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In this studywe report the X-ray crystal structure of the extracellular
domain (ECD) of the human neuronal α2 nicotinic acetylcholine re-
ceptor (nAChR) subunit in complex with the agonist epibatidine at
3.2 Å. Interestingly, α2 was crystallized as a pentamer, revealing the
intersubunit interactions in a wild type neuronal nAChR ECD and
the full ligand binding pocket conferred by two adjacent α subunits.
The pentameric assembly presents the conserved structural scaffold
observed in homologous proteins, as well as distinctive features,
providing unique structural information of the binding site between
principal and complementary faces. Structure-guided mutagenesis
and electrophysiological data confirmed the presence of the
α2(+)/α2(−) binding site on the heteromeric low sensitivity α2β2
nAChR and validated the functional importance of specific residues
in α2 and β2 nAChR subunits. Given the pathological importance of
the α2 nAChR subunit and the high sequence identity with α4 (78%)
and other neuronal nAChR subunits, our findings offer valuable in-
formation for modeling several nAChRs and ultimately for structure-
based design of subtype specific drugs against the nAChR associ-
ated diseases.
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Neuronal nicotinic acetylcholine receptors (nAChRs) are lo-
cated mainly in the CNS and mediate fast neurotransmission.

They are implicated in various neurological diseases such as Alz-
heimer’s (1) and Parkinson’s (2) diseases, substance addiction (3),
epilepsy (4), attention deficit hyperactivity disorder (5), and de-
pression (6); thus, drug development for these receptors is a pri-
ority (7). They belong to the Cys-loop superfamily of pentameric
ligand-gated ion channels (pLGIC), which includes γ-aminobutyric
acid (GABAA and GABAC), glycine, and serotonin (5-HT3)
receptors (8). The neuronal nAChR subfamily consists of numer-
ous homomeric and heteromeric pentameric assemblies, formed by
α (α2-α10) and β (β2-β4) subunits, distributed ubiquitously in the
brain (9). Because of their considerable homology, especially in
their binding sites, designing a novel drug specific for one type of
nAChR can be a challenging procedure and requires the addi-
tion of more structural information. Following this need, struc-
tural studies of the nAChR have been the focus of numerous
laboratories, leading to the achievement of many breakthroughs,
such as the cryo-electron microscopy structure of the Torpedo
nAChR (10) and the X-ray crystal structures of acetylcholine
binding proteins (AChBPs; homologs of the ECD of nAChR)
(11–13), mouse muscle-type α1 and human neuronal α9 nAChR
ECDs (14, 15), GLIC and ELIC (two prokaryotic homologs of
pLGICs) (16, 17), and two α7 nAChR ECD–AChBP chimeras
(18, 19). In addition, the structures of other members of the
superfamily have recently become available, including that of an
invertebrate anionic glutamate receptor (20), the human GABAA
β3 (21), the mouse 5-HT3 receptor (22), the human α3 glycine
receptor (23), and the zebrafish α1 glycine receptor (24).
The α2 subunit is incorporated in heteropentameric neuronal

nAChRs mainly with β subunits and along with the α4 and β2 is

one of the main nAChR subunits expressed in primates’ brain
(25). However, α2 containing nAChRs are not thoroughly stud-
ied compared with other nAChR subunits, partly because the α2
nAChR ortholog presents a restricted expression profile in ro-
dents’ brain in contrast to what is observed in primates’ brain
(26). In a similar fashion to α4β2 nAChR, it has been shown that
in heterologous expression in Xenopus laevis oocytes, two sub-
types of α2β2 nAChR are formed with either low or high agonist
sensitivity (LS or HS, respectively) (27). In the case of α4β2
nAChRs, the LS and HS subtypes display differential ligand
specificity, unitary conductance and desensitization kinetics (28).
It has been shown that these differences originate from the al-
tered stoichiometry, since the LS subtype has, in addition to the
α4(+)/β2(-) ligand binding sites, another one at the α4(+)/α4(−)
interface (29). To emphasize the possible clinical significance of
the two subtypes, it has been shown that the stoichiometry of the
α4β2 nAChR can be altered by chronic nicotine exposure (28, 30,
31) or by mutations (32). Similarly to the α4β2 nAChRs, it has
been speculated that the two α2β2 subtypes differ in the stoi-
chiometry of the α2 and β2 subunits, with the LS subtype having
(α2)3(β2)2 and the HS subtype (α2)2(β2)3 stoichiometry (27).
Both subtypes have two identical agonist binding sites (between
α2 principal face and β2 complementary face). However, the LS
subtype presents an additional interface between the two α2
subunits (Fig. S1).
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Recently, we revealed the crystal structures of the ECD of
the human α9 nAChR subunit in its free and antagonist-bound
states (15), whereas the structure of another ECD nAChR
subunit, α1, was also solved earlier by others (14). However,
crystal structures of pentameric assemblies of nAChR (ECD or
intact) have not been determined so far, since both α1 and α9
ECD structures, although in high resolution, depicted the
nAChR ECDs in monomeric forms.
Here we present the crystal structure of the ligand-induced

