
High-throughput phenotyping of lung cancer somatic mutations

Alice H. Berger#1,2,3, Angela N. Brooks#1,2,3,4, Xiaoyun Wu#2, Yashaswi Shrestha2, Candace 
Chouinard2, Federica Piccioni2, Mukta Bagul2, Atanas Kamburov2,3,5, Marcin Imielinski1,2,3, 
Larson Hogstrom2, Cong Zhu2, Xiaoping Yang2, Sasha Pantel2, Ryo Sakai6, Jacqueline 
Watson1,2, Nathan Kaplan1, Joshua D. Campbell1,2,3, Shantanu Singh2, David E. Root2, 
Rajiv Narayan2, Ted Natoli2, David L. Lahr2, Itay Tirosh2, Pablo Tamayo2, Gad Getz2,3,5, 
Bang Wong2, John Doench2, Aravind Subramanian2, Todd R. Golub1,2, Matthew 
Meyerson1,2,3,+, and Jesse S. Boehm2,+

1Dana-Farber Cancer Institute, Boston, MA

2Broad Institute of MIT and Harvard, Cambridge, MA

3Harvard Medical School, Boston, MA

5Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA

6KU Leuven, Leuven, Belgium

# These authors contributed equally to this work.

SUMMARY

Recent genome sequencing efforts have identified millions of somatic mutations in cancer. 

However, the functional impact of most variants is poorly understood. Here we characterize 194 

somatic mutations identified in primary lung adenocarcinomas. We present an expression-based 

variant impact phenotyping (eVIP) method that uses gene expression changes to distinguish 

impactful from neutral somatic mutations. eVIP identified 69% of mutations analyzed as impactful 

and 31% as functionally neutral. A subset of the impactful mutations induces xenograft tumor 

formation in mice and/or confers resistance to cellular EGFR inhibition. Among these impactful 

variants are rare somatic, clinically actionable variants including EGFR S645C, ARAF S214C and 

S214F, ERBB2 S418T, and multiple BRAF variants, demonstrating that rare mutations can be 

functionally important in cancer.
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Graphical Abstract

INTRODUCTION

Cancer genome analysis is increasingly a part of clinical care (Frampton et al., 2013; 

Roychowdhury et al., 2011; Van Allen et al., 2014; Wagle et al., 2012), particularly in the 

setting of lung adenocarcinoma, in which somatic mutations in EGFR or translocations 

involving ALK or ROS1 confer tumor sensitivity to particular tyrosine kinase inhibitors 

(Kwak et al., 2010; Lynch et al., 2004; Paez et al., 2004; Pao et al., 2004; Shaw et al., 2014). 

However, cancer-associated variants include not only “driver” mutations that are causally 

related to tumorigenesis but also “passenger” mutations that are inconsequential to tumor 

formation (Stratton et al., 2009). Because lung adenocarcinomas have high mutational 

burdens (Lawrence et al., 2013) and mutations can accumulate in non-expressed genes 

(Lawrence et al., 2013; Polak et al., 2015), it is likely that lung adenocarcinomas contain a 

high load of passenger mutations, including in genes of known importance in cancer.

Genome sequencing frequently identifies variants of unknown significance (VUS), even in 

disease-associated genes (Kilpivaara and Aaltonen, 2013; Taylor et al., 2015). For example, 

approximately one third of TCGA lung adenocarcinoma samples with non-synonymous 

mutations in EGFR harbor mutations at non-recurrently mutated sites. This proportion rises 

to 45% of observed EGFR mutations across cancers (www.tumorportal.org). Information on 

whether these VUS have a similar impact as previously characterized mutations will be 
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critical to guide clinical decision-making for patients whose lung tumors harbor these 

mutations. Given that the number of genes associated with cancer is continuing to increase 

with increasing power of genomics studies (Lawrence et al., 2014), development of 

technologies to assess the functional consequence of individual mutations at scale is 

warranted.

Recent advances in genetic perturbation tools have allowed assessment of wild-type gene 

function at scale, yielding important insights into tumor biology (Boehm et al., 2007; Ebert 

et al., 2008), drug resistance (Johannessen et al., 2013; Shalem et al., 2014; Wilson et al., 

2015), and signal transduction (Berns et al., 2004; Parnas et al., 2015). Furthermore, in vivo 

experiments enable the discovery of oncogenes and tumor suppressor genes in regions of 

chromosomal imbalance and have been successfully utilized to discover important genes in 

hepatocellular carcinoma (Sawey et al., 2011; Zender et al., 2008), lymphoma (Bric et al., 

2009), and ovarian cancer (Dunn et al., 2014). Single-gene studies have provided valuable 

insight into somatic genetic variants in genes such as FLT3 (Frohling et al., 2007), and new 

technologies will increasingly allow such single-gene studies to approach saturation (Emery 

et al., 2009; Kitzman et al., 2015; Melnikov et al., 2014). Finally, large-scale site-directed 

mutagenesis has recently been employed to create the Human Mutation ORFeome 1.1, a 

library of thousands of germline variants, which was recently leveraged to understand the 

consequences of genetic variation on protein-protein interactions (Sahni et al., 2015).

Given these advances, we hypothesized that it might now be possible to simultaneously 

assess the molecular and phenotypic consequences of hundreds of somatic mutations across 

genes of diverse function.

