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Bile acids are steroid acids that constitute one of the ma-
jor components of bile. They are known to play multiple 
crucial roles in lipid and glucose homeostasis in the liver 
(1). Primary bile acids are synthesized from cholesterol  
in hepatocytes, and are actively secreted from the liver 
following conjugation to either glycine or taurine (Fig. 1). 
Following excretion of primary bile acids into the gastroin-
testinal tract, colonic bacteria form secondary bile acids by 
removal of the 7-hydroxy group (Fig. 1). In the gallblad-
der, conjugated bile acids form mixed micelles of choles-
terol and phospholipids. Gallbladder micelles solubilize 
cholesterol and inhibit cholesterol crystallization, prevent-
ing cholesterol gallstone formation. In the small intestine, 
micelles containing conjugated bile acids function to solu-
bilize, digest, and promote the absorption of dietary lipids, 
cholesterol, and fat-soluble vitamins (A, D, E, and K) (2). 
In addition to fat and cholesterol solubilization, bile acids 
have bacteriostatic properties that inhibit bacterial growth 
in the biliary tree. Disruption of normal bile acid synthesis 
and metabolism is associated with cholestasis, cholesterol 
gallstone formation, lipid and fat malabsorption, fat-soluble 
vitamin deficiency, and intestinal bacterial dysbiosis (2).

Abstract  Based on research carried out over the last de-
cade, it has become increasingly evident that bile acids act 
not only as detergents, but also as important signaling mole-
cules that exert various biological effects via activation of 
specific nuclear receptors and cell signaling pathways. Bile 
acids also regulate the expression of numerous genes encod-
ing enzymes and proteins involved in the synthesis and me-
tabolism of bile acids, glucose, fatty acids, and lipoproteins, 
as well as energy metabolism. Receptors activated by bile 
acids include, farnesoid X receptor , pregnane X receptor, 
vitamin D receptor, and G protein-coupled receptors, TGR5, 
muscarinic receptor 2, and sphingosine-1-phosphate recep-
tor (S1PR)2. The ligand of S1PR2, sphingosine-1-phosphate 
(S1P), is a bioactive lipid mediator that regulates various 
physiological and pathophysiological cellular processes. We 
have recently reported that conjugated bile acids, via S1PR2, 
activate and upregulate nuclear sphingosine kinase 2, in-
crease nuclear S1P, and induce genes encoding enzymes and 
transporters involved in lipid and sterol metabolism in the 
liver.  Here, we discuss the role of bile acids and S1P sig-
naling in the regulation of hepatic lipid metabolism and in 
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regard, we have recently reported that conjugated bile ac-
ids activate S1PR2, upregulating the expression and activity 
of sphingosine kinase (SphK)2, thereby increasing nuclear 
sphingosine-1-phosphate (S1P), upregulating gene expres-
sion, and regulating lipid and sterol metabolism in the 
liver (11). These results indicate that the S1P signaling via 
S1PR2 and SphK2 play pivotal roles in lipid metabolism. 
Here, we will discuss the role of bile acid and S1P signal-
ing in the regulation of hepatic lipid metabolism and in 
hepatobiliary diseases.

S1P, A LIPID MEDIATOR

The lysosphingolipid, S1P, is a bioactive lipid mediator 
that regulates various physiological and pathophysiological 
cellular processes that are important in cell proliferation, 
angiogenesis/lymphangiogenesis, immunity, immune cell 
trafficking, endothelial barrier integrity, inflammation, and 
malignant transformation (12–15). S1P can act intracellularly, 
or through the activation of five specific cell surface GPCRs 
(S1PR1–5), regulating different biological functions (16).

