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Abstract

The bag-of-features method has emerged as a useful and flexible tool that can capture medically 

relevant image characteristics. In this paper, we study the effect of scale and rotation invariance in 

the bag-of-features framework for Renal Cell Carcinoma subtype classification. We estimated the 

performance of different features by linear support vector machine over 10 iterations of 3-fold 

cross validation. For a very heterogeneous dataset labeled by an expert pathologist, we achieve a 

classification accuracy of 88% with four subtypes. Our study shows that rotation invariance is 

more important than scale invariance but combining both properties gives better classification 

performance.
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1 Introduction

Renal Cell Carcinoma (RCC) accounts for 90–95% of adult malignancies arising from the 

kidney [1]. The American Cancer Society reported 58,240 new cases and 13,040 deaths in 

2010 [1]. RCC occurs in four major subtypes: (i) Clear Cell (CC), (ii) Chromophobe (CH), 

(iii) Oncocytoma (ON), and (iv) Papillary (PA) [2]. Clinically, each subtype is treated 

differently. The task of subtype classification is performed by an expert pathologist under a 

microscope and suffers from subjectivity and observer variability [3]. Computerized 

histopathological image analysis aims at assisting a pathologist in the decision making 

process.

Recently, the bag-of-features approach has emerged as a useful tool for medical image 

classification [4–7]. The bag-of-features framework evolved from the bag-of-words model 
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for text documents [8]. In the bag-of-words model, a dictionary is built from all the text 

documents and then each document is represented by the frequency of words in that 

document. The bag-of-features approach applies a similar methodology to image analysis. 

Images are divided into a collection of small patches, each of which described by a feature 

vector that encodes texture/content. Feature vectors are combined into a codebook that 

represents the characteristic patches in a collection of images. Typically, scale and rotation 

invariant features or raw pixel intensities are used [4–7]. Depending on the application, 

scenarios may exist where one or both could help or hurt performance. For example, cancer 

grading based on nucleus size may suffer from scale invariant features. However, there is no 

study exploring the impact of scale or rotation invariance for histopathological image 

analysis. In this paper, we perform an analysis of features with combinations of scale and 

rotation invariance in the bag-of-features framework. We have focused on the scale invariant 

feature transform (SIFT) to perform the analysis but other features such as speeded-up 

robust features (SURF) can also be used [9,10].

In histopathological image analysis, medically relevant morphologies can appear anywhere 

in the image and the spatial arrangement may not be important for decision making. 

Therefore, we do not consider spatial information preserving methods such as spatial 

pyramids [11]. In this paper, we evaluate the impact of scale and rotation invariance by 

studying the following types of features: (i) scale invariant features, (ii) rotation invariant 

features, (iii) features with both scale and rotation invariance, (iv) features with neither scale 

nor rotation invariance, and (v) raw pixel intensity based features. We evaluate their effect on 

histopathological image classification of RCC subtypes. This paper is organized as follows: 

section 2 provides backround; section 3 provides methodology; section 4 shows the results; 

and section 5 concludes the analysis.

2 Background

A bag-of-features represents each image as a collection of features or patches. The relative 

abundance of each feature or patch distinguishes different types of images. These features or 

patches can be represented as invariant to scale and orientation. In this section, we provide 

the background of how this scale and rotation invariance is achieved. To achieve scale 

invariance, keypoints are selected by difference of Gaussian scale space (DoGSS) filtering 

[9]. The Gaussian scale space (GSS) of an image I(x, y) is constructed by convolving that 

image with a Gaussian filter tt(x, y, σ) of different scales:

where x and y are pixel coordinates, σi is the standard deviation of the Gaussian filter for 

scale i. We use previously reported values of σi = kiσ0, σ0 = 1.6, and  [9]. Then 

DoGSS is computed by subtracting two consecutive images in the GSS:

(1)
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Keypoints are detected by finding the extremas in DoGSS by comparing each pixel at Di 

with its 3 × 3 neighborhood at scales Di, Di−1 and Di+1 (i.e., 26 comparison in total). These 

keypoints appear in a single scale and additional scales can be achieved after downsampling 

and repeating [9]. A patch around each keypoint is encoded using SIFT to get a feature 

vector that represents the texture. To make the patch rotation invariant, the pixel coordinates 

x, y in the patch are rotated to align with the maximal gradient direction θ of that patch:

where the pixel coordinates x, y are expressed with respect to the center of that patch. 