RESULTS

A mutated ORF library of lung adenocarcinoma

We prioritized 53 genes for study based on mutation frequency, relevance to known lung 

adenocarcinoma pathways and availability of open-reading frame (ORF) plasmid templates 

(Table S1). Exome sequencing of 412 primary lung adenocarcinomas identified 518 unique 

missense mutations or in-frame insertions or deletions in these 53 genes (TCGA, 2014) 

(Imielinski et al., 2012). We used site-directed mutagenesis to generate mutant clones and 

transferred ORFs to lentiviral expression vectors. Overall, we successfully generated 194 

mutant expression constructs. Adding wild-type controls and other genes used as expression 

controls or pathway references, we utilized 352 different lentiviral expression constructs 

(Table S1).

We first used the SIFT (Ng and Henikoff, 2003), PolyPhen2 (Adzhubei et al., 2010), and 

MutationAssessor (Reva et al., 2011) computational algorithms to predict which somatic 

mutations might impact protein function. While these methods agreed for 66/103 predictions 

(64%), they disagreed on multiple variants including those in clinically relevant genes such 

as EGFR and KRAS (Figure S1A). To resolve such discrepancies and corroborate these in 

silico predictions, we sought to experimentally determine the functional impact of the 

selected mutations.
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Development of an expression-based variant impact phenotyping assay

Typically, measuring the impact of mutations in a given gene requires a distinct assay or 

measurement of a biomarker specific for each gene under study. However, previous reports 

demonstrate the feasibility of using gene expression signatures as “fingerprints” of 

molecular function (Lamb et al., 2006). Thus, we reasoned that comparing gene expression 

changes induced by wild-type and mutated alleles of the same gene could provide functional 

insight without requiring prior knowledge of gene function. While we expect that different 

cellular contexts could in theory yield different signatures for certain variants, we elected to 

start in a specific context, A549 lung adenocarcinoma cells, as an initial proof of concept.

We introduced the ORF library into A549 cells via lentiviral transduction in arrayed format 

(1 ORF/well) with 8 biological replicates per ORF (Figure 1A). 96 hours later, gene 

expression of 978 transcripts was assayed using L1000 profiling (Peck et al., 2006). Each 

L1000 profile was normalized to a set of housekeeping transcripts (Figure 1A). Differential 

gene expression signatures were then generated by transforming each transcript level to a 

robust Z-score relative to the median background expression in the parental cell line (Figure 
1A). The complete Z-scored data is supplied in File S1.

Next, we compared each mutant signature to its respective wild-type control signature to test 

the null hypothesis that the two signatures are identical. We measured both the strength of 

signal and the signature identity (which transcripts are altered). Replicate consistency is a 

quantitative measure of signal strength with a greater dynamic range than direct calculation 

of signal strength from Z scores alone (Figure S1B). ORFs that induce weak gene 

expression changes have inconsistent differential expression changes and thus have poor 

self-correlation across replicates. In contrast, ORFs that induce strong gene expression 

changes have consistent changes with large magnitude and high correlation across replicates.

Some mutated ORFs, such as CTNNB1 S33N, induced signatures with an increase in 

replicate consistency relative to the cognate wild-type ORF signature (Figure 1B). We 

concluded that this directionality (mutant>WT) indicates a gain-of-function (GOF) 

mutation. In contrast, other mutated ORFs, such as STK11 D194Y, induced signatures with 

decreased replicate consistency compared to wild-type (Figure 1B), suggesting loss-of-

function (LOF) impact on gene function.

In cases in which the replicate consistency of the wild-type and mutant signatures did not 

differ, as for ARAF S214F and V145L relative to wild-type ARAF(Figure 1B), we 

compared signature identity by calculating the correlation between the differentially 

expressed transcripts in the wild-type signature and those in the mutant signature. ARAF 

S214F induced substantially different gene expression changes than wild-type ARAF 

whereas gene expression induced by ARAF V145L was indistinguishable from that induced 

by wild-type ARAF (Figure 1B). Thus, S214F represents an impactful variant of ARAF 

whereas V145L represents a neutral variant in this context. We classified mutants with 

similar replicate consistency to wild-type but with significantly different signature identity 

as change-of-function (COF).
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We combined the replicate consistency and signature identity analyses into a decision tree 

algorithm and built a computational pipeline for expression-based Variant Impact 

Phenotyping, or eVIP, to assess the impact and genetic directionality of each mutation 

(Figure 1C, Figure S1C).

Starting with 194 mutant alleles, we considered the 110 highest quality comparisons in 

which both wild-type and mutant signatures were available, had high infection efficiency, 

and in which all replicates passed L1000 quality control. Of the 110 mutant alleles, 75 

(69%) mutations were found to significantly impact wild-type function under these 

experimental conditions and after multiple-hypothesis correction (Benjamini-Hochberg false 

discovery rate (FDR) < 5%) (Figure 2A and Table S2). It is likely that this value 

significantly overestimates the true fraction of impactful mutations in lung cancer due to the 

non-random selection of genes and mutations in this study.

To determine to what extent these predictions are correct, we took multiple approaches. 

First, to estimate the false positive rate of eVIP, we performed mock comparisons from an 

independent 24-replicate eVIP experiment (File S2). We sampled 8 replicates from one ORF 

as a “mock WT” signature and compared to 8 independent replicates from the same ORF as 

a “mock mutant” signature. Because all replicates actually represent the same ORF, any 

significant differences between these comparisons represent false positives. Performing 1000 

iterations of this analysis, 4.74% of comparisons were falsely called impactful, suggesting 

the eVIP FDR cutoff of 5% is well-calibrated and reflects the empirical false-positive rate.