Bile acids regulate the expression of numerous genes en-
coding enzymes and proteins involved in the synthesis and 
metabolism of bile acids, glucose, fatty acids, and lipopro-
teins. In addition, bile acids regulate energy metabolism by 
activating specific nuclear receptors and G protein-coupled 
receptors (GPCRs) in cells of the liver and gastrointestinal 
tract. Those receptors include the farnesoid X receptor 
(FXR) (3–5), as well as other nuclear receptors (pregnane 
X receptor, vitamin D receptor), and GPCRs, such as TGR5 
(also known as GPBAR1), muscarinic receptors 2 and 3, 
and sphingosine-1-phosphate receptor (S1PR)2 (6–8). Bile 
acids also activate cellular signaling pathways, such as c-Jun 
N-terminal kinase 1/2 (JNK1/2) (9). Dent and colleagues 
have previously reported that conjugated bile acids activate 
protein kinase B (AKT) and extracellular regulated pro-
tein kinases 1 and 2 (ERK1/2) via Gi protein-coupled re-
ceptors (10). Bile acids have also been implicated in the 
inflammatory response and various liver diseases, as well as 
the promotion of cancers of the colon, liver, and bile duct 
(9). Increasingly, bile acids have been proposed to also 
function as hormones and nutrient signaling molecules 
that contribute to glucose and lipid metabolism. In this 

Fig.  1.  Metabolism of cholesterol and bile acid synthesis. The primary bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA), are 
formed from cholesterol in the liver and stored in the gallbladder. The secondary bile acids, deoxycholic acid (DCA) and lithocholic acid 
(LCA), are formed by microbiota. Primary conjugated bile acids stimulate S1PR2 in the liver. On the other hand, secondary conjugated bile 
acids stimulate S1PR2 in the intestine. *These bile acids were shown to stimulate S1PR2 previously (8). GCA, glycocholic acid; GCDCA, glyco-
chenodeoxycholic acid; TCDCA, taurochenodeoxycholic acid; GDCA, glycodeoxycholic acid; TDCA, taurodeoxycholic acid; GLCA, glyco-
lithocholic acid; TLCA, taurolithocholic acid; GUDCA, glycoursodeoxycholic acid, TUDCA, tauroursodeoxycholic acid.
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as xenograft growth of tumor cells in mice (34, 35). Studies 
with FTY720, a S1P mimetic prodrug, have also served to 
demonstrate the role of S1P. FTY720 is phosphorylated in 
the nucleus by SphK2 and FTY720-phosphate, a potent class 
I HDAC inhibitor that facilitates fear extinction memory in 
mice (36). In addition, FTY720 also activates estrogen re-
ceptor (ER)- expression to enhance hormonal therapy for 
breast cancer (37).
It has been demonstrated that mitochondrial S1P, pro-

duced by SphK2, interacts with prohibitin 2 (PHB2) that is 
important for mitochondrial assembly and function (38). 
Unlike SphK1, high expression of SphK2 was observed 
mainly in adult kidney, liver, and brain, compared with 
other tissues (39, 40). Recently, it was demonstrated that 
conjugated bile acids signal through the S1PR2 and ac-
tivate SphK2 (11). S1PR2 is highly expressed in various 
tissues, including the liver (Table 1). In fact, S1PR2/ 
and SphK2/ mice (11) rapidly develop fatty livers on a 
high-fat diet, indicating the importance of the conjugated 
bile acids, S1PR2 and SphK2, in regulating hepatic lipid 
metabolism (Fig. 2).

CONJUGATED BILE ACIDS ACTIVATE S1PR2

Conjugated bile acids have been demonstrated to acti-
vate ERK1/2 and AKT in a manner sensitive to pertussis 
toxin and dominant-negative Gi, thereby implicating 
GPCRs in this signaling pathway (8, 41). Activation of the 
AKT pathway by conjugated bile acids was shown to acti-
vate glycogen synthase activity in vitro and in vivo in a Gi-
dependent manner (10). Further, conjugated bile acids 
were shown to repress the gluconeogenic genes, phos-
phoenolpyruvate carboxykinase (PEPCK) and glucose-
6-phosphatase (G6Pase), both in vitro and in vivo (42). 
Importantly, repression of PEPCK and G6Pase mRNA  
by conjugated bile acids was shown to be pertussis toxin 
sensitive in primary rat hepatocytes. Finally, it was re-
ported that activation of the AKT pathway was required 
for optimal induction of small heterodimer partner (SHP) 
mRNA, an FXR target gene, by conjugated bile acids in 
vivo (42). It has also been reported that activation of the 
ERK1/2 pathway plays an important role in regulating the 
rate of turnover of SHP protein (43). Taken together, 
these data suggest that conjugated bile acids may be impor-
tant regulators of hepatic glucose and lipid metabolism 
through activation of a specific Gi protein-coupled recep-
tor and FXR in a coordinated manner, although the spe-
cific GPCR activated by S1P remains unknown.
By screening various GPCRs in the lipid-activated phy-

