
𝑘
| 𝑋data) = 𝐴

−1
∫
𝐷

𝑑𝑋𝑓
𝐺
(𝑋map) , (4)

where

𝐴 = ∫
𝐷

𝑑𝑋𝑓
𝐺
(𝑋data) (5)

is a normalization constant and𝐷 is the domain field of𝑋
𝑘
. In

(4), note that the posterior PDF on the left side is conditioned
upon the BME prior PDF, which is given in more detail by

𝑓
𝐺
(𝑋map) = 𝑒

𝜇0+𝜇
𝑇
𝑔(𝑋map) = 𝑒

𝜇0+∑
𝑁

𝑎=1
𝜇𝑎𝑔(𝑋𝑎). (6)

With the support of BME, we can compute various statistical
quantities, such as the mean, covariance, semivariogram, and
higher-order statistics, because BME estimates the posterior
PDF according to the constraints. For instance, we sought the
most probable value for 𝑋

𝑘
and so computed the differential

coefficient for𝑋
𝑘
that gives the prediction PDFmode, that is,

𝜕𝑓 (𝑋
𝑘
| 𝑋data)

𝜕𝑋
𝑘

= 𝐴
−1
𝐵∫
𝐷

𝑑𝑋
𝜕∑
𝑛

𝑎=1
𝜇
𝑎
𝑔 (𝑋
𝑎
)

𝜕𝑋
𝑘

, (7)

where 𝐵 = 𝑒
𝜇0 is a constant, 𝑔(𝑋

𝑎
), 𝑎 = 0, . . . , 𝑛 are functions

representing the stochastic G-KB information, and 𝜇
𝑎
, 𝑎 =

0, . . . , 𝑛 are the so-called Lagrange coefficients that are in
spatiotemporal coordinates.The latter serve as weights for the
corresponding𝑔(𝑋

𝑎
) functions in (7). BME theory develops a

system of equations for each value of 𝑔(𝑋
𝑎
), from which the

𝜇
𝑎
coefficients are calculated. Subsequently, their values are

inserted in (4) and (6) to evaluate the posterior PDF, whose
maximum gives the prediction mode estimate.

A cross-validation procedure is followed to assess BME
mapping accuracy. Specifically, we use a set of 𝑛ref validation
data that were randomly selected as references for accurate
estimation. We take turns to exclude each validation datum
and calculate its value at the corresponding spatiotemporal
coordinates, and then we compute the mean square error
(MSE), given by

MSE = 1

𝑛ref

𝑛ref

∑

𝑖=1

(𝑋ref ,𝑖 − 𝑋𝑖)
2
. (8)

Thus, the MSE provides a measure of the uncertainty of BME
estimation. In (8),𝑋ref ,𝑖 is the BME estimate and𝑋

𝑖
is the 𝑖th

validation observation value.

3.2. Model Implementation. BME computations were per-
formed with the specialized MATLAB-based interactive
software interface known as the Spatiotemporal Epistemic
Knowledge Synthesis Graphical User Interface, or SEKS-GUI
[21]. SEKS-GUI is a rich-featured intuitive visual interface
that provides a variety of G-KB and S-KB information types,
adjusts model parameters for BME mapping, performs the
analysis, and visualizes the predictions [25].

All types of data were input to the SEKS-GUI software.
The original observations were sorted in a file, in which
each row corresponds to a certain spatial location, date, and
outbreak condition. For computing, outbreak cases recorded
at county level had their spatial index converted to longitude
and latitude of the corresponding county centroid. This con-
version typically introduces additional uncertainty into the
result, because we effectively approximate the spatial refer-
ence for each observation. But it was used in our case because
these uncertainties were considered acceptable, for the fol-
lowing two reasons. First, all counties with SARS outbreaks
were in the south and east ofmainlandChina.These locations
have high population densities and relatively small county
areas. Second, the SARS infections were overwhelmingly
observed in towns near their county centroids. There were
950 outbreak cases observed in 194 locations.

In addition to the previous activities, we had to define the
study area. West China has only ∼1% of the total national
population but covers nearly half the country’s area. For
this reason, we refined the research area and focused on
the regions 102.04∘–126.56∘E and 20.90∘–44.12∘N. The study
period was November 16, 2002, to May 21, 2003—a total of
186 days.
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Figure 4: SARS data transformation. (a) Comparison of the SARS raw dataset cumulative density function (CDF) and the corresponding one
of the normal distribution.Themaximumobserved deviation between those twoCDF is about 28.88%at data value 5. (b)𝑁-score transformed
CDF of the SARS study data and the normal distribution. The maximum observed deviation between those two CDF has dropped down,
compared to panel (a), to about 2.26% at data value −0.63853.

4. Results

For statistical homogeneity, the data of outbreak numbers
should have a normal distribution. In our study, the obser-
vation cumulative density function (CDF) showed as much
as 36.99% deviation from the normal CDF distribution (Fig-
ure 4(a)). Thus, the original data were transformed using the
normal scores method, which forces the original data distri-
bution into the shape of the normal distribution (Figure 4(b)).
Following estimation, the data are back-transformed to the
original value space.