Second, we assessed the sensitivity of eVIP by comparing the eVIP predictions to previous 

data for 21 mutations for which prior experimental evidence was available. eVIP correctly 

inferred mutation impact for 100% of 21 benchmark alleles, suggesting eVIP is highly 

sensitive (Table S3). In 19 of these benchmark cases, eVIP returned the correct 

directionality of the mutation (GOF/COF vs. LOF). In limited cases, eVIP may have been 

underpowered to resolve true positives. For instance, we note that the EGFR L858R variant 

was correctly determined to be impactful but incorrectly called a LOF mutation. To 

investigate this discrepancy, we analyzed data of greater statistical power (24-replicate 

experiment vs. the 8-replicate main experiment) and found that this higher-powered 

experiment resolved EGFR L858R as a COF mutation (Table S4).

Third, we asked whether the frequency and predicted genetic directionality of impactful 

mutations was related to the categories of the genes under study. 81% (57/70) of mutations 

in genes that were considered significantly mutated in recent cancer genome studies 

(Imielinski et al., 2012; Lawrence et al., 2014; TCGA, 2014) were impactful, whereas only 

46% (18/39) of mutations in genes with lower mutational frequencies were impactful 

(Figure 2B). As expected, oncogenes were enriched for GOF and COF mutations and tumor 

suppressor genes were enriched for LOF mutations (Figure 2C). These patterns are readily 

evident when visualizing the eVIP data on gene-specific “sparkler” plots (Figure 2D-F). We 

note that, surprisingly, this method was able to detect impactful mutations in oncogenes, 

including KRAS, despite the presence of an endogenous, activating KRAS mutation in A549 

cells. Unlike oncogenes (Figure 2D), known tumor suppressors were enriched for LOF 

mutations (Figure 2E). Patterns of mutation impact in genes of unknown significance in 
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cancer could be similarly stratified by enrichment for either GOF or LOF mutations (Figure 
2F).

To further evaluate the eVIP approach, we compared functional impact predictions with 

predictions from the computational methods SIFT, Polyphen2 HumDiv, and 

MutationAssessor (Adzhubei et al., 2010; Ng and Henikoff, 2003; Reva et al., 2011). For 66 

variants that all three computational methods agreed on (52 impactful, 14 neutral), eVIP also 

agreed on the functional impact of 56 variants. Only eVIP and PolyPhen2 HumDiv correctly 

predicted the impact of 21 literature benchmarks. However, PolyPhen2 HumDiv may not 

have good specificity given that variants were predicted to be impactful 81% of the time, in 

contrast to 69% predicted to be impactful by eVIP, suggesting eVIP may have good 

specificity while also having high sensitivity.

Widespread loss-of-function missense variants in tumor suppressor genes

A major challenge in the interpretation of lung cancer genomes involves discriminating 

impactful from neutral missense mutations in tumor suppressor genes (TSG), since such 

genes display a widely distributed pattern of mutation throughout the gene (Davoli et al., 

2013). For the missense mutations studied in seven known or putative tumor suppressor 

genes (DOK1, FBXW7, KEAP1, MAX, PPP2R1A, RB1, STK11), 77% of mutations were 

predicted to be impactful. However, the distribution of impactful mutations varied by gene; 

92% of mutations in KEAP1 and STK11 (23 of 25) impacted gene function compared to 

wild-type (Figure 2E).

KEAP1 encodes an E3 ubiquitin ligase that negatively regulates the protein level of the 

NRF2 transcription factor encoded by NFE2L2 (Jaramillo and Zhang, 2013). Because A549 

cells express elevated levels of NRF2 as a consequence of a KEAP1 G333C mutation, we 

expected that expression of a wild-type KEAP1 ORF should suppress NRF2 levels in this 

cell line. As expected, the transcriptional signature of wild-type KEAP1 and two KEAP1 

variants predicted by eVIP to be neutral (E611D and S144F) were the most anticorrelated 

with NRF2 overexpression (Figure 3A). In contrast, the expression signatures induced by 

KEAP1 variants G603W, R601W, G333C, G524C, and G417R showed no correlation, 

positive or negative, with the NRF2 expression signature, indicative of severe loss of KEAP1 

function. All other KEAP1 variants determined to be impactful by eVIP still retained some 

ability to regulate NRF2 as judged by the mutant signatures’ correlation with the wild-type 

KEAP1 signature and anti-correlation with the NRF2 signature (Figure 3A). These 

mutations are likely to represent hypomorphic variants of KEAP1 and overlap with reported 

hypomorphs of KEAP1 recently characterized by Hast and colleagues (Hast et al., 2014).

We next assessed whether different cellular contexts would provide further resolution of 

these mutation assessments. We introduced the entire KEAP1 variant series into three 

KEAP1 wild-type cellular contexts (H1299 lung cancer cells, and AALE and SALE 

immortalized, non-transformed lung epithelial cells) (File S3), to determine whether 

dominant-negative mutations could be resolved. The top upregulated genes upon NRF2 

overexpression in all KEAP1 wild-type cell lines were the known NRF2 transcriptional 

targets TXNRD1 and HMOX1 (Malhotra et al., 2010) (Figure 3B). Using these two 

transcripts as biosensors of NRF2 activity, KEAP1 expression signatures were clustered 
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(Figure S2). This analysis revealed a cluster of alleles with KEAP1 wild-type activity, plus 

three different classes of impactful KEAP1 variants. The first class consisted of KEAP1 

hypomorphic variants that retained the ability, to some extent, to regulate NRF2 in A549 

(Figure 3C). The second class consisted of 4 KEAP1 variants (R470S, R470H, P278S, and 

E117K) that displayed a strong dominant-negative effect whereby expression of these alleles 

in all three KEAP1 wild-type contexts induced upregulation of NRF2 target genes, 

indicative of NRF2 stabilization (Figure 3C). The third class, severe loss-of-function 

KEAP1 variants, was also able to exert a dominant-negative activity in the KEAP1 wild-type 

cell lines (Figure 3C), although to a lesser degree than the class 2 mutations.