logenetic family, our group discovered that S1PR2 is  
activated by taurocholate (TCA) and other conjugated 
bile acids, but not unconjugated bile acids (8) (Fig. 1). 
S1PR2 is highly expressed in liver hepatocytes (9). The 
S1PR2 antagonist, JTE-013, has been shown to inhibit 
activation of ERK1/2 and AKT by S1P, TCA, taurode-
oxycholic acid, tauroursodeoxycholic acid, glycocholic 
acid, and glycodeoxycholic acid (8) (Fig. 1). Further, 
shRNA knockdown of S1PR2 (S1PR2/) in mice markedly 

The S1P biosynthetic pathway is conserved across various 
cell types. S1P is produced from sphingosine by SphK1 and 
SphK2. Ceramide is produced from sphingomyelin by 
sphingomyelinases, and sphingosine is produced from ce-
ramide by ceramidases. S1P can be converted to sphingo-
sine by cytosolic S1P phosphatases or degraded by S1P 
lyase to ethanolamine phosphate and hexadecanal (pal-
mitaldehyde) (17). SphK1 and SphK2 are located in dif-
ferent subcellular compartments. Various external stimuli 
activate SphK1, stimulating its translocation to the plasma 
membrane where it converts sphingosine to S1P. Plasma 
membrane transporters of S1P have been identified and 
they include ABC transporter family members (ABCC1, 
ABCG2) (18) and the major facilitator superfamily mem-
ber, Spinster 2 (Spns2) (19–22). The “inside-out-signaling” 
process refers to the intracellular synthesis of S1P and 
transport out of the cell to activate S1PRs differentially ex-
pressed on mammalian cells activating autocrine and para-
crine signaling (21).
S1P levels are relatively high (1–2 M) in the blood and 

finely regulated. It was reported that the half-life of S1P in 
plasma is about 15 min in mice, suggesting rapid clearance by 
degenerative enzymes, such as S1P phosphatases and S1P ly-
ase, and/or uptake of S1P into the cells. The rapid turnover 
of plasma S1P also implies the presence of a high-capacity 
cellular source involved in the maintenance of high plasma 
S1P levels (23). It has been hypothesized that various cells are 
responsible for synthesizing and secreting S1P into the blood, 
including red blood cells, endothelial cells, thrombocytes, 
macrophages, and mast cells (24). S1P is found at lower levels 
(<0.2 M) in lymph and lymphoid tissues compared with 
blood. It has been reported that a S1P gradient may play a 
crucial role in controlling immune cell trafficking between 
the circulation and lymphoid tissues (25–27).
The SphK/S1P/S1PR axis is important in many physio-

logical processes, and is an emerging therapeutic target for 
treating several pathobiologic and inflammatory diseases 
(12, 28, 29). Recently, it was reported that S1P can act 
through intracellular targets for cell signaling. In this re-
gard, TNF- and interleukin-1 activate SphK1, thus in-
creasing intracellular S1P that binds directly to the TNF- 
receptor-associated factor 2 (TRAF2). TRAF2 is an im-
portant component in nuclear factor-B (NF-B) signaling 
and cellular inhibition of apoptosis 2 (cIAP2). In addition, 
it enhances E3 ubiquitin ligase activities via lysine-63-linked 
poly-ubiquitylation (30).
Little is known about the biological function of SphK2 

