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Predicting future events is a critical computation for both perception
and behavior. Despite the essential nature of this computation,
there are few studies demonstrating neural activity that predicts
specific events in learned, probabilistic sequences. Here, we test
the hypotheses that the dynamics of internally generated neural
activity are predictive of future events and are structured by the
learned temporal-sequential statistics of those events. We recorded
neural activity in Bengalese finch sensory-motor area HVC in re-
sponse to playback of sequences from individuals’ songs, and ex-
amined the neural activity that continued after stimulus offset. We
found that the strength of response to a syllable in the sequence
depended on the delay at which that syllable was played, with a
maximal response when the delay matched the intersyllable gap
normally present for that specific syllable during song production.
Furthermore, poststimulus neural activity induced by sequence play-
back resembled the neural response to the next syllable in the se-
quence when that syllable was predictable, but not when the next
syllable was uncertain. Our results demonstrate that the dynamics
of internally generated HVC neural activity are predictive of the
learned temporal-sequential structure of produced song and that
the strength of this prediction is modulated by uncertainty.
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Most complex behaviors, such as vocalizations of humans
and birds, unfold over time as coordinated sequences (1-4).
Furthermore, the sensory world exhibits sequential structure, and so
perception also reflects processing a series of sequential events
(5-8). The statistical regularities of naturally occurring sequences
potentially enable prediction of upcoming sensory/behavioral events
based on previous experience. Indeed, statistical prediction is cen-
tral to many theories of nervous system function, including rein-
forcement learning (9, 10), optimal sensory-motor control (2, 11),
decision making (5, 8, 12, 13), and efficient coding of sensory in-
formation (14-17). Optimal statistical predictions reflect not only
the expected value (i.e., mean) of upcoming events but also the
uncertainty (i.e., entropy) of those values (18, 19). The ability to
form statistical predictions of sequential events suggests that neural
circuits underlying perception and production of those sequences
generate activity that reflects these predictions (4, 8-10, 12, 16, 17,
20-25). In contrast to sequential neuronal activation during pro-
duction or replay of deterministic sequences (3, 24, 26-28), exper-
imental demonstration of circuits exhibiting predictive activity
shaped by the specific, long-term experienced statistical structure
of upcoming events are rare. Here, we use the Bengalese finch
(Bf) as a model system to test the hypothesis that the dynamics of
internally generated neural activity are predictive of specific
events and are shaped by the long-term, learned statistics of the
timing and sequencing of those events.

Songbirds provide an excellent model for investigating neural
processing involved in perception and production of complex
sequential behavior. Birdsong is a learned behavior in which each
bird produces a unique sequence of categorical acoustic elements,
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termed syllables. Fig. 14 displays an example song segment from
one Bf, represented here as a spectrogram (color intensity in-
dicates energy at a given frequency over time). The sequencing
of this bird’s syllables, derived from multiple renditions of song,
is summarized in Fig. 1B, which displays a transition diagram
showing the (forward) conditional probability of transitioning
from any given syllable to any other syllable. For the Bf, sequencing
of syllables can be variable; multiple syllables may, in principle,
transition to a given syllable (convergence points, e.g., “g” in Fig.
1B), and a particular syllable may, in principle, transition to multiple
syllables (divergence points, e.g., “h” in Fig. 1B). Despite the vari-
ability in sequence production, Bf sequencing is not random, as
the probabilistic structure of syllable transitions is reproducible
across months (29). In addition to variability in sequences, silent
intervals between syllables associated with a given transition,
intersyllable gaps (ISGs), also exhibit reproducible stochastic
structure that can differ across different transitions and may be
linked to underlying sequence generation mechanisms (30, 31). Fig.
1C displays Gaussian fits to all gap distributions derived from songs
for this bird. As is typical for Bfs, the gap distributions exhibited a
range of mean values. Thus, song is a learned behavior with diverse
statistics associated with both timing and sequencing (temporal—
sequential statistics) of syllables.

The brain regions responsible for perception, acquisition, and
production of song are well studied. Sensory-motor nucleus HVC
(acronym used as proper name) transmits much of the descending
motor control for the temporal structure of learned song (3, 32-35)
and contributes to syllable sequencing (32, 34, 36). Interestingly,
HVC neurons also respond more strongly to playback of the bird’s
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Fig. 1. Temporal-sequential structure of birdsong. (A) Spectrogram (power
at frequency vs. time) of a Bf song segment, with letter labels assigned to
unique syllables. Adult Bf song typically consists of 5-12 unique syllables
produced in probabilistic sequences. (B) Forward transition diagram of song
syntax, compiled from many renditions of the song in A. Each node corre-
sponds to a unique syllable from the bird’s repertoire. Edges between nodes
denote transitions between syllables obtained from a large corpus of songs
(dots denote transition destination). The width of each edge corresponds to
the observed probability of transitioning from a syllable to any other syllable.
(C) Intersyllable gap (ISG) probability distributions for all transitions in this
bird. Each distribution is presented as the Gaussian fit to the logs, ISG data.