Despite the observed dominant-negative activity in vitro, analysis of the 19 tumors from 

which these KEAP1 variants were identified revealed LOH accompanying 17 of 19 KEAP1 
mutations, including the four mutations showing dominant-negative activity in vitro, 

indicating that full genetic loss of KEAP1 provides the greatest selective advantage to 

human tumors, even for alleles with dominant-negative activity.

Identification of mutations epistatic to EGFR

A remarkable diversity of rare mutations in EGFR, KRAS and other oncogenes in lung 

cancer have been identified, and it remains unclear which, if any, function similarly to 

canonical hotspot mutations. eVIP predicted 91% of the tested variants in ARAF, EGFR, 

KRAS, NRAS, and RIT1 to be impactful, but one limitation of eVIP is that it does not 

directly assess which of these variants are oncogenic. To further characterize the phenotypic 

impact of rare oncogenic mutations, we utilized complementary in vitro and in vivo 

phenotypic assays to provide additional evidence that specific variants activate the 

EGFR/RAS pathway.

First, we leveraged a recently developed erlotinib-rescue assay in PC9 lung adenocarcinoma 

cells (Sharifnia et al., 2014) to determine which mutations represent gain-of-function 

mutations that are epistatic to EGFR. PC9 cells harbor an activating EGFR exon 19 in-frame 

deletion and are naturally sensitive to the EGFR inhibitor erlotinib. Expression of variants 

such as mutant KRAS that re-activate downstream signaling pathways can rescue the 

erlotinib-induced lethality in this cell type (Sharifnia et al., 2014).

We determined the ability of each ORF to rescue erlotinib sensitivity at two erlotinib doses 

after 72 hours of treatment. Cell viability across replicate conditions and in both erlotinib 

doses was highly correlated (Figure S3A-S3E). 62 of 351 ORFs (17.7%), representing 

variants of 14 proteins, rescued cell viability in 3 μM erlotinib, including numerous mutant 

variants of KRAS, EGFR, RIT1, and BRAF (Z score > 2; Figure 4A). We retested 42 ORFs 

that had scored in at least one erlotinib dose across a wider range of 5 erlotinib 

concentrations. 27/27 hits with primary screen Z scores greater than 3 and 9/15 hits with Z 

scores between 2 and 3 were confirmed upon retesting (Table S5 and Figure S3F).

As expected, known resistance variants of EGFR, L858R/T790M and 746delELREA/

T790M, conferred erlotinib resistance whereas known sensitive alleles L858R and exon 19 

deletions, did not. EGFR exon 20 insertion alleles 773_774insH, 769_770insASV, and 

774_775insHV conferred resistance to erlotinib (Figure S3E, S3F), in agreement with 
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previous findings (Greulich et al., 2005; Oxnard et al., 2013). Mutations frequently observed 

in the COSMIC database were more likely to score than rare mutations (Figure 4B); 22 of 

22 mutations with a frequency in COSMIC greater than 100 scored in the assay versus 6 of 

14 mutations observed only once in COSMIC (p < 0.0001 by Fisher’s exact test). However, 

rare “n of 1” mutations also scored in this assay, demonstrating that rare mutations can be 

functionally significant.

Identification of tumor-promoting mutations by multiplexed in vivo screening

To directly test which alleles promote tumor formation in vivo, we developed a multiplexed 

xenograft tumorigenesis assay of immortalized human lung epithelial cells sensitized to read 

out variants in the EGFR/RAS pathway. Our preliminary work found that immortalized 

small-airway epithelial cells harboring an activating YAP1 variant (SALE-Y cells) are 

incapable of forming tumors larger than 0.2 cm3 in mice up to at least 120 days, but are 

rendered tumorigenic via the introduction of activating variants in EGFR, BRAF, or 

MAP2K1 (Figure S4A). The reciprocal analysis showed that stably transduced SALE-

EGFRL858R cells failed to form tumors in combination with the control ORFs HcRed and 

Renilla, but robustly formed tumors after transduction with activated YAP1 (Figure S4A). 

Based on these data, we chose the SALE-Y cellular context for screening, with the goal of 

identifying activating mutations in the EGFR/RAS pathway.

We introduced each of the barcoded alleles into SALE-Y cells in arrayed format, pooled in 

groups of ~70-80, and injected cells subcutaneously into immunocompromised mice 

(Figure 5A). We excluded most known oncogenic alleles from experimental pools so that 

these expected strong alleles would not dominate the tumor cell population. In addition, we 

performed the experiment using two different pool compositions; one composition contained 

pools including all test alleles and the other had the same 8 pools but omitted alleles that we 

reasoned were likely to be oncogenic. Overall, 92/96 injection sites formed tumors, with 

tumor latencies ranging from 11 days to 74 days.

To determine which ORFs conferred tumor-forming capacity to SALE-Y cells, we harvested 

tumor DNA and PCR-amplified and sequenced ORF barcodes from each tumor. ORFs with 

poor pre-injection representation were excluded from further analysis (Figure S4B). By 

identifying barcodes that were significantly increased in abundance in tumors versus the pre-

injection pools, the top hits were non-canonical alleles in known EGFR/RAS pathway genes 

such as BRAF H574Q, BRAF P367R, KRAS D33E, EGFR S645C, ERBB2 S418T, and 

RIT1 R122L (Figures 5A, 5B, and Table S6).