pentameric assembly of α2 nAChR ECD in complex with the
agonist epibatidine. This structure is the first structure of the
assembly of a neuronal nAChR ECD where the complementary
face of the binding site participates. The overall structure pre-
sents the conserved scaffold seen in the family but reveals ad-
ditional molecular interactions on the inter- and intrasubunit
level. Moreover, based on structure-guided mutagenesis, we
present functional studies that evaluate the importance of the
conserved Trp84 of loop D on α2β2 nAChR activation and de-
sensitization, which in turn validates the α2(+)/α2(−) binding site
of the LS subtype. Furthermore, we assess the role of α2 Tyr199
and the corresponding amino acid of the β2 subunit (Phe169),
both located on loops F, on the activation of the LS and HS
subtypes of α2β2 nAChRs. In addition to the importance of these
data in understanding the role of α2 nAChR subunit, it is worth
noting that, because the α2 ECD shares 78% sequence identity
with the α4 ECD and 39–62% with the other neuronal nAChR α
and β ECDs, its pentameric structure is an invaluable template
for modeling several neuronal nAChR ECDs and for designing
nAChR subtype-specific drugs against related diseases.

Results
Expression and Crystallization.We expressed the human α2 ECD in
yeast Pichia pastoris and gel filtration chromatographs revealed
that the protein was eluted mainly in two peaks corresponding to
high-molecular-weight oligomers and to monomers (Fig. S2A).
Crystallization trials of the monomer produced small crystals that
diffracted poorly. To improve diffraction quality, the monomer
was deglycosylated and purified further by gel filtration (Fig. S2B).
Crystallization trials of the deglycosylated monomer proved not
successful as the protein precipitated easily even at low concen-
trations. Coincubation of the deglycosylated monomeric α2 ECD
with various ligands for 14 d revealed that epibatidine could in-
duce oligomerization of the α2 ECD with a molecular mass similar
to a pentamer, as deduced by gel filtration analysis (Fig. S2C).
Shorter incubation periods were not sufficient for oligomerization
or epibatidine binding, thus prohibiting binding studies with ra-
diolabeled ligands. Finally, crystallization trials of the complex of
deglycosylated α2-ECD with epibatidine led to the successful
production of diffraction quality crystals and to the elucidation of
the X-ray crystal structure of a pentameric state of the agonist-
bound α2-ECD at 3.2 Å (Table S1), thereafter called α2-
Epi structure.