own song (BOS) than to manipulated versions of BOS, such as
songs with reverse syllable ordering (37-39). Indeed, previous work
in Bfs has shown that HVC auditory responses exhibit long-time,
probability-dependent integration that is shaped by the statistics of
produced song sequences (40). We designed a series of experiments
to examine whether neural activity in sensory-motor nucleus HVC
persists after the termination of playback of syllable sequences,
whether this activity is predictive of the timing and sequencing of
produced syllable transitions, and whether the strength of predic-
tions is modulated by the uncertainty of upcoming syllables.

Results

We played back auditory stimuli to 12 sedated adult Bfs while
recording from HVC (Materials and Methods). We first charac-
terized activity elicited by playback of BOS and reversed versions
of BOS. Fig. 2 A and B shows example oscillograms of a BOS
stimulus (BOS segment is excised from a longer bout of singing)
and the temporally reversed BOS stimulus (rBOS), a control
stimulus with the same spectral and amplitude content of BOS. The
evoked auditory responses at one site to BOS and rBOS are dis-
played below the corresponding stimuli (mean + SEM, n = 25
trials). The mean evoked spike rate relative to the mean baseline
activity (evoked/baseline) was significantly greater for BOS evoked
auditory responses than rBOS auditory responses (across n = 83
sites from 12 birds: 5.15 + 0.62 vs. 1.1 + 0.53, mean + SEM, ***P <
10719, paired ¢ test on log;, data; across n = 12 birds: 4.45 + 0.59 vs.
1.46 = 0.16, mean + SEM, ***P = (), Wilcoxon signed-rank test on
logo data). Thus, as reported previously, Bf HVC auditory re-
sponses to BOS were much larger than auditory responses to
rBOS (35, 41, 42).

If internally generated activity in HVC is predictive of future
syllables, then this activity should persist after the termination of
the BOS stimulus. Indeed, playback of BOS induced poststimulus
activity that persisted for several hundred milliseconds after stimu-
lus offset. Examples of poststimulus activity are displayed at the
Bottom of Fig. 2 A and B for BOS and rBOS stimuli, where we
magnify the poststimulus activity from directly above (correspond-
ing time periods demarcated in gray). BOS-induced poststimulus
activity decayed roughly exponentially after stimulus offset, whereas
rBOS did not induce similarly temporally extended poststimulus
activity. Across all sites, BOS-induced poststimulus activity decayed
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to baseline levels after ~300 ms (exponential fit: R* = 0.22, P < 107,
n = 83 sites, Materials and Methods) and dipped slightly below
baseline for ~700 ms before returning to approximate baseline levels
(Fig. 2C). In contrast, rBOS poststimulus activity hovered around
baseline and did not exhibit a systematic dependence on time
(exponential fit: R?>=0.008, P > 0.4, n = 83 sites). Qualitatively, the
poststimulus activity following BOS playback exhibited an initial (0—
30 ms following BOS offset; Fig. 2D) increase in residual power
(low-passfiltered residuals from best-fit exponential at each site;
Materials and Methods) followed by more subtle fluctuations at the
average times at which syllables would have occurred in produced
song (gray shaded regions, Fig. 2D). Poststimulus activity that could
exhibit nonmonotonic decay following BOS playback was also ap-
parent in both multiunit and single-unit activity recorded at single
sites (e.g., Fig. 44, red trace, and Fig. S1). The presence of such
poststimulus activity following BOS playback raises the possibility
that ongoing HVC activity carries a prediction about upcoming
events in song. Here, we tested whether such predictions are pre-
sent for the timing and identity of syllables that would normally
follow the segments of BOS that were played back to birds.