and its possible role in cancer and other diseases. In many 
cell types, SphK2 is localized in several organelles, including 
the nucleus, mitochondria, and intracellular membranes 
(31). It has been reported that pERK1/2 phosphorylates 
and activates SphK2, thereby increasing the synthesis of S1P 
(31). It has been shown that nuclear S1P produced by ei-
ther SphK2 or through inhibition of S1P lyase, specifically 
binds and inhibits the histone deacetylases (HDACs), 
HDAC1 and HDAC2, linking sphingolipid metabolism to 
epigenetic gene expression that is relevant to cancer and 
inflammatory diseases (31–33). In this regard, SphK2 down-
regulation or inhibition decreases cancer cell growth as well 
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CONJUGATED BILE ACIDS, S1PR2 AND SPHK2, 
REGULATE HEPATIC LIPID METABOLISM

S1PR2 is involved in the regulation of hepatic lipid me-
tabolism as evidenced by studies in S1PR2/ mice, where 
S1PR2/ mice rapidly develop overt fatty livers when 
placed on high-fat diet as compared with wild-type mice 
(11). Furthermore, infusion of TCA into the chronic bile 
fistula rat model, or overexpression of S1PR2, resulted in 
significant upregulation of hepatic SphK2, but not SphK1 
(11). These data suggest that a bile acid induced an in-
crease in SphK2 through S1PR2 activation. In fact, mice 
deficient in SphK2 also rapidly developed fatty livers on a 
high-fat diet, suggesting the importance of S1PR2 and 
SphK2 in regulating liver lipid metabolism (9, 11). In mice 
fed a high-fat diet, overexpression of SphK2 led to elevated 
S1P and reduced ceramide, sphingomyelin, and glucosyl-
ceramide in plasma and in the liver (44). In response to 
accumulation of lipids in the liver, SphK2 facilitates upreg-
ulation of genes encoding enzymes in fatty acid transport 
and oxidation (44).

inhibited the activation of ERK1/2 and AKT by TCA and 
S1P (8).
Finally, structural modeling of the S1PRs demonstrated 

that only S1PR2, and not other S1P receptors, can accom-
modate TCA binding (8). In that study, we reported mod-
eling of SIPR2, which predicted that S1P, a high-affinity 
ligand, generates hydrogen bonds to three amino acid resi-
dues (Ser6, Leu173, and Glu177) on S1PR2. In contrast, 
TCA, a low-affinity agonist, is predicted to generate hydro-
gen bonds only to Leu173. Both S1P and TCA activate the 
S1PR2 in rodent hepatocytes, leading to activation of both 
the ERK1/2 and AKT pathways in primary hepatocytes. 
TCA also activated the same signaling pathways in the 
chronic bile fistula rat model. Furthermore, its activity was 
inhibited by a specific S1PR2 antagonist, JTE-013, demon-
strating the association between TCA and S1PR2. Activa-
tion of the AKT pathway appears to be essential for optimal 
activation of the nuclear receptor, FXR, by conjugated bile 
acids. Taken together the current data suggest that TCA 
specifically activates S1PR2 in hepatocytes.

TABLE  1.  List the various S1P receptors, tissue expression, and physiological functions

Receptors G protein Coupling Tissue Expression Signaling Pathways Physiological Functions Reference

S1PR1 Gi/o Ubiquitously expressed,  
high in CD19+ B cells  
and cerebellum.

Protein kinase AKT and  
the small GTPase Rac,  
MAPK, activates NF-B,  
STAT3.

Trafficking of lymphocytes and 
hematopoietic cells including  
T and B lymphocytes, NKT cells,  
dendritic cells, macrophages,  
neutrophils, hematopoietic  
progenitors, mast cells, and  
osteoclasts in both homeostatic  
and disease settings. Vascular  
development and integrity,  
promoting metastasis.