Overview of the Structure. The overall structure presents the
characteristic conserved pentameric quaternary structure of the
Cys-loop superfamily with the epibatidine located at the interface
between the subunits (Fig. 1 A–C). Each subunit presents a
10-stranded β-sandwich core capped by an N-terminal α-helix. As
the α2 nAChR subunit has not been reported to form a functional
homopentameric receptor, we first investigated whether the pen-
tameric assembly of the α2 ECD upon ligand binding corresponds
to the conserved counterpart seen in other homologous proteins.
To address this issue, we compared the pentameric structure of α2
ECD with that of Ac-AChBP (13), the α7 ECD–AChBP chimera
(18), both in complex with epibatidine, and of Torpedo nAChR
(10) (Fig. 1D). Indeed, the β-sandwich core superimposes very well
with the corresponding region of all of the above pentameric
structures confirming that the ligand-induced pentameric assembly
of the α2 ECD resembles the physiological ECD of the native
nAChRs. Specifically, by superimposing the rigid secondary struc-
ture elements, the RMSD between α2-Epi and α7-AChBP chimera
was found 0.902 Å, for the pair of α2-Epi and Ac-AChBP was
1.100 Å, and for the pair α2-Epi and Torpedo α1 subunit was 2.212
Å. Nevertheless, the binding and functional loops of the α2 ECD
pentamer showed different trajectories, most likely due to se-
quence differences and their intrinsic flexibility. Particularly, the
spatial arrangements of loop F, postloop A region, and α1-β1 linker
showed high deviation among the compared structures (Fig. 2).
Interestingly, postloop A region in α2-Epi structure differs from the
other structures in that it is placed away from the pore attracted via
hydrophobic interactions by residues on β4 strand (Fig. 2 B and C).
Typically, the homopentameric assembly of α2 ECD would be

expected to shape five binding sites analogous to those of α7
nAChR or AChBPs. Indeed, in α2-Epi structure, the ligand has a
well resolved density in all binding sites (Fig. 1C), whereas loop
C of all monomers is placed in a closed-in conformation, as
expected, for engulfing an agonist (Fig. 1 B and C). On the
whole, the α2-Epi structure portrays accurately a model of the
pentameric quaternary structure of nAChR ECD, and more
importantly, it has a credible physiological importance, especially
with regard to the presented characterization of the α2(+)/α2(−)
interface.

Architecture of the α2(+)/α2(−) Binding Site. The ligand binding site
of the α2-Epi structure is analogous to the conserved scaffold
seen in AChBPs and other homologous pentameric complexes
(10–13). The binding pocket is assembled by binding loops A, B,
and C of the principal face and loops D, E, and F of the com-
plementary face (Fig. 3A), which present an extensive interaction
scheme. In particular, a hydrogen bond between the backbone
amide of Lys182 (loop B) and the backbone carbonyl of Ile225
(loop C) that has been proposed to shape the aromatic box (33)
of the ACh binding site is apparent in the α2-Epi structure as
well (Fig. 3B). The variable residue at position 182 has been
shown to be a key factor for the differentiation in the affinity of
nicotine among α4β2, α7 and muscle nAChR (33, 34). The highly
conserved Asp118 (β3-β4 linker) forms hydrogen bonds with
another two highly conserved residues of loop B, Ser177 and
Thr179 (Fig. 3C). This interdomain connection is also present on
the α7 – AChBP chimera (18) and α9 ECD (15) and has been
evaluated on muscle nAChR (35, 36) regarding its role on the

Fig. 1. Structure of the pentameric assembly of α2 nAChR ECD in complex
with epibatidine and comparison with related structures. (A) Side view and
(B and C) top view of the α2-Epi structure; each subunit is colored differently;
the epibatidine molecule is shown in orange spheres (B) or by the 2Fo-Fc
electron density contoured at 1.4-σ level (C). (D) Superposition of the α2-Epi
structure (green) with α7-AChBP chimera (cyan), Ac-AChBP (magenta), both
in complex with epibatidine and Torpedo nAChR (blue).

Fig. 2. Backbone superposition of the α2-Epi structure (green) with ho-
mologous structures (cyan, for Ls-AChBP; magenta, for α7-AChBP chimera;
red for Ac-AChBP), revealing the structural variability of (A) loop F region,
(B) postloop A domain, and (C) α1-β1 linker.
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agonist binding kinetics. Alongside, we can see the side chain of
Tyr180 (principal side) to be in close proximity with the side
chains of Lys136 (complementary side) and of Trp115 (principal
side) (Fig. 3C). It is interesting to note here, that the corre-
sponding to α2 Tyr180 residue in the structures of α1 and α9
ECDs, interacts with the equivalent residue to Trp115 of the
same subunits (14, 15). The advent of the complementary sub-
unit in the α2 ECD structure attracts the side chain of Lys136
toward Tyr180, thus adjusting the relative positions of loops B
and E (Fig. 3C).
Additionally, another conserved amino acid, found in all neu-