The hits identified in both the EGFR epistasis screen and tumor formation screens showed 

significant overlap (p < 0.0001 by Fisher's exact test; Figure 5C). A summary of the 

mutational impact of each variant as assessed by eVIP, the EGFR epistasis screen, and tumor 

formation screens is shown in Table S7. All mutations that scored in both the EGFR 

epistasis screen and tumor formation screen and were characterized by eVIP were classified 

as gain-of-function or change-of-function mutations by eVIP (ARAF S214C, ARAF S214F, 

KRAS D33E, KRAS G13V, RIT1 F82L, RIT1 R122L, and RIT1 T76insTDLT). No neutral 

or loss-of-function mutations scored in both of the functional screens. 33/34 (97%) and 

29/30 (97%) of mutations called neutral or loss-of-function by eVIP, respectively, failed to 
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score in either of the two functional screens (Figure 5C). Seven mutations scored in EGFR 

epistasis but did not promote tumor growth; five of these were PIK3CA or AKT1 variants. 

Five mutations induced tumor formation but did not score in the EGFR epistasis screen; 

three of these corresponded to EGFR or ERBB2 variants that may have been inhibited 

themselves by erlotinib.

Integrative functional and expression analysis of somatic variants

ARAF S214F and S214C were originally identified in a RAF inhibitor exceptional 

responder study (Imielinski et al., 2014). The expression signatures induced by these ARAF 

mutants are highly correlated to those induced by canonical BRAF mutants (Figure 6A). 

Both ARAF S214C and S214F robustly rescued cell viability in the presence of erlotinib and 

induced tumor formation. These activities were clearly kinase-dependent as each mutation in 

cis with a kinase-inactivating D429A mutation failed to induce tumor formation or erlotinib-

resistance. Notably, ARAF V145L failed to score in any of the three assays, suggesting it is 

a passenger mutation.

The majority of BRAF-mutants clustered with the known BRAF activating variant, V600E 

(Figure 6A). However, three BRAF variant signatures (W450L, H574N, D594H) were 

highly similar to the kinase-dead ARAF signature, suggesting these BRAF variants lack 

catalytic and/or other activity. BRAF D594 mutants have been previously described as 

kinase-inactive but able to activate MAPK signaling in RAS mutant cells (Heidorn et al., 

2010). However, because our experiment was performed in KRAS-mutant A549 cells, the 

expression data presented suggest other factors in addition to RAS mutation status may 

determine the functional output of kinase-dead BRAF. Western blot analysis of A549 cells 

expressing BRAF variants confirmed that H574N and W450L fail to induce ERK 

phosphorylation whereas other rare variants H574Q and P367R induce higher ERK 

phosphorylation levels than that induced by expression of wild-type BRAF (Figure 6B).

The majority of activating variants in EGFR, BRAF, and ARAF, as well as those in the small 

GTPases KRAS and RIT1 (Berger et al., 2014), induced expression signatures which 

clustered together and were distinct from the wild-type or inactive RAF allele signatures 

(Figure 6C and Figure 6D). The activated EGFR-pathway oncogene cluster correlated with 

the high scoring ORFs from the PC9 EGFR epistasis screen (Figure 6C and Figure 6D). 

The correlation across cellular contexts is encouraging and suggests that in the future, 

expression profiling alone may be sufficient to identify activating mutations in this pathway.

In addition to previously characterized EGFR variants such as L858R and exon 19 deletions, 

eVIP identified two rare non-canonical EGFR variants, S645C and K754E, as gain-of-

function mutations. Of note, SIFT, PolyPhen2, and MutationAssessor were in disagreement 

on the functional impact of these EGFR variants. In agreement with the eVIP predictions, 

both EGFR S645C and EGFR K754E promoted tumor formation in vivo. However, unlike 

other EGFR variants that are sensitive to erlotinib, these two variants were less sensitive to 

erlotinib than wild-type EGFR (Figure S3F), suggesting that patients with tumors harboring 

these particular alleles might not benefit from treatment with this inhibitor.
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MEK inhibition overcomes erlotinib resistance induced by EGFR-pathway oncogenic 
mutations

The rare or non-canonical variants of ARAF, BRAF, EGFR, ERBB2, KRAS, and RIT1 

identified in the functional assays above induce expression signatures highly correlated with 

mutant KRAS activation (Figure 6D), suggesting these alleles activate RAS/MAPK 

signaling. We hypothesized that inhibition of downstream nodes in the EGFR/RAS pathway 

might overcome erlotinib resistance induced by these oncogenic alleles. To investigate the 

sensitivity of these alleles to targeted therapies, we generated 16 isogenic PC9 stable cell 

lines expressing the mutant alleles plus two control isogenic lines (Figure S5). We assayed 

the response of the cell lines to erlotinib or 8 different small molecule inhibitors targeting 

EGFR/ERBB2, HSP90, MEK, and PI3K/mTOR (Figure 7A).

As expected from the primary EGFR epistasis screen, the stable isogenic cell lines exhibited 

resistance to erlotinib treatment (Figure 7A). All lines also exhibited cross-resistance to the 

EGFR inhibitor afatinib, but not to other inhibitors tested (Figure 7A). However, co-

treatment with erlotinib and trametinib could overcome the erlotinib resistance in all lines, 

indicating that the activity of these rare oncogenic alleles is dependent on re-activation of 

MEK (Figure 7B, 7C). Co-treatment with erlotinib and the mTOR inhibitor torin1 could 

also largely overcome erlotinib resistance, indicating that all tested mutants act both 

upstream of MEK and also mTOR to promote survival in erlotinib (Figure 7B). The 

response of all lines to HSP90 inhibition by AUY922 was not altered by expression of any 

allele or by combination treatment with erlotinib.