(26, 55–60)

S1PR2 Gi, Gq, G12/13 Ubiquitously expressed,  
immune cells (dendritic  
cells, macrophages,  
eosinophils, mast cells,  
NKT) Smooth muscle  
cells, cardiomyocytes,  
hepatocytes, cholangiocytes,  
gut epithelial cells.

GTPase Rho activation,  
Rho-dependent Rac  
inhibition and 3′-specific  
phosphoinositide  
phosphatase (PTEN)  
stimulation, NF-B  
activation.

Inhibits cell motility through  
inhibition of Rac, involved  
in cell proliferation,  
motility and transcriptional  
activation, heart development,  
vascular development,  
role in atherosclerosis,  
bone maintenance, muscle  
regeneration, B cell function,  
promoting metastasis, hepatic  
lipid metabolism and gene  
expression.

(9, 11, 55, 56, 59, 61)

S1PR3 Gi/o, Gq, and  
G12/13

Highest expression in heart,  
lung, spleen, kidney,  
intestine, diaphragm;  
immune cells (dendritic  
cells, eosinophils,  
lymphocytes B) endothelial  
cells smooth muscle  
cells, cardiomyocytes  
neuronal cells (astrocytes,  
oligodendrocytes).

Leading to the generation  
of inositol trisphosphate  
and diacylglycerol with  
subsequent calcium  
mobilization and  
activation of PKC  
pathways respectively.

Cell motility, ER+ breast  
cancer progression, regulates  
endothelial barrier function,  
involved in sepsis, regulation  
of heart rate, regulation of  
vascular tone (relaxation)  
survival in ischemia-reperfusion  
cardiomyocytes.

(55, 56, 58, 59)

S1PR4 GI, G12/13 Primarily expressed in  
lymphoid tissues and  
blood cells, especially  
CD19+ B cells, dendritic  
cells, T cells, NKT cells  
and lung

Preferentially activates  
phospholipase C/IP3/Ca2+,  
MAPK, and Rho.

Migration of dendritic and  
neutrophil cells, ER breast  
cancer poor prognosis.

(55, 56, 59)

S1PR5 Gi, G12/13 Mostly expressed in brain,  
skin and natural killer cells.

Preferentially activates  
phospholipase C  
channels/IP3/Ca2+,  
PI3K/AKT Rho, and  
inhibition of adenylate  
cyclase.

Similar to the role S1PR1,  
involved in T and B cell  
trafficking, promotes the  
egress of NK cells from bone  
marrow and lymph nodes into  
blood and other tissues.

(55, 56, 59)
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S1PR2 AND BILE DUCT CANCER

It has been suggested that bile acids promote bile duct 
cancer, also known as cholangiocarcinoma, although the 
underlying mechanisms have not been fully elucidated. 
The earliest findings regarding bile acids and bile duct can-
cer were observed two decades ago, where it was demon-
strated that bile acids stimulate proliferation of biliary cells 
(45). Later, it was reported that bile acids activate the epi-
dermal growth factor receptor (EGFR) via a transforming 
growth factor-a (TGF-a)-dependent mechanism in human 
cholangiocarcinoma cells (46). The activation of EGFR by 
bile acids resulted in increased expression of cyclooxygen-
ase-2 (COX-2). Moreover, conjugated bile acids have been 
shown to decrease FXR expression in vitro and to promote 
cholangiocellular carcinoma growth in vivo (47). However, 
the potential interaction between bile acids and sphingo-
lipids has been overlooked until recently.
For the last few years, bile acids and S1PR2 have been 

identified as contributors to bile duct cancer (48). Unlike 
unconjugated bile acids, conjugated bile acids increase the 
activity of NF-B, leading to higher levels of interleukin-6 
and COX-2 in mouse cholangiocarcinoma models (48). 
COX-2-derived prostaglandin E2 is among the most abun-
dant prostaglandins found in cancer. High COX-2 levels 
are associated with a variety of cancers due to their activa-
tion of EGFR (49). In cholangiocarcinoma, activation of 
EGFR has been implicated in enhanced growth and apop-
tosis resistance in cholangiocarcinoma cells (49). COX-2 
expression has been negatively associated with survival in 
cholangiocarcinoma (48).
In addition to COX-2-based mechanisms, interaction of 

conjugated bile acids with S1PR2 has been found to pro-
mote invasive growth of cholangiocarcinoma in a human 
HuCCT1 cholangiocarcinoma cell line (48). In that study, 
invasive growth of cholangiocarcinoma correlated with 
S1PR2-mediated upregulation of COX-2 expression and 