ronal nAChR subunits (except β3), involved in the shaping of the
α2(+)/α2(−) binding site is Arg108 (Fig. 3D). The quanidinium
group of Arg108 extends into the binding pocket just above loop
B, participating in a complex interaction network, stabilizing the
position of loop B close to the ligand (Fig. 3D). Particularly, the
Ne interacts with the backbone carbonyl of Thr179, whereas one
Nη interacts with the side chains of Tyr226 and Asp181. The side
chain of the latter interacts with Glu224, thus closing the in-
teraction network above loop B. Finally, the indole nitrogen of
Trp178 acts as a hydrogen bond donor on the backbone carbonyl
group of Val148, thus stabilizing the position of Trp178 (Fig. 4A).

Epibatidine Binding Recognition. Epibatidine is enclosed in a posi-
tion that favors the molecular interactions with both faces of the
binding site. Its 7′-azabicyclo moiety occupies the space between
the aromatic residues of the binding site, whereas the 2′-chlor-
opyridine ring protrudes toward the apex of the binding pocket
(Fig. 4 A and B). The central amine group is stabilized via a
cation-π interaction with the aromatic ring of Trp178 of loop B
and via a hydrogen bond with the main chain carbonyl group of
the same tryptophan or the hydroxyl of Tyr122 of loop A (Fig.
4A). The chlorine atom stabilizes epibatidine further through its
possible interactions with main chain carbonyl groups (Lys136
and His146 of the adjacent subunit), whereas the pyridine nitrogen
remains in non–H-bond distance from the protein matrix.
A considerable number of van der Waals contacts complete the

interacting scheme of the ligand. More specifically, the aliphatic
side of the alicyclic domain interacts with Tyr219, Cys221, Cys222,
and Tyr226 of loop C and Trp84, which is located on loop D of the
complementary side, and was shown previously to be critical on
the binding affinity of epibatidine to AChBPs (13, 18). The
chloropyridine ring presents van der Waals interactions with
Val148 on loop E and Thr179 on loop B (Fig. 4B). More im-
portantly, the α2-Epi structure showed us the interactions of the
ligand with amino acids that are key elements on the varied se-
lectivity found in the nAChR family. Particularly, the side chains
of His138 and His146 (loop D) are in close proximity with the
epibatidine (Fig. 4 A and B). These positions have been shown to
be important for the diverse ligand specificity seen in HS and LS
subtypes of α4β2 nAChR (37, 38). Superposition of loops B and C
of the α2-Epi structure with the corresponding loops of the
epibatidine-bound structures of α7-AChBP chimera (18) and Ac-
AChBP (13) reveals a lateral rotation of epibatidine toward
Tyr226 by ∼8° (Fig. 4C). However, despite the local differences
among the compared epibatidine-bound structures, the overall
binding motif of epibatidine in the α2 ECD resembles those
found in the homologous structures (Fig. 4C).