For structural correlation analysis of the spatiotemporal
epidemic spread, we incorporated information from the
empirical second statistical moment of the SARS S/TRF.
Specifically, we computed the empirical spatiotemporal
covariance and then fit a suitable permissible mathematical
model to describe it for BME computation. Figure 5 depicts
both the empirical and fitted theoretical spatiotemporal
covariances characterizing the SARS S/TRF.

Figure 5 shows normalized covariance values, in which
darker colors correspond to higher correlation. Note that
spatial correlation has some fluctuation close to zero distance.
That is, covariance in space decreased rapidly and then briefly
rebounded. This behavior indicates a potentially smaller-
scale correlation that we could not detect with our method.
Correlation in the temporal axis decreases more smoothly
from its maximum value to a minimum point far from the
temporal origin. Given this behavior of empirical covariance,
we fit the following theoretical covariance model, which has

a sine hole spatial component and exponential temporal
component:

𝑐
𝑥
(𝑝, 𝑝) = 𝑐

0
exp (−3𝑟

𝑎𝑠
−
sin (𝑟)
𝑏𝑡

) , (9)

where 𝑟 is distance and sin(𝑟) indicates a sine hole spatial
component; the sill coefficient 𝑐

0
is estimated at ∼1.0068; the

spatial lag coefficient 𝑎 = 0.45 and the temporal lag coefficient
𝑏 = 60.

Using the aforementioned covariancemodel, we obtained
BME estimates representative of the pandemic-spread behav-
ior.

The approach above allowed for a different possible
explanation for the rapid decline and recovery in spatial
correlation in Figure 5, as follows. A spatial lag coefficient
𝑎 = 0.45 is in good agreement with the first geographical
law; that is, the numbers of outbreak events that were <0.45
degrees in longitude (∼50 km) apart had greater similarity
to corresponding numbers of closer events. Inversely, there
was little to no spread relationship between numbers of
outbreak events >2 degrees (∼220 km) apart. However, from
a different perspective, two locations >220 km apart possibly
showed increased correlation because of population move-
ment between more remote locations.

The accurate fit of the exponential model to empirical
temporal covariance suggests that SARS outbreak events
belong in the category of traditional person-to-person epi-
demics. Accordingly, the specified temporal coefficient 𝑏 of
60 days is based primarily on the duration observed in the
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Figure 5: Spatiotemporal covariance used in the BME modelling. (a) Plot of the empirical spatiotemporal covariance; the covariance was
estimated at the nodes shown with small red circles connected with coarse surface plates (the S-lag is in degrees and the T-lag is in days).
(b) Spatial cross-section at 𝑡 = 0 of the estimated covariance surface and the empirical covariance. (c) Temporal cross-section at 𝑠 = 0 of the
estimated covariance surface and the empirical covariance. (d) Fitted theoretical covariance plot (densely gridded surface) superimposed on
the empirical covariance.

most severely affected cities, such as Beijing, Guangzhou, and
Taiyuan.

It is technically possible to limit the number of obser-
vations that are simultaneously used for BME estimation at
each output grid. This is a necessary step to balance between
adequate numbers of neighbors that should be used for
estimation at a specific point. This is based on the assumed
spatiotemporal correlation ranges on the one hand and the
pragmatic need to maintain reasonable computation time for
estimation, on the other. In our case study, we used up to
50 of the closest pieces of data for each estimation location.

Based on the spatial lag and temporal coefficients in (9) and
considerations in the previous subsection, we defined the
maximum spatial and temporal ranges for neighbor search
to be 15 degrees in longitude and 20 days, respectively. The
parameters were set to refine calculations within reasonable
estimation ranges, as follows. First, given the limited period
of spread, the SARS infection presumably could not reach
a location 15 degrees away within mainland China, even
considering rapid population transportation by air.Then, the
observed data suggest that taking the 50 pieces of data nearest
an estimation point essentially considers average temporal
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Figure 6: Contrast between observed SARS outbreak number and BME estimation number.The green line represents actual SARS infections
on a daily basis from November 16, 2002, to May 20, 2003. The blue line represents the corresponding daily number of cases according
to the BME estimates. BME reflects relatively accurately the temporal pattern in the daily number of infections, although it overestimates
systematically the number values.

ranges of 5 days and distances ∼10 degrees. The MSE of 0.69
indicates that the BME estimation in this case was effective
and the accuracy was acceptable.

Finally, we estimated the outbreaks by choosing a spa-
tiotemporal metric parameter value of 0.3. This parameter
was used to convert the space-time coordinates of any
location into a common spatiotemporal distance in the
continuum of SARS outbreak S/TRFs. For instance, with the
above choice, the spatiotemporal distance of two outbreaks
occurring at the same location 10 days apart is roughly equal
to that of two simultaneous outbreaks three degrees apart.
The aforementioned parameter value was based on correla-
tion considerations and the spatiotemporal covariance in (9).

