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Abstract

Advances in high-throughput genomic and proteomic technology have led to a growing interest in 

cancer biomarkers. These biomarkers can potentially improve the accuracy of cancer subtype 

prediction and subsequently, the success of therapy. In this paper, we describe emerging 

technology for enabling translational bioinformatics by improving biomarker identification. 

Specifically, we present an application that uses prior knowledge to identify the most biologically 

relevant gene ranking algorithm. Identification of statistically and biologically relevant biomarkers 

from high-throughput data can be unreliable due to the nature of the data — e.g., high technical 

variability, small sample size, and high dimension size. Furthermore, due to the lack of available 

training samples, data-driven machine learning methods are often insufficient without the support 

of knowledge-based algorithms. As a case study, we apply these knowledge-driven methods to 

renal cancer data and identify genes that are potential biomarkers for cancer subtype classification.

SECTION I. INTRODUCTION

BIOMARKER identification from high-throughput microarray data is sensitive to analysis 

parameters [1]. As a result, candidate biomarker lists are difficult to reproduce, limiting the 

efficiency of identifying relevant candidate biomarkers and applying them to problems such 

as clinical prediction. We have developed a web-based application called omniBiomarker 

that addresses this problem (http://omnibiomarker.bme.gatech.edu/). OmniBiomarker allows 

users to assess several gene ranking metrics in order to choose the most biologically relevant 

metric with respect to a specific clinical problem. A clinical problem is defined by the 

partitioning of biological samples—e.g. cancer vs. normal—and we assume that sample 

labels are correct. The biological relevance of a ranking metric is the probability that the 
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metric can correctly identify differential biomarkers while reducing false discoveries. We 

compute biological relevance for a gene ranking metric with respect to prior biological 

knowledge.

Previously validated biomarkers serve as references with which to determine the relevance 

of ranking metrics [2]. In Fig. 1, for example, we assume that several genes (8, 52, and 234) 

have been previously identified and validated for a clinical problem—i.e., these genes have 

been verified as differentially expressed between the disease conditions of interest. Among 

the multiple feature ranking metrics, the “optimal”, or most biologically relevant metric, 

should favorably rank these genes while simultaneously reducing the number of false 

discoveries (or genes that are not in our knowledge set). However, because our knowledge 

set is unlikely to be comprehensive, we can usually expect that some of the false discoveries 

may actually validate as biologically relevant genes. By using the most biologically relevant 

ranking metric, we increase the probability that these false discoveries, with respect to the 

current knowledge set, are actually relevant biomarkers. This increased probability leads to 

an improvement in the efficiency of identifying and validating new biomarkers that we can 

iteratively add to our knowledge set [2].

In the following sections, we describe the architecture of omniBiomarker and review the 

underlying knowledge-based methodology. Using these methods, we optimize the gene 

ranking metric with respect to prior biological knowledge and identify some novel genes for 

validation as potential biomarkers for renal cancer subtype classification.

SECTION II. Methods

A. OmniBiomarker Application Architecture

OmniBiomarker contains four components: client, web server, database, and compute cluster 

(Fig. 2). The client component, or web interface, allows users to interact with the 

application, relaying input to the web server. The web server component, in addition to 

responding to user commands and generating the appropriate user interfaces, contains 

utilities for uploading and downloading data—e.g., gene expression data and gene ranking 

results—to and from the MySQL relational database. The database component is accessed 

by both the web server and computation components. Fig. 3 is a simplified representation of 

the relational database. The computation component receives commands directly from the 

web server component through a web service and contains parallel-processor utilities for 

efficiently ranking genes.

The relational database organizes information about gene expression values as well as gene 

ranking results (Fig. 3). Microarray samples—each of which contains expression values for 

thousands of genes—reside in a multi-level hierarchy that maximizes the flexibility of data 

analysis and reduces the overall storage requirements. A dataset typically consists of several 

microarray samples partitioned into specific phenotypic classes. The omniBiomarker 

interface allows users to customize these sample partitions—called ‘label sets’ in the 

database—depending on the particular clinical problem. Each gene expression dataset links 

to metadata tables that contain annotation information for each biomarker. The database also 

includes several tables that store gene ranking results and analysis parameters.
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B. Gene Ranking and Biological Relevance

For a clinical problem, we choose the most biologically relevant ranking metric from among 

several filter- and wrapper-based ranking algorithms [3]. The filter metrics include the 

commonly used t-test, fold change, and significance analysis of microarrays (SAM) [4]. The 

wrapper-based metrics include support vector machines (SVM), signed distance functions 

(SDF), and linear discriminant classifiers (LDA) [5][6][7]. Wrapper-based metrics rank 

genes by estimated classification error. Smaller classification error indicates that the gene 

may be a good predictive biomarker. Because microarray datasets usually have a limited 

number of samples, we estimate the classification error of each gene using 100 iterations of 

0.632+ bootstrap [8][9]. Although we assess several ranking metrics, we only use the single 

most biologically relevant metric to select candidate biomarkers for validation. The use of 

multiple metrics also allows us to illustrate the sensitivity of candidate biomarker lists to the 

selection of a ranking metric.