Functional Characterization of the α2(+)/α2(−) Binding Site. As the
α2-Epi structure could serve as a structural surrogate of the
α2(+)/α2(−) interface of the intact α2β2 nAChR, we determined
critical residues and evaluated their functional role in nAChRs.
For that reason, we constructed the α2 mutant W84A and coex-
pressed it in Xenopus oocytes with the β2 WT nAChR subunit in
10:1 or in 1:10 RNA ratios, thus expressing solely the LS or the HS
subtype, respectively (27). Trp84 is a highly conserved residue on
the complementary side of the ligand binding site that in the
α2-Epi structure was found to interact with the ligand directly and
its role in the binding site of other nAChRs has been evaluated in
numerous studies (29, 39, 40) (Fig. 4 A and B). Mutating Trp to
Ala on the α2 subunit would affect only the α2(+)/α2(−) interface
as it is located on the complementary side of α2 and therefore not
involved in the α2(+)/β2(−) interface. Indeed, ACh-evoked cur-
rent recordings from RNA injected oocytes, by the use of the two
electrode voltage-clamp technique (Fig. S3), produced a biphasic
concentration response curve (Fig. 5A and Table S2), accompa-
nied by a significant decrease (P < 0.05) in receptor de-
sensitization compared with the WT (Table S3). The biphasic
effect arises from the high and low sensitivity component.
The high sensitivity component is appointed to the unaltered
α2(+)/β2(−) interfaces, whereas the low sensitivity component is
due to the impaired α2(+)/α2(−) interface (29). To the contrary,
this mutation had no effect on either the EC50 or the de-
sensitization kinetics of the α2W84Aβ2 HS subtype compared with
the WT HS receptor (Tables S2 and S3 and Fig. 5D). Thus, the
above findings demonstrate that the α2(+)/α2(−) interface forms
functional binding site with Trp84 to be of major importance in
ligand affinity and desensitization kinetics of the receptor sub-
type that bear the α2(+)/α2(−) interface, such as the LS one. This
finding is consistent with the results of similar mutations on other
homologous proteins (39, 41, 42) and particularly in the case of
the α2β2 nAChR LS verifies the presence of the α2(+)/α2(−)
binding site. Overall, our functional studies on the complemen-
tary side of the α2 subunit confirm the functional importance of
the Trp84 and prove that it is the existence of an α2(+)/α2(−)

Fig. 3. Loops and residues involved in the forma-
tion of the α2(+)/α2(−) binding site. (A) Close-up
view of the binding site in the α2 Epi structure. Dif-
ferent colors are used to highlight loops A–F residing
in two adjacent subunits. (B) Intrasubunit interaction
(black dashed line) of Lys182 (loop B) and Ile225
(loop C) involved in ligand potency in nAChRs. Prin-
cipal side backbone is colored in red, residues are
shown in green sticks and epibatidine in white sticks. (C) Intrasubunit interaction of β3–β4 linker with loop B. Complementary side backbone is colored in
cyan. (D) Intersubunit interactions involving the side chain of Arg108 (complementary side) and residues on loops B and C (primary side).

Fig. 4. Epibatidine stabilization to the α2 ECD and comparison with ho-
mologous structures. (A and B) Close-up view of the aromatic cage. Resi-
dues are shown in green sticks, principal side backbone is colored in red
and the complementary side is in cyan. Hydrogen bonds between residues
and epibatidine are shown in black dashed lines (A), the 2Fo-Fc electron
density contoured at 1.4-σ level attributed to epibatidine is shown in blue
mesh (B). (C ) Backbone superposition of a single subunit of α2 ECD (in
green) with the other epibatidine-bound structures: α7-AChBP chimera (in
cyan) and Ac-AChBP (in orange). Despite the similar conformation of loops
A–C among the three structures, the epibatidine molecule (Epi) in α2-Epi
structure is slightly rotated toward loop C. However, the overall binding
motif is not altered.
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binding site in the α2β2 LS subtype, that confers distinct binding
and electrophysiological characteristics to this receptor subtype.
Notably, a similar approach on the α4β2 nAChR had drawn
analogous conclusions (29, 43).

Loops F of α2 and β2 Subunits Affect Differently α2β2 nAChR
Activation. Comparing the α2-Epi structure to α7-AChBP chi-
mera (18), Ac-AChBP (13), and Ls-AChBP (11), a notable ob-
servation emerges. On the α2-Epi and Ls-AChBP structures,
loop F is placed much closer to loop C, whereas in α7-AChBP
chimera and Ac-AChBP, loop F is comparatively further away
(Fig. 2A). A closer look reveals that the tip of loop C interacts
with Tyr199 of loop F of the complementary side (Fig. 6A and
Fig. S4). This interaction is observed in three of five binding
sites, whereas in the other two sites, loops F and C do interact,
albeit rather less favorably and through other residues. It is also
clear that this variation is not dependent on crystal packing
contacts. Lacking the apo structure, it is difficult to predict the
loop F position prior ligand binding. Nevertheless, on the apo
structures of Torpedo (10) and AChBPs (12, 13), loop F seems
to have a retracted position, closer to β9 strand, compared with
the α2-Epi structure. Interestingly, at the corresponding position
of 199 in α2, tyrosine is found only in α2, α3, and α7 nAChR
subunits and Ls-AChBP, whereas in the other α and β subunits, is
phenylalanine (Fig. S5). It is worth noting that in the α7-AChBP
chimera structure in complex with epibatidine, loop F acquires a
position similar to the position observed in apo structures and as
a result, the analogous tyrosine residue, Tyr164, does not interact
with loop C (18). Regardless, this interaction observed in the
α2-Epi structure could have a variable role on ligand binding and
thus on receptor activation. A similar role was attributed to
Asp167 on the loop F of the γ and δ subunits of muscle nAChR
(44–46).
To further establish this cooperation and in view of the fact