The liver is also intricately involved in nutrient metab-
olism. Notably, in mouse livers deficient in S1PR2 and 
SphK2, key genes encoding nuclear receptors and enzymes 
involved in nutrient metabolism, such as sterol regulatory 
element-binding protein (SREBP)-1c, FAS, LDLR, FXR, 
and PPAR, were significantly downregulated (11) (Fig. 2). 
This illustrates the importance of S1PR2 and SphK2 in reg-
ulating genes encoding enzymes and transporters involved 
in nutrient metabolism

BILE ACIDS AND S1PR2 SIGNALING IN 
REGULATING HEPATIC GLUCOSE METABOLISM

Bile acid-mediated activation of the ERK1/2 and AKT 
signaling pathways through S1PR2 was shown to play  
an important role in hepatic lipid metabolism and glu-
cose regulation (9, 11). In fact, in primary rat hepato-
cytes, bile acids activated glycogen synthesis to a similar 
level as insulin due to the effect of AKT and ERK1/2 sig-
naling (10, 11). In addition, TCA induced a rapid down-
regulation of the gluconeogenesis genes, PEPCK and 
G6Pase, and a marked upregulation of SHP mRNA in 
the livers (42). This illustrates that bile acid activation 
of S1PR2 has insulin-like activity in hepatic glucose regu-
lation (9). Further, it has been reported that hepatic 
overexpression of SphK2 in mice led to elevated S1P 
and reduced ceramide, sphingomyelin, and glucosylce-
ramide in plasma and liver, and ameliorated glucose in-
tolerance and insulin resistance by improving hepatic 
insulin signaling (44). Considering that SphK2 can be 
activated by conjugated bile acids via S1PR2, which re-
sults in elevation of S1P and reduction of ceramide, 
sphingomyelin, and glucosylceramide, both S1PR2 and 
SphK2 appear to play important roles in hepatic glucose 
metabolism (Fig. 2).

Fig.  2.  Model of regulation of hepatic genes encod-
ing enzymes involved in nutrient metabolism by con-
jugated bile acids and S1P. Conjugated bile acids and 
S1P activate S1PR2 and then activate nuclear SphK2 
via cell signaling pathways such as AKT or ERK1/2 (8, 
11, 54), increasing the levels of S1P in the nucleus. 
Nuclear S1P inhibits specific HDACs, causing an in-
crease in acetylation of histones and upregulation of 
genes encoding nuclear receptors and enzymes in-
volved in lipid and glucose metabolism. CBA, conju-
gated bile acid; Sph, sphingosine.
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the liver affect S1P metabolism and its levels in bile. Fur-
ther studies will be needed to investigate the role of S1P in 
bile and organs under pathological conditions.

CONCLUSION

There is growing evidence that bile acids play a much 
larger role than merely cholesterol and lipid homeostasis. 
Emerging studies point to bile acid function spanning 
glucose regulation, nutrient metabolism, and malignant 
transformation of cholangiocytes. These effects seem to  
be mediated through the S1P axis with close involvement 
of bile acids with S1PR2. It is more than likely that bile ac-
ids are also involved in regulating inflammation. These 
all point to future therapeutic avenues for targeting bile 
acids and/or the S1P axis for the treatment of a range of 
hepatobiliary conditions, including cholangiocarcinoma, 
glucose, and lipid management. Linking bile acids to the 
regulation of S1PR2 and SphK2 shows the interaction be-
tween these two important signaling molecules in the 
gastrointestinal tract.
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