We compute the biological relevance of each ranking metric with respect to prior knowledge 

in the form of previously validated biomarkers. A gene ranking metric assigns to each gene, 

$i$, a score based on its differential expression, $\alpha_{i}$, where $i=1\ldots m$, and $m$ 

is the total number of genes in a dataset. We assume that lower ranking scores indicate 

higher differential expression and that all scores are constrained to be within the interval [0],

[1]. We define $G_{k}=\{g_{1},g_{2},\ldots,g_{k}\}$ as the set of $k$ relevant biomarkers 

such that elements of the set $\{\alpha_{i}:i\in G_{k}\}$ are generally smaller than those of 

$\{\alpha_{j}:j\not\in G_{k}\}$. Genes in $G_{k}$ should be ranked more favorably than 

the genes that are not in $G_{k}$. We define the following function as the biological 

relevance of a gene ranking metric, $\theta$:

where $I(x)$ is the indicator function, evaluating to one when $x$ is true and zero 

otherwise. This formula for biological relevance is equivalent to the area under an ROC 

curve. The notation presented here is similar to that used in a previous study that examined 

the biological relevance of gene ranking [2][10][11].

Because we have a limited set of knowledge genes, we use a bootstrap simulation to 

examine the effect of ranking metric selection on biomarker detection efficiency. The 

simulation iteratively identifies the most biologically relevant ranking metric using only a 

subset of the total $K$ knowledge genes—selected by randomly choosing $K$ genes with 

replacement—then assesses the ability of that ranking metric to detect the remaining 

knowledge genes. The optimal ranking metric, $\hat{\theta}$, maximizes the likelihood 

(ML estimation, or MLE) of the biological relevance formula: $\hat{\theta}=

\arg{\max}_{\theta}\phi(G_{k},\theta)$. After identifying $\hat{\theta}$ given a subset of 

the knowledge genes, the simulation ranks all remaining genes, searches for the next 

biologically relevant gene (possibly encountering some false discoveries), updates the 

knowledge set, and repeats the process until all genes in $G_{k}$ have been identified. The 

total number of false detections encountered during this process is inversely proportional to 
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the biomarker detection efficiency. Plotting the biomarker detection efficiency curve (by 

stepping along the x-axis for each gene encountered during the search and stepping along 

the y-axis for each correct gene detection) reveals that the area under this curve (AUC) is 

proportional to the biomarker detection efficiency [2].

C. Clinical Case Study

In the clinical case study, we use a renal cancer dataset derived from a study by Schuetz et 

al. that uses Affymetrix microarrays (HG-Focus, 8793 probesets) to profile samples from 

several subtypes of renal tumors, including 13 clear cell (CC) renal cell carcinoma (RCC) 

and 5 papillary (PAP) [12]. We are interested in biomarkers that differentiate the CC class 

from the PAP class. Few reliable biomarkers have been validated for this differential 

diagnosis in clinical practice. We identify biomarkers with qRT-PCR validation and use 

these biomarkers as knowledge genes to compute biomarker detection efficiency and to 

propose novel biomarkers that may accurately classify CC and PAP samples. The use of 

qRT-PCR improves the quality of our knowledge set due to its high sensitivity and 

specificity.

SECTION III. Results and Discussion

A. Validated Reference Genes

As described in the methods, we identify several biomarkers that are differentially expressed 

according to qRT-PCR validation (Table 1). We filter qRT-PCR validated biomarkers such 

that their estimated classification errors are less than 20%. The use of qRT-PCR validated 

biomarkers increases our confidence in the differential expression of the biomarkers and 

ensures the quality of our knowledge set [2][13].

B. Gene Detection Efficiency

Using our knowledge derived from qRT-PCR experiments, we examine the effect of 

optimizing the feature ranking metric using the previously described simulation method [2]. 

For the CC vs. PAP subtype comparison, box plots representing 100 iterations for each test 

indicate that the knowledge guided feature ranking metric (Fig. 4, black)—selected using the 

maximum likelihood estimation (MLE) method—outperforms the standard significance 

analysis of microarrays (SAM, Fig. 4, green) filter method. Furthermore, the quality of the 

initial knowledge set affects biomarker detection efficiency (Fig. 4, red)—the suboptimal 

knowledge set is randomly chosen from the total set of genes. As expected, the control test 

(Fig. 4, blue), in which we are detecting randomly selected genes using randomly selected 

initial knowledge, results in AUCs of approximately 0.5. This indicates that none of the gene 

ranking metrics favors uninformative genes better than random chance. Thus, the selection 

of a ranking metric as well as the quality of knowledge genes (which affects the selection of 

a ranking metric) affects the biological relevance of gene ranking.