that the β subunits have phenylalanine in that position, we
substituted phenylalanine for Tyr199 on α2 subunit (α2Y199F)
and the reverse on β2 subunit, namely, we substituted tyrosine
for Phe169, (β2F169Y). We coexpressed each mutant with the WT
counterpart on Xenopus oocytes to express mutated forms of the
α2β2 nAChRs and performed electrophysiological experiments
(Fig. S3). Indeed, both HS and LS subtypes of the α2β2F169Y
nAChR have a dramatic shift of the EC50 on the left, signifying
in this way the enhanced role of loop F–loop C interaction on the
receptor activation (Table S2 and Fig. 5 B and E). Therefore,
one would expect that mutating Tyr199 to phenylalanine on α2
subunit would decrease sensitivity of the receptor. Quite the

opposite, our functional studies showed that the α2Y199Fβ2 LS
subtype decreased EC50, whereas the EC50 of the corresponding
HS subtype remained expectedly unaffected (Table S2 and Fig. 5 B
and E). To further confirm these results, we coexpressed both
mutants on Xenopus oocytes, and indeed the α2Y199Fβ2F169Y
nAChR showed even higher decrease on the EC50 for both sub-
types HS and LS (Table S2 and Fig. 5 C and F). Taken as a whole,
it becomes obvious that, not only both α2 Tyr199 and the corre-
sponding residue in β2 subunit participate in α2β2 nAChR acti-
vation, but loops F of α2 and β2 subunits engage differently in
ligand potency on α2β2 nAChRs.

Intrasubunit Interactions in α2 ECD with Functional Importance in
nAChRs. Other features found in the α2-Epi structure deal with
the presence of interactions that in the native nAChRs partici-
pate to the allosteric communication between the neurotrans-
mitter binding site and the remote ion channel. As was initially
indicated through the structural studies of AChBP (47) and
Torpedo nAChR (10), and was subsequently clearly shown via
functional studies in the muscle-type nAChR (48, 49), local
conformational changes due to ACh binding trigger a cascade
that concludes in a global conformational change that leads to
channel opening. Comparison of the free and agonist-bound
states of AChBP reveals a profound alteration on the binding of
carbamylcholine, probably as a result of the closure of loop C
around the ligand. The salt bridge between the invariant Asp194
on the β10 strand and the conserved in most α-subunits Lys139
on the β7 strand (AChBP numbering) observed in the free state
is replaced by an interaction between Tyr185 of loop C and
Lys139 when carbamylcholine binds at the orthosteric binding
site. Similarly, in the presented structure of α2 ECD, where the
agonist epibatidine is bound and loop C adopts a closed-in
conformation, Lys174 on β7 strand is placed away from Asp228
and approaches the hydroxyl group of Tyr219, forming an
H-bond (Fig. 6B). It is therefore reasonable to assume that the
α2-Epi structure mimics the conformation of the intact recep-
tor’s ECD when it is either in an open or a desensitized state
(47). Furthermore, at the lower part of the α2 ECD (where in the
native nAChR the interface between binding and pore domains
would be) interactions between the loops that couple the agonist
binding to channel gating were observed. The pre-M1 Arg237
(invariant in all α subunits) forms a salt bridge with the also
highly conserved Asp167 on Cys loop, whereas it is sandwiched
between Trp205 of loop F and the aromatic residues of Cys loop
(Fig. 6C). Interestingly, the above residues at the interface of the
ECD and membrane have been shown to play significant role to
the signal transduction that leads to the channel gating (10, 50,
51). However, the extend of the interacting network in the α2-
Epi structure is smaller compared with homologous structures
(15, 21, 22), probably signifying the intrinsic flexibility of the
membrane-facing loops.