Another approach is to select the keypoints by dense sampling and encode the patch with 

raw pixel intensities to compute the features [4, 5]. After the features have been extracted 

from the images, codebook construction, image representation, and classification follows, as 

explained earlier (Figure 1).

3 Methods

The tissue samples are resected from renal tumors by total nephrectomy. Tissue samples of 

3-millimeter thickness are obtained and fixed overnight in 10% neutral buffered formalin. 

Samples are then embedded in paraffin and microscopic sections of 5 micrometer thickness 

are prepared by a microtome and stained with hematoxylin and eosin. Photomicrographs of 

renal tumors are captured with 200× total magnification at 1200 × 1600 pixels per image. A 

total of 106 images are captured, 32 of Chromophobe, 29 of Clear Cell, 28 of Papillary, and 

17 of Oncocytoma. The images were labeled by an expert pathologist.

Figure 1 provides an overview of the bag-of-features approach. First, images are converted 

to gray scale and keypoints are selected to extract features. Features extracted from all the 

training images are used for constructing a codebook using k-means clustering (left of 

Figure 1). Next, a feature vector is constructed for each image by matching all the features 

from that image with the codebook (right of Figure 1). This feature vector is called a bag-of-

features [8]. It represents the distribution of each cluster from the codebook in that image 

and does not account for their spatial relationship. A support vector machine (SVM) is 

trained with feature vectors from the training images and is used to classify the test images. 

Only the training set is used for learning the codebook and training the SVM.

To perform the analysis of scale and rotation invariance of features used in the bag-of-

features framework for histopathological image classification, we adopted the following four 

strategies for keypoint selection and feature extraction based on the SIFT methodology. In 

the first strategy, we selected keypoints using DoGSS (Eq. 1) and computed SIFT 

descriptors invariant to orientation (Eq. 2) giving the standard SIFT features [9]. For 

DoGSS, we included the keypoints detected from scales D−1 to D2 in our analysis. In each 

image about 6000 to 8000 keypoints were detected, 38% of total keypoints were detected at 

scale D−1, 37% at scale D0, 13% at scale D1 and, 12% were detected at scale D2. In the 

second strategy, we again included the keypoints from DOGSS but SIFT descriptors are 
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computed by choosing a fixed orientation θ = 0 in Eq. 2, resulting in only scale invariant 

features. In the third strategy, we computed the rotation invariant descriptors for a variety of 

fixed scales D−1 to D2. In the last strategy, we used the keypoints from Difference of 

Gaussian (DoG) at scale D0 and computed SIFT descriptors using θ = 0, giving features 

with fixed scale and orientation. Furthermore, we densely sampled 7000 keypoints from 

each image and computed rotation invariant features (for scales D−1 to D2), features with 

fixed scale D0 and orientation θ = 0, and raw pixel intensity based features. Raw pixel 

intensity based features are computed over an area of 9 × 9 around the keypoint (i.e., fixed 

scale and orientation) [4, 5]. Table 1 summarizes keypoint detection and feature extraction 

for this paper.

We used a linear SVM with soft margin parameter C = 1 for classification [12]. Since SVM 

is a binary classifier, we adopted the “one vs. one with max voting” method to perform 

multiclass classification [12]. We performed 10 iterations of stratified 3-fold cross validation 

to estimate the performance.