5. Discussion

According to our analysis, the SARS epidemic was divided
into two distinct phases, namely, endemic spread and pan-
demic spread. The result, refined to 220 km and 60 days,
shows that the SARS outbreaks were effectively captured by
spatiotemporal autocorrelation. SARS is a typical person-
to-person, rapidly spreading infectious disease, and it takes
about 60 days to spread froman affected area to adjacent ones.

The process of outbreak spread to the adjacent areas is a
stochastic one, owing to the synergistic effect of three factors.
First, the SARS outbreaks were related to population density.
Urban areas have higher population density than rural and
residential areas, so for an outbreak in a city, it is more likely
that it will spread within the urban limits than outside those
limits. For example, among the total 5318 cases, 1934 were
recorded in Beijing. This number is much higher than the
number of outbreak cases observed in nearby cities and entire
counties. Second, cities typically have convenient transporta-
tion to nearby cities and counties. Thus, commuting and
population exchange between cities and nearby locations is

likely to bemuch greater than corresponding activity between
those cities and more distant areas. Consequently, suspected
individuals from the nearby countryside are more likely to
have travelled to a city and contacted infected people, and
vice versa.Thiswould increase the probability that the disease
spreads in urban areas and their environs.The third and final
factor is that control measures limit population transport, so
the disease is likelier to have greater spread over nearby areas.

Following the SARS outbreaks, the Chinese government
established strict control measures for quarantine of the
suspect population. People travelling from affected areaswere
mandated to undergo several diagnostic tests during their
trip. As a result, the entire transportation system worked
as a rigorous diagnostic tool for potential SARS cases, and
all train, airplane, and long-distance bus passengers were
surveilled for the epidemic. Among the measures, individual
travellers had their temperature taken. If this was above
37.5∘C, the individual would be forced into a state of quar-
antine in isolation wards until the temperature recovered to
normal levels. Such strict measures were effective in restrict-
ing outbreak spread to limited areas for each city [26, 27].

BME estimation led to informative results, shown in the
plot of Figure 6 and the maps of Figure 7. This output reveals
higher temporal correlation and relatively low spatial corre-
lation for the SARS outbreaks and could be summarized in
the following three priority rules of spreading: first, spreading
occurs within the city; second, stochastic spreading occurs
between the city and the towns closest to it; finally, stochastic
spreading takes place across different cities through quick
transportation.

The population density is an explanatory factor for the
fact that SARS spread ismostly in urban areas. Approximately
19% of people working in health services were infected
by their patients. These professionals were able to obtain
rapid treatment, which means that it was unlikely that they
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Figure 7: Continued.
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Figure 7: BME estimation results at selected instances. BME mode estimates are shown on (a), (b), (c), (d), (e), (f), (g), (h), (i), and (j) for
those on Nov. 16, 2002, Dec. 6, 2002, Dec. 26, 2002, Jan. 15, 2003, Feb. 4, 2003, Feb. 24, 2003, Mar. 16, 2003, Apr. 5, 2003, Apr. 24, 2003, and
May 20, 2003.

would contribute to SARS spread outside their areas of
residence. Housewives and retired people are groups that
were extremely susceptible to infection by their families.
However, these population groups typically have no desire to
move to distant places.Themost probable suspects for disease
spread were labourers and businessmen, but these groups
constituted only ∼7% of total infection cases.

The randomness of SARS spread among various cities is a
characteristic that has been explained via the theory of super
spreaders. The starting point of this theory is that the SARS
virus always evolves and mutates. Most virus strings evolve
slowly with similar infectivity, but a small fraction evolve
into extremely infective virus types. People affected by such
virus strings are so-called super spreaders. These individuals

were comparatively very contagious, and they transmitted
the virus to dozens of other people. For instance, five super
spreaders in Singaporewere found to have infected 103 people
[28, 29].The randomness of virusmutation to high infectivity
indicates considerable randomness in the way people became
infected.This randomness also extended to the relatively ran-
dom directions in which the epidemic spread among cities.

6. Conclusions

SARS generated one of the most egregious public health
events in China of the beginning of 21st century, causing great
loss of life and a grave threat to human survival and devel-
opment. In the present study, spatial and temporal aspects
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of this person-to-person contagious disease were explored,
and its spatial and temporal transmission dynamics were
simulated through the BMEmethod. Based on these analyses,
it is concluded that SARS transmission varies in its epidemi-
ological characteristics. Moreover, there was a high temporal
correlation and relatively low spatial correlation of SARS
outbreaks. In addition, the BME modelling demonstrated
that SARS transmission features are affected by spatial het-
erogeneity.Therefore, we analyzed potential causes, including
infected populations and transportationmodes. Our findings
can benefit epidemiological control of pandemic infectious
diseases and public health protection in the future.
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