Taken together, we validated 16 rare oncogenic variants in ARAF, BRAF, EGFR, ERBB2, 

KRAS, and RIT1 as activating mutations that both induce tumor formation and confer 

resistance to erlotinib in a MEK-dependent manner (Figure 8), indicating that MEK 

inhibition should be explored as a potential therapeutic strategy for patients with tumors 

harboring these oncogenic alleles.

DISCUSSION

Here we present a large-scale mapping of lung adenocarcinoma-associated variants to 

function for 194 alleles representing 53 genes. By focusing on individual variant alleles, we 

assigned functional significance to alleles that include rare “n of 1” variants. We identified 

gain-of-function activity for rare variants encoded by the ARAF, BRAF, EGFR, ERBB2, 
KRAS, and RIT1 oncogenes. Previously, in the absence of functional data, some of these 

non-canonical variants were excluded from the “known oncogene-positive” set of tumors 

(TCGA, 2014), but the functional evidence we presented here would support their inclusion 

as likely driver oncogenes.

The major challenge that this work addresses is that no single assay can rapidly profile the 

functional impact of a diverse set of genes and alleles (e.g. receptor tyrosine kinases, E3 

ligases, transcription factors, small GTPases and more). To tackle this challenge we 

developed an approach, expression-based variant-impact phenotyping, to infer mutation 

impact from expression profiling data. eVIP can profile many genes and alleles at once, 

regardless of function. To validate this approach, we performed two complementary cancer 
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phenotype screens and observed that mutations classified by eVIP as gain-of-function or 

change-of-function were the only alleles to score in both screens whereas 97% of loss-of-

function or neutral alleles failed to score. The concordance between these approaches 

establishes a proof-of-principle for expression-based variant impact phenotyping and 

motivates continued systematic functional analyses of genetic variants in cancer.

Application of eVIP to lung adenocarcinoma alleles confirmed the functional impact of 

canonical and non-canonical gain-of-function oncogenic mutations, but additionally 

stratified and characterized mutations in genes not read out by the complementary positive-

selection studies employed. eVIP analysis revealed a surprisingly high rate of impactful, 

loss-of-function missense mutations (92%) in the tumor suppressor genes KEAP1 and 

STK11, indicating that most somatic variation in these genes in lung adenocarcinoma is 

inactivating, rather than only nonsense and frameshift mutations. However, neutral 

mutations are also observed, underscoring the importance of continuing to develop and 

apply computational and functional genomics methods to separate impactful from neutral 

mutations.

In the present study, we profiled mutations after overexpression in a limited number of lung 

cellular contexts. We cannot exclude the possibility of false negatives due to context 

specificity of the activity of individual gene alterations. Therefore, we recognize that these 

functional studies may not yet be at saturation. At the same time, our studies of rare 

oncogenic and loss-of-function alleles across cellular contexts were largely concordant and 

demonstrate that positive results are likely to be robust.

The work presented here demonstrates proof of principle that high-throughput phenotyping 

of somatic mutations can distinguish impactful mutations from neutral mutations and 

generate valuable insights into patterns of functional mutations in cancer. These efforts are 

amenable to extension to include testing of both germline and somatic variants, and the use 

of genome-editing techniques to study endogenous mutations. Such future efforts might 

include saturating mutagenesis analysis of a small number of clinically-actionable genes as 

well as a broad survey of mutated alleles in diverse genes.

Iteration of functional profiling, statistical genomics, and algorithms based on evolutionary 

and structural constraints will gradually improve the assignment of mutation function. 

Together, the application of these approaches for classification of mutations will begin to 

match the pace of genomic discovery and will accelerate the translation of genomic 

knowledge to clinical care.

EXPERIMENTAL PROCEDURES

Mutated cDNA library

Wild-type open-reading frame constructs (ORFs) were obtained from the human ORFeome 

library version 5.1 (http://horfdb.dfci.harvard.edu) and used as templates for site-directed 

mutagenesis to generate mutated cDNAs in the pDONR223 Gateway entry vector. All 

constructs used in downstream analyses were validated by Sanger sequencing to include the 

intended mutation and no other identified sequence differences relative to the wild-type 
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construct. After sequence verification, mutated ORFs were shuttled into the pLX317 

lentiviral expression vector by LR recombination. All constructs will be publicly available 

via www.addgene.org.

Cell lines and lentiviral transduction for expression profiling

Cells were plated in 384-well plates and the next day transduced with lentiviral particles 

carrying ORF constructs. Viral particles were removed 18-24 hours post-infection and cells 

cultured for 72 hours until L1000 profiling (96 hours total post-transduction). To assess 

infection efficiency, cells were treated with or without antibiotic selection 24 hours post-

infection, and cell viability was determined using CellTiterGlo (Promega) after 72 hours of 

selection. For the remaining plates, media was removed 96 hours post-infection, and cells 

were lysed with addition of TCL buffer (Qiagen). Plates were then stored at −80 °C until 

cDNA synthesis and gene expression profiling.