Temporal Tuning for Syllable Transitions Reflects the Expected Timing
of Produced Intersyllable Gaps. If the dynamics of HVC neural
activity are structured by the temporal-sequential statistics of
produced song, then auditory responses to sequences of syllables
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Fig. 2. Poststimulus activity in HVC induced by BOS playback. Oscillograms
(Top) of BOS (A) and rBOS (B), with evoked HVC auditory responses at one site
(Middle: mean + SEM, n = 25 trials) and induced poststimulus activity de-
marcated with gray boxes expanded at Bottom. HVC auditory responses
evoked by BOS were larger than those evoked by rBOS, and the corresponding
induced poststimulus activity was also larger. (C) Average poststimulus activity
across HVC sites, expressed as percent above baseline, induced by auditory
playback of BOS (red) and rBOS (black) stimuli (mean + SEM; n = 83 sites from
12 birds). Dashed red and black lines are best-fitting exponential decay. Gray
dashed line corresponds to baseline activity. (D) Average power (5-25 Hz) of
residuals from exponential fits of poststimulus activity across HVC sites induced
by auditory playback of BOS (red) and rBOS (black) stimuli (mean + SEM; n =
83 sites from 12 birds). Gray boxes demarcate average duration of syllables,
separated by median gap. BOS-induced residuals were significantly greater
than rBOS-induced residuals over the first 250 ms of poststimulus activity
(across n = 83 sites from 12 birds; BOS, 1.50 + 0.14, vs. rBOS, 0.9 + 0.09; mean +
SEM; P < 107, paired t test; across n = 12 birds; BOS, 1.40 + 0.19, vs. rBOS, 0.86 +
0.12; mean + SEM; P < 103, Wilcoxon signed-rank test).
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should be tuned to the specific timing of those sequences during
song production. However, the degree to which the timing between
syllables presented during auditory playback modulates HVC au-
ditory responses is poorly understood. A previous study reported
responses of a single HVC neuron that decayed monotonically with
increasing time between syllables (39). Such a monotonically de-
creasing response might be explained simply if the response to
delayed syllables in the sequence were superimposed on gradually
decaying activity elicited by the preceding sequence. In contrast, we
hypothesized that persistent HVC activity contains a more specific
prediction of the timing at which subsequent syllables of song
normally occur. To test for such a prediction, we played back seg-
ments of the BOS (three to five syllables) and varied the time be-
tween the last two syllables across a range that contained durations
that were both shorter and longer than the mean ISG for that
transition. For example, if a bird produced sequence “abcde” (Fig.
34, Top), we played back the sequence “abcde,” and measured
responses to “e” as a function of the gap between “d” and “e.” We
asked whether responses to the delayed syllable depended non-
monotonically on the delay at which the syllable was played, and
whether there was any relationship between the delay at which the
strongest responses to the terminal syllable occurred and the du-
ration of the ISG that normally preceded that syllable in song.

Fig. 3B illustrates temporal tuning for one transition. The top
panel shows the response at one site to the last syllable as a function
of the temporal offset (df) from the previous syllable. The bottom
panel shows the average response across four sites. The probability
distribution of produced ISGs for this transition is presented in the
bottom panel. For this transition, we found that the peak in tem-
poral tuning occurred at an interval of 30 ms, which was very close
to the mean of the produced ISG distribution (33 ms). Fig. 3C
presents results from a different bird for a transition where the
mean of the produced ISGs (Bottom) was much longer. The peak in
temporal tuning was again well aligned to the peak in the produced
ISG distribution (Bottom).

Across all 27 sites in three birds at which a total of six transitions
were tested, peak temporal tuning was well aligned to the mean
duration of produced gaps. Fig. 3D summarizes temporal tuning for
all sites as function of time between the last two syllables relative to
the mean produced ISG for associated transitions (Af). The average
temporal tuning function (n = 27 sites) exhibited a peak near At =0,
indicating that peak responses occur near the mean of produced
ISG distributions. Indeed, across all sites, there was a strong positive
correlation between the peak of the temporal tuning curve and the
mean of the produced ISG distribution (Fig. 3E, gray, n = 27 sites at
which six transitions were played back; R* = 0.67, P < 107 red,
responses averaged across sites for n = 6 transitions from three
birds; R> =0.93, P < 0.002). However, peak tuning was delayed by a
small but significant amount (12 + 3 ms) relative to the produced
mean ISG for a transition (P < 107>, ¢ test, N = 27). As there is no
physical energy in the stimulus during gaps to drive neural activity,
the observed temporal tuning must result from dynamics of inter-
nally generated neural activity induced by preceding sequences.
These results are consistent with the hypothesis that HVC dynamics
are predictive for the expected timing of upcoming syllables.