4 Results and Discussion

Figure 2 illustrates the different types of features extracted with and without scale and 

rotation invariance. Figure 2a shows image patches with fixed scale D0 and orientation θ = 

0. Because these patches have the same size (i.e., scale) and orientation, they don’t have the 

ability to match similar patches with different scale or orientation. Figure 2b shows patches 

with different scales but without rotation. Figure 2c shows image patches with rotation at a 

fixed scale D0. Figure 2d shows image patches with both scale and rotation invariance.

Figure 3 shows the performance comparison of different types of features in the bag-of-

features framework for histopathological image classification of RCC subtypes. The plot 

shows that features with both scale and rotation invariance give better performance (top 

curve). A codebook of size 100 gives a classification accuracy of 88%. Features with 

rotation invariance also perform very well but features without rotation invariance perform 

poorly (lower four curves). For both dense sampling and fixed scale keypoint detection, we 

found that scale D0 provided better top performance across codebook sizes and only plot D0 

for scale invariant performance in Figure 3. Specifically, rotation invariant features for dense 

sampling give a maximum classification accuracy of 84.1% at D−1, 84.3% at D0, 82.9% at 

D1, and 80% at D2. For DoG keypoint detection, rotation invariant features give a maximum 

classification accuracy of 83.9%, 84.9%, 82.7%, and 81.2% at scales D−1, D0, D1, and D2, 

respectively.

Figure 4 illustrates the difference of DoGSS and dense sampling keypoint selection 

strategies. The keypoints detected by DoGSS are dense in cellular regions and sparse in 

necrotic regions, whereas dense sampling selects keypoints that are dense in both cellular 

and necrotic regions. For RCC subtype classification, ignoring necrotic regions can improve 

classification accuracy [13]. We observe 5–10% improvement for features without scale and 

rotation invariance, partially confirming this finding. On the other hand, if the features are 

rotation invariant, we do not observe this effect. We speculate that smooth areas like necrotic 

regions have essentially random orientation. When the features are rotation invariant, the 
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smooth necrotic regions get assigned to only a few clusters. However, when the features are 

not rotation invariant, the codebook must allocate a larger fraction of clusters to represent 

this randomness, thereby degrading performance. Table 2 gives the confusion matrices for 

each approach. It should be noted that incorporating the rotation invariance improves 

classification accuracy of each subtype as well as the overall classification accuracy. 

Furthermore, the confusion matrices for rotation invariant features are also very similar 

(Table 2d–e), i.e., both keypoint detection methods give similar performance for each 

subtype.

Another advantage of using scale and rotation invariant features is that the size of the 

codebook required to achieve good classification accuracy is smaller than codebooks 

developed by other features. To achieve classification accuracy over 80%, a codebook 

constructed over scale and rotation invariant features requires 12 types of patches, whereas 

rotation invariant features require 32 types of patches. Codebooks with just scale invariance 

require 200 types of patches to achieve 80% classification accuracy but a codebook of up to 

300 patches without scale or rotation invariance only achieves 75%. Features based on raw 

pixel intensities also performs poorly and a codebook of 300 patches gives a classification 

accuracy of about 70%. This suggest that given a large enough codebook, rotationally fixed 

features could eventually become equivalent to smaller rotationally invariant ones by 

encoding all of the possible different orientations an object can take. Figure 5 shows patches 

relevant to each RCC subtype identified by combining both scale and rotation invariance. 

Cyan squares show the cell membrane identified at different scales and orientations 

indicative of the clear cell subtype. Green squares show a complete round nucleus common 

in the oncocytoma subtype. Blue squares show a full nucleus with a halo around it indicative 

of the chromophobe subtype. Yellow squares show the streaks of finger-like structures 

characteristic of the papillary subtype.

5 Conclusion

We conclude that rotation invariance is more important than scale invariance for 

histopathology image classification. Rotation invariant features computed at a good choice 

of fixed scale perform nearly as well as scale and rotation invariant features. Therefore, 

covering the whole scale space may not be as important as choosing a preferred scale in 

histopathological image classification. Although rotation invariance combined with scale 

invariance performs slightly better, other applications may not benefit from this flexibility. 