L1000 profiling and data processing

Luminex bead-based high-throughput gene expression profiling was performed as described 

in Peck et al., 2006. Standardized processing pipelines of L1000 data developed by the 

Connectivity Map were used for quantile normalization of expression levels and 

determination of Z-scored differential gene expression profiles. Z-score calculations were 

based on plate-wide expression levels. In the case of replicate collapsed profiles, all 

replicates that passed QC were collapsed based on a weighted average of Z-scores, where 

the weights correspond to pairwise replicate correlation. More detailed information on 

standardized data processing and QC can be found on the lincscloud website: http://

support.lincscloud.org/. To verify that ORF constructs were adequately expressed, the 

experiment included 76 cDNAs known to be detected by L1000 probes (“OE CONTROL” in 

Table S1). Wells containing these expression controls were identified to have the highest 

upregulation of the respective gene across the dataset in 75 of 76 cases, with a median Z-

score of differential expression of 9.4, confirming that most ORFs are robustly expressed as 

expected.

EGFR epistasis assay

400 PC9 cells were plated per well of 384-well plates and the next day transduced with 

lentivirus. 48 hours post-transduction, media was changed to fresh media including 300 nM 

erlotinib, 3 μM erlotinib, or DMSO. 72 hours post-treatment, cell viability was determined 

using CellTiterGlo reagent (Promega) and luminescence quantified on an Envision 

MultiLabel Plate Reader (PerkinElmer).

Pooled tumor formation screen

SALE-YAP15SA cells were transduced in 96-well plates, selected with puromycin and 

expanded, and then pooled. Two million cells per pool per site were injected subcutaneously 

into immunocompromised mice and tumor formation monitored. Animals were sacrificed 

when tumor length exceeded 2 cm. Genomic DNA was extracted and subjected to PCR and 

next-generation sequencing to determine the relative proportion of each barcode within the 
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resulting tumor. All experiments were approved by the Dana-Farber Cancer Institute Animal 

Care and Use Committee.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

Variant interpretation remains a major challenge to the implementation of precision 

medicine. To address this challenge, we developed a gene-expression based method that 

can characterize the function of many genetic variants, regardless of gene or mutation 

function. Application of this approach identified 31% of lung adenocarcinoma mutations 

as neutral, yet 92% of missense variants in tumor suppressor genes KEAP1 and STK11 
were identified as loss-of-function variants. Combining this approach with assays for 

cancer phenotypes identified over a dozen rare, non-canonical mutations as gain-of-

function, likely “driver” oncogenic mutations. These data demonstrate the feasibility of 

systematic functional interpretation of the cancer genome.
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HIGHLIGHTS

• Expression-based phenotyping distinguishes neutral from impactful 

mutations

• 92% of missense mutations in KEAP1 and STK11 diminish gene 

function

• Rare variants in ARAF, BRAF, EGFR, ERBB2, KRAS, and RIT1 are 

oncogenic

• Erlotinib-resistance induced by rare variant mutations is MEK-

dependent
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Figure 1. Expression-Based Variant Impact Phenotyping
(A) Overview of the experimental pipeline from reagent generation to eVIP analysis.

(B) Dot-plot and heat map representation of replicate consistency (WT vs. WT or variant vs. 

variant) comparisons and signature identity (WT vs. variant) comparisons. Correlation is 

measured by a weighted connectivity score (wtcs). *, adjusted p < 0.05. n.s., adjusted p > 

0.05.

(C) Schematic of the decision tree-based eVIP algorithm. The first test (“impact test”) 

outputs a single Bonferroni-adjusted p value indicating likelihood of mutation impact. For 

Berger et al. Page 19

Cancer Cell. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impactful mutations, the next tests are used to determine the directional impact of the 

mutations. For mutations found to be non-impactful, a “power test” assesses whether the two 

signatures are similar to one another due to real signal, or due to noise.

See also Figure S1, Table S1, and File S1.
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Figure 2. eVIP Classifications for 110 Lung Cancer Somatic Mutations
(A) A “sparkler” plot representation of eVIP predictions. Each variant allele with an eVIP 

prediction is represented as a point. The x-axis indicates the –log10 (adjusted p) of a 

Kruskal-Wallis test comparing wild-type and mutant ORF replicate consistency and 

signature identity. The y-axis is the “impact direction score,” the absolute value of which is 

equal to the –log10 (adjusted p) of a Wilcoxon test directly comparing wild-type and mutant 

ORF replicate consistency. The sign of the impact direction score is positive if the mutant 

ORF replicate consistency is greater than the wild-type replicate consistency and negative if 

the mutant ORF replicate consistency is less than the wild-type ORF replicate consistency. 

The line connecting each point and the graph origin is drawn to emphasize that longer 

distance from the origin implies more confidence in the prediction.

(B) Enrichment of impactful variants in genes found to be significantly mutated cancer 

genome studies. GOF, COF and LOF predictions are all considered impactful. ***, p < 

0.0001 by Fisher's Exact test.

(C) Distribution of eVIP calls in known oncogenes, known tumor suppressor genes (TSGs), 

or genes of unknown function.

(D-F) Gene-specific sparkler plots for known oncogenes (D), known tumor suppressor genes 

(E), and genes of unknown function (F). The tested variant allele is labeled and colored 

based on the eVIP prediction. Coloring is as in (A).

See also Table S2, Table S3, Table S4, and File S2.
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Figure 3. Hypomorphic and Dominant-negative KEAP1 Variants Identified by Gene Expression 
Profiling
(A) Hierarchical clustering of KEAP1 expression signatures in A549 cells. The similarity 

matrix was computed using the weighted connectivity score (wtcs) as the similarity metric.