Fig. 5. Concentration-response curves of α2β2 nAChRs, WT and mutants, to
ACh. (A–C) HS subtype and (D–F) LS subtype. The measurements were car-
ried out in Xenopus laevis oocytes using two-electrode voltage–clamp elec-
trophysiology. Peak current amplitudes were background subtracted and
normalized to the amplitude evoked by 1 mM ACh on the same oocyte. Data
points are presented as mean ± SEM.

Fig. 6. Inter- and intrasubunit interactions implicated in gating and sensi-
tivity of nAChRs. (A) Intersubunit interactions in α2-Epi structure involving
residues of loops C and F, probably occurring due to the embrace of epi-
batidine by loop C. (B) An important interaction for the initial signal trans-
duction in nAChRs was found in α2-Epi structure as well. Tyr219 on loop
C interacts with Lys174 on β7 strand, whereas Asp228 on β10 strand probably
escapes any interaction. (C) Close-up view of the membrane-facing loops.
Crucial interactions for the gating of nAChRs between Arg237 and cys-loop
and loop F residues are shown.
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Discussion
Structural elucidation of neuronal nAChRs has been the aim
of several researchers over the last decades. In this study, we
present the crystal structure of the pentameric assembly of the
WT α2 nAChR ECD in complex with the agonist epibatidine.
To date, only the crystal structures of muscle α1 nAChR ECD
in complex with α-bungarotoxin and the neuronal α9 nAChR
ECD in its free and antagonist-bound states have been de-
termined (14, 15). Both provided invaluable information about
the structure of a nAChR ECD, but because of their mono-
meric state, only the principal face of the ligand binding site
was associated with a ligand. Nevertheless, there have been
successful efforts to design and crystallize α7-AChBP chimeras
where the binding site was composed mainly of α7 residues and
the overall sequence identity to α7 approached 70% (18, 19).
The latter is an ingenious strategy to reveal the structures of
the binding sites of a plethora of nAChR subunits because the
AChBP scaffold provides considerably useful information
about the structural features involved in the agonist binding.
More importantly, the exploitation of the chimeric structure
obtained by Chen group (18) in in silico screening of drug-like
molecules resulted in the identification of novel α7 nAChR
ligands (52). However, the resolved α7-AChBP chimeras, due
to the moderate identity with the α7 ECD in domains related
to signal transduction, gating and desensitization, could also
lead to fallacies concerning the functional importance of
these regions.
On the contrary, the structure of α2 ECD offers an oppor-

tunity to investigate the pentameric assembly of a WT human
neuronal nAChR ECD (Fig. 1 and Fig. S6). Indeed, the ori-
entation and binding motif of epibatidine is very similar to
those revealed in other homologous structures, and all of the
conserved residues involved in ligand binding are in close
contact with the epibatidine (Fig. 4 A–C and Fig. S7). Fur-
thermore, loops A–F around the binding site are placed at the
expected arrangement. However, the fact that the α2 nAChR
subunit does not form a known functional homopentameric
receptor raises the question of whether the ligand-induced
homomerization affects the structure or aspects of it. However,
comparison of the pentameric α2-ECD assembly with other
homologous structures shows that their quaternary structures
superimpose appreciably well (Fig. 1D).
Furthermore, by structure-guided mutagenesis, we provided

functional data about structural elements involved in ligand
binding and receptor activation not only in α2 subunit but in β2
as well. Particularly, we evaluated the functional role, both in
activation and desensitization of α2β2 nAChRs, of a highly
conserved residue, Trp84. We showed that this residue is in-
volved in the binding, potency and desensitization rate of ACh
but more importantly, through its mutation on α2 subunit, we
provided solid evidence for the presence of the α2(+)/α2(−)
binding site on the α2β2 LS subtype (Table S2). Besides, Gay
et al. showed that aromatic residues at the same position on α7
nAChR are key for efficacy and desensitization (39). Addition-
ally, by impairing the α2(+)/α2(−) binding interface, the two
distinct interfaces found on the LS subtype can be distinguished
in an agonist concentration response curve, hence producing a
biphasic response. Similar conclusions have been drawn by
studies on α4β2 nAChR (29, 43).
Looking closer the α2-Epi structure, loop F was found placed