C. Proposed Genes for Further Validation

Results indicate that the use of biological knowledge to select an optimal gene ranking 

metric increases the efficiency of detecting additional biomarkers. Using all knowledge 

genes from Table 1, we identify a single, biologically relevant gene ranking metric. We then 
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used this metric to identify additional genes for validation. Table 2 lists the top 16 genes 

identified after ranking with the optimal metric, excluding genes previously identified in 

Table 1. These genes, in general, have not been described previously as RCC biomarkers. 

However, several have potential relevance for renal tumor pathobiology. For example, 

synaptopodin (SYNPO) and transcription factor 4 (TCF4) are over-expressed in CC-RCC. 

SYNPO is expressed in glomerularpodocytes in the kidney and appears to be regulated by 

vascular endothelial growth factors (VEGF) [14]. Differential VEGF expression is a known 

feature of the CC subtype [12]. TCF4 is a key participant in WNT pathway signaling, which 

is dysregulated in several types of cancer. Insulin-like growth factor binding protein 6 

(IGFBP6) and glioblastoma amplified sequence (GBAS) are over-expressed in PAP-RCC. 

IGF binding proteins are biomarkers for several types of cancer [15]. GBAS is a likely target 

for tyrosine kinases that is co-amplified in some cancers with epidermal growth factor 

receptor (EGFR) [16]. GBAS is mapped to chromosome 7p12, which is commonly 

amplified in PAP-RCC [17]. Because we identified these genes using an optimal biologically 

relevant ranking metric, they are more likely to be true positives. Thus, after qRT-PCR 

validation, we may add these biomarkers to our knowledge set and iteratively identify 

additional biomarkers.

SECTION IV. Conclusion

Biomarkers are essential for the successful treatment of cancer since they enable early 

detection of the disease before significant symptoms arise. Moreover, pathologists may use 

biomarkers to acquire information about disease prognosis from tissue biopsies that may not 

be readily apparent using traditional staining techniques. A cancer detection screening using 

biomarkers is essentially a clinical predictor that assigns patients to categories of disease 

presence/absence or degree of disease severity. Accurate assignment of patients into these 

categories will enhance therapeutic efficacy and improve treatment success rates. However, 

biomarker identification is difficult because of the large technical and biological variability 

of the data. Many gene ranking and selection methods exist, each of which may produce 

different results. In this paper, we have presented an emerging translational bioinformatics 

method that uses prior biological knowledge to guide ranking algorithm selection. By using 

the most biologically relevant ranking metric, we increase the efficiency of identifying novel 

biomarkers and decrease the false discovery rate. These knowledge-guided methods are 

encompassed within a web-based bioinformatics application called omniBiomarker. As a 

case study, we applied these methods to a renal cancer dataset and identified novel 

biomarkers.
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Figure 1. 
Selection of a biologically relevant ranking metric using existing biological knowledge. The 

“optimal” method (Ranking Metric 1) minimizes the number of false discoveries with 

respect to the current knowledge set.
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Figure 2. 
The omniBiomarker application contains four components: the client application (the web 

browser), the web server, the compute cluster (composed of several nodes, or processors), 

and the relational database.
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Figure 3. 
The omniBiomarker relational database is designed to store microarray data as well as gene 

ranking results. Microarray data are stored in a hierarchy that allows users to pre-process 

data and assign samples into classes for supervised analysis. The ‘analysis’ table stores all 

parameters for a particular gene ranking analysis as well as the ranking results (linked with 

the ‘score’ table) so that users may assess the results from multiple ranking analyses and 

select the most biologically relevant result.
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Figure 4. 
Area under the curve (AUC) plots representing biomarker detection efficiency for several 

feature ranking metrics. A larger AUC indicates higher detection efficiency. The optimal 

ranking metric, selected using maximum likelihood estimation (MLE), is more efficient 

compared to significance analysis of microarrays (SAM), a standard ranking method. The 

use of sub-optimal knowledge (sub-opt) when selecting the ranking metric decreases 

detection efficiency. When using randomly selected genes as knowledge, detection 

efficiency is random (control).
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Table 1

qRT-PCR validated genes differentially expressed between the CC and PAP renal cancer subtypes.

Gene Symbol Error Gene Symbol Error

STC1 0.0345774 B3GNT4 0.138581

NDUFA4L2 0.0379203 GRB7 0.168125

CA9 0.0701198 BAMBI 0.169147

CP 0.0781111 CCL20 0.188437

ELF3 0.0819628 CTSC 0.192068

BST2 0.112016 PECAM1 0.194247
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Table 2

Differentially expressed genes between renal cancer CC and PAP subtypes proposed for further validation.

Gene Symbol

IGFBP6 DLG1 TCF4 GABRE

EDNRA LRRFIP2 DSG2 COL5A2

MYLK GBAS ELAC2 RAB4B

INPP5D SYNPO HRH1 BIN1
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