(B) Two-class comparison of NRF2 ORF signatures versus control (EGFP, HcRed, 

Luciferase) signatures across three KEAP1 wild-type cell lines (AALE, SALE, H1299). The 

top transcripts up- or down-regulated by NFE2L2 expression were determined by a signal-

to-noise statistic.
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(C) Expression of the direct NRF2 transcriptional target TXNRD1 is shown as a biosensor 

of NRF2 and KEAP1 activity. Upper panels show NRF2 variants and KEAP1 wild-type and 

neutral variants. The lower panels show three classes of loss-of-function KEAP1 variants 

identified by hierarchical clustering of expression profiles generated in four cellular 

contexts: A549 (KEAP1 mutant) and three KEAP1 wild-type cell lines, H1299, SALE, and 

AALE.

See also Figure S2 and File S3.
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Figure 4. Orthogonal Assays in Different Cellular Contexts Identify Oncogenic EGFR Pathway 
Mutations
(A) Cell viability of PC9 cells after mutant allele library infection and 72 hours of treatment 

with 3 μM erlotinib or DMSO. Data shown are the average robust Z scores of two replicates 

per ORF condition. A dashed line indicates the threshold used to select ORFs for validation 

(Z > 2).

(B) Relationship between mutation frequency in COSMIC (x-axis) and ability to rescue cell 

viability in erlotinib (y-axis). Two dashed lines indicate the Z score thresholds used to select 

ORFs for validation (Z > 2) and the threshold at which all ORFs retested in validation (Z > 

3).

See also Figure S3 and Table S5.
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Figure 5. A Multiplex In Vivo Tumor Formation Screen for Identification of Activated 
Oncogenes
(A) Left, experimental schematic showing screening workflow. Right, pie charts showing the 

median corrected reads per million (RPM) per ORF in pre-injection and tumor samples for 

all pools in the tumor experiment. Because ORFs were assayed in different pools, the 

proportion of each ORF on the pie chart may not reflect the actual relative levels of 

oncogenic activity.

(B) One-sided volcano plot showing distribution of ORFs from all pools. Each datapoint 

represents data generated from all pre-injection and tumor replicates for a given ORF. The 

log2 fold-change (x-axis) was calculated by comparing the median corrected RPM of each 

ORF from the pre-injection samples to the median corrected RPM in tumor samples.

(C) Plot showing relationship between ORF variants across functional and expression-based 

screens. All alleles with both tumor formation and EGFR epitasis data were plotted; alleles 

not analyzed by eVIP are indicated by “ND” (not determined). The colored shapes indicate 

the predicted mutation impact as assessed by eVIP in A549 cells.
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See also Figure S4, Table S6, and Table S7.
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Figure 6. Integration of Expression Signatures and Functional Data Identifies Rare Activating 
Mutations in the RAS/MAPK pathway
(A) Heat map showing hierarchical clustering of expression signatures in A549 cells. 

Similarity of signatures was compared using the weighted connectivity score (wtcs) and 

transformed to a rankpoint distribution with the best correlation set to 1 and best anti-

correlation set to −1. Asterisks indicate engineered kinase-dead ARAF variants (not found in 

human cancer).
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(B) Western blot of A549 cells expressing wild-type BRAF or BRAF variants, or control 

vector (HcRed). The primary antibodies used are indicated on the left. p-ERK, 

phosphorylated Thr202/Thr204 ERK1/2.

(C) Hierarchical clustering of a similarity matrix of all A549 expression signatures in the 

study. Similarity of signatures was computed as in (A). A bar chart above the heatmap 

indicates the average robust Z score achieved by each respective ORF in the PC9 EGFR 

epistasis screen.

(D) Expression signature analysis in A549 cells showing all ORFs ranked from left to right 

in order of correlation to the KRAS G12C signature. Canonical alleles of EGFR/RAS 

pathway oncogenes and rare alleles induce signatures highly similar to KRAS G12C (left, 

gray shading), with the exception of ARAF V145L, determined to be neutral by eVIP, and 

the three apparently inactive BRAF mutants described in the text (right side, gray text). An 

additional track shows allele performance in the EGFR epistasis assay (black bars).
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Figure 7. Sensitivity of Rare Oncogenic Mutations to MEK Inhibition
(A) Viability of PC9 stable isogenic cell lines after treatment with the small molecules 

shown for 96 hours. 36-point dose response curves were performed and curves plotted in 

GraphPad Prism. Data shown are the ratio of the area-under-the-curve (AUC) of the mutant 

PC9 line vs. the PC9-luciferase negative control.

(B) Viability of PC9 stable isogenic cell lines after treatment with the small molecules 

shown in combination with erlotinib. Inhibitors were delivered in a 1:1 molar ratio across a 

36-point dose-response curve. Data shown are the ratio of the AUC of the mutant PC9 line 

in the combination treatment vs. the AUC of the mutant PC9 in erlotinib only. Note that 

EGFR K754E appears to be the least sensitive to trametinib inhibition but this is actually due 

to EGFR K754E conferring the least resistance to trametinib, as shown in panel (C).

(C) Dose-response curves of PC9 stable isogenic cell lines expressing EGFR, ERBB2, or 

KRAS variants. Data shown are the same curves used to generate the heat maps in panel (B).

See also Figure S5.
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Figure 8. Summary of Validated Rare Functional Alleles of Oncogenes
Stick plot representation of predicted protein sequence and domain structure of oncogenes 

harboring rare, functional alleles. Canonical hotspot mutations are shown for reference 

(gray). Rare variants shown in red scored in eVIP, the EGFR epistasis screen, and the tumor 

formation screen, and additionally are sensitive to MEK inhibition with trametinib.
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