very close to loop C, as the side chain of Tyr199 forms a hy-
drogen bond with the backbone carbonyl Cys221 (Fig. 6A). To
our knowledge, this interaction is apparent only in structures
involving complexes of Ls-AChBP with ligands (11), and it has
not been probed in α2β2 nAChRs before. Investigating the role
of Tyr199 on α2 and the corresponding residue Phe169 on β2
subunit, we showed that loop F has a distinct role on these two
subunits. Remarkably, the interaction between loops C and F
via Tyr199 on the α2(+)/α2(−) binding site influences negatively
the activation of the receptor, as was assessed by the EC50

decrease for the mutant α2Y199Fβ2, whereas the introduction of
the particular interaction on the α2(+)/β2(−) binding site via
the reverse mutation of the β2 subunit (α2β2F169Y mutant) had
a positive impact on the potency of ACh (Table S2). It is worth
noting that the same mutation (Phe for Tyr) on α7 and α3
subunits had an analogous effect on the EC50 values of ACh
on the α7 and α3β2 nAChRs (53, 54), respectively. This out-
come is not the first time, however, where the same residue on
a particular position affects variably the channel activation,
depending on the subunit it resides. Dougherty group showed
emphatically that even the conserved cation-π interaction of
nAChRs with agonists, can use different aromatic residues (and
not necessarily Trp of loop B), depending on the nAChR sub-
type (55, 56). Finally, a similar to the observed erratic in-
volvement of loop F in the activation of α2β2 nAChRs was
previously evinced by the modulatory action of zinc ions on
α4β2 nAChR, where depending on the involved interface zinc
could either inhibit or potentiate the receptor (57).
The crystal structure of the α2 ECD showed an interaction

between Tyr219 of loop C and Lys174 of β7 strand, probably
caused upon epibatidine binding at the ligand binding site (Fig.
6B). This observation is in line with structural observations in
homologous proteins, where an agonist was bound, and denotes
that the α2-Epi structure resembles the activated or desensitized
state of the nAChRs (47). Important ECD elements that couple
ligand binding to channel gating in the context of a nAChR are
the membrane-facing loops and their in-between interactions
(50, 51). In the α2-Epi structure, we found an interconnecting
network coordinated by the invariant pre-M1 Arg237 with the
participation of Cys loop and loop F (Fig. 6C). However, their
relative positions and interaction scheme could not be correlated
to a particular nAChR state, due to the limitations that arise
from the absence of the transmembrane domain.
Neuronal nAChRs are involved in diverse neurophysiological

processes by the mediation of fast neurotransmission in the brain
and they have been the target of many pharmaceutical ap-
proaches. However, the considerable high similarity among the
subunits presents an obstacle on finding a subtype-specific drug
for a single nAChR. Furthermore, their stoichiometry diversity
overburdens the progress on functional elucidation and drug
development. In that respect, the goal is to identify the structural
elements that distinguish the subunits and their binding inter-
faces. The α2-Epi structure provides a major step forward for
this route as many structural elements and their synergy become
apparent on the pentameric conformation. Additionally, the
human α2 ECD shares high sequence identity with other neu-
ronal α and β nAChR ECDs, of most striking the 78% with, one
of the most important nAChR subunits, the α4 (Fig. S5).
Therefore, we propose its structure as a promising template for
identifying the functionality and synergy of structural elements of
other subunits and for structure-based drug design to treat
nAChR-related diseases.

Materials and Methods
Human α2 nAChR ECD was expressed and purified using methods described
in ref. 15. Crystallization of α2 ECD was carried out with the vapor diffusion
method in sitting drops and the protein crystals were optimized by per-
forming microseeding. Electrophysiology recordings were performed by
expressing α2 and β2 nAChR subunits and its variants in Xenopus laevis
oocytes as in ref. 15. Full methods are provided in SI Materials and Methods.
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