For example, in the problem of cancer grading, nucleus size is important, and thus scale 

invariance may not be desirable. In the case of CT or MRI images, the pixel intensity is an 

important characteristic and a raw pixel intensity based feature could perform better than 

image gradient based features like SIFT. In the future, we would like to improve the 

codebooks by incorporating the class labels during the codebook generation and reduce the 

false positive matches by improving the distinctiveness of the features within the same 

codebook.
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Fig. 1. 
Bag-of-features framework: (left) first, a codebook is constructed using k-means clustering 

over features extracted from training images only, (right) then, the codebook is used to 

generate a vector representation of each image using frequency of each cluster
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Fig. 2. 
The squares show the image patches selected for descriptor computation: (a) fixed scale D0 

and fixed orientation, (b) scale invariant, (c) fixed scale D0 and rotation invariant, and (d) 

scale and rotation invariant.
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Fig. 3. 
Performance of different features in bag-of-features framework for histopathological image 

classification of RCC subtypes. Error bars show standard deviation of the means. Legend is 

in order with the curves in the plot at a codebook of size 45.
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Fig. 4. 
Comparison of keypoint selection: (a) DoGSS, (b) Dense sampling
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Fig. 5. 
Image patches matched with codebooks constructed over scale and rotation invariant 

features: (a) a cell membrane in cyan squares, (b) complete round nucleus in green squares, 

(c) complete nucleus with halo in blue squares, (d) and yellow squares showing finger-like 

structures
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Table 1

Summary of keypoint detection and feature extraction

Scale Inv. Rotation Inv. Keypoint Detection Features

Yes Yes DoGSS Scale & Rotation Invariance

Yes No DoGSS Scale Invariance

No Yes DoG Rotation Invariance

No Yes Dense sampling Rotation Invariance

No No DoG No Invariance

No No Dense sampling No Invariance

No No Dense sampling No Invariance (Raw Intensity)
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Table 2

Average confusion matrices for six types of features over 10 iterations of 3-fold cross-validation for a 

codebook of size 40 clusters. Each row shows the true class labels and columns show predicted labels. Each 

row sums to the total number of images in that subtype.

(a) No Inv.

CC CH ON PA

CC 19.5 8.1 0.9 0.5

CH 10.0 18.2 2.9 0.9

ON 1.8 5.9 8.5 0.8

PA 1.5 1.2 1.5 23.8

(b) No Inv. (dense)

CC CH ON PA

CC 18.3 8.6 1.6 0.5

CH 8.4 18.9 3.0 1.7

ON 3.3 2.5 9.3 1.9

PA 3.6 3.2 2.8 18.4

(c) Scale Inv.

CC CH ON PA

CC 19.5 8.4 1.1 0.0

CH 8.6 19.2 3.0 1.2

ON 2.0 4.4 9.6 1.0

PA 1.3 1.0 1.9 23.8

(d) Rot Inv.

CC CH ON PA

CC 25.0 2.9 0.7 0.4

CH 5.5 25.4 1.1 0.0

ON 1.7 2.9 11.0 1.4

PA 0.7 0.1 1.8 25.4

(e) Rot. Inv. (dense)

CC CH ON PA

CC 25.7 1.9 1.0 0.4

CH 4.3 25.6 1.7 0.4

ON 1.4 3.0 11.4 1.2

PA 1.1 0.7 2.5 23.7

(f) Scale & Rot. Inv.

CC CH ON PA

CC 25.3 3.3 0.1 0.3
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(f) Scale & Rot. Inv.

CC CH ON PA

CH 3.5 25.9 2.1 0.5

ON 0.8 1.8 13.8 0.6

PA 1.4 0.3 1.3 25.0
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