Poststimulus Neural Activity Is Predictive of Upcoming Syllable Identity
for Low-Uncertainty Transitions. The observation of temporal tuning
shaped by the timing of upcoming syllables suggests that HVC ac-
tivity might also predict the identity of upcoming syllables. We
tested the specificity of sequence-induced poststimulus activity for
the next syllable in a sequence. Bf song contains transitions where
the upcoming syllable is highly certain, and transitions where the
upcoming syllable is uncertain. We quantified syllable transition
uncertainty as conditional entropy: lower entropy corresponds to
lower uncertainty in the identity of upcoming syllables. Transitions
exhibited a bimodal distribution of entropies, which was perfectly
separable (i.e., completely nonoverlapping, area under receiver
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Fig. 3. Temporal tuning of HVC auditory responses for syllable transitions
reflects the expected timing of produced intersyllable gaps (ISGs). (A) lllustration
of stimulus used to determine temporal tuning. To investigate whether the
temporal tuning of HVC auditory responses to a syllable is matched to the sta-
tistics of song production, we presented sequences of syllables and varied the
time between the last two syllables (Bottom) across values that were both
shorter and longer than the average of naturally produced ISGs (Top). (B, Top)
Average spike rate in response to the last syllable as a function of the temporal
offset from the previous syllable (dt) at one site (mean + SEM; n = 20). (Middle)
Average responses across sites (z scores; mean + SEM; n = 4 sites). (Bottom) The
probability distribution of I1SGs for this transition produced by the bird during
singing. The temporal tuning exhibited a peak (time of peak demarcated by
dashed red line) at 30 ms that was well aligned to the mean of the produced
ISG’s for that transition (32 ms). (C) Another example showing the response as a
function of dt (Top: z scores; mean + SEM; n = 5 sites) for a sequence of syllables
with a longer produced ISG (Bottom). Here, the mean produced gap duration
was 53 ms, and the temporal tuning exhibited a peak at 50 ms (dashed red line).
(D) Mean z scores as a function of the difference between the presented ISG and
the mean produced ISG for six transitions at 27 sites from three birds [At = dit-
mean(ISG)]. Black curve: mean + SEM, n = 27 sites. Vertical dashed red line de-
marcates At = 0. (E) Location of peaks in temporal tuning curves for individual
sites and transitions as a function of the mean of the produced ISG distributions.
There was a strong correlation between the locations of the peaks of temporal
tuning curves and the means of produced ISGs for the corresponding transitions
(black dots: individual sites, small horizontal shift added to overlapping points;
dashed black line is best linear fit, R = 0.67, P < 107'°, six transitions played at
n = 27 sites; red squares: mean across sites for a transition, n = 6 transitions from
three birds; R = 0.93, P < 0.002; dashed gray line is unity).

operating characteristic curve = 1) at 0.75 bits; we therefore split
the data into sequences ending in “low entropy” (<0.75 bits) or
“high entropy” (>0.75 bits) transitions. We hypothesized that
poststimulus activity induced by sequences ending in low-entropy
transitions would be predictive of upcoming syllables. To test this
hypothesis, we played back short sequences of syllables (three to
six syllables) from BOS, as well as individual syllables in isolation
(in total, 88 sequences were played back, 44 low entropy and 44
high entropy) at 18 multiunit sites in seven birds, and responses to
identical stimuli were averaged across multiple sites within a bird.
For the example in Fig. 44, syllable “e” always followed the se-
quence “abcd” during song production, and so the transition from
“d—e” was low entropy. Fig. 44 illustrates the average auditory
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Fig. 4. Poststimulus activity is predictive of upcoming syllables for low un-
certainty transitions. (A) Poststimulus activity induced by playback of a BOS
sequence was similar to the auditory response to the next syllable in the
sequence. The spike rate evoked by playback of the sequence “abcd” (syllable
timing in stimulus demarcated by red boxes), as well as the induced poststimulus
activity (stimulus offset is indicated with red dashed line). The single-syllable
response to “e” is presented above the period when it would have occurred
(indicated by gray box). AT = 0 is the average expected time of next syllables.
Data are presented as mean + SEM across trials. (B) Time course of correlation
coefficients comparing poststimulus activity to evoked single-syllable re-
sponses for the next syllable in the sequence (red) and other syllables in the
birds repertoire (black) (mean + SEM; n = 44 single-syllable comparisons from
18 sites in seven birds). (C) Scatter plot contrasting maximum correlation co-
efficients comparing poststimulus activity to evoked single-syllable responses
for next syllables and other syllables. Black circles are individual data points,
and red cross is mean + SEM for the 44 unique syllable transitions; red points
are within-bird averages for seven birds with one to four recording sites, and
four to nine unique syllable transitions per bird.

response evoked by playback of sequence “abed,” and the induced
poststimulus activity. The average single-syllable response to “e” is
presented above the period when it would have occurred had the
sequence “abcde” been presented. Poststimulus activity induced
by “abcd” was qualitatively similar to the response evoked by
syllable “e,” raising the possibility that HVC activity following
termination of the sequence “abcd” anticipates, or “predicts,” the
specific temporal structure of activity elicited by the next syllable
in song (in this case, “e”).

We quantified similarity between poststimulus activity and single-
syllable response waveforms evoked by the next syllable(s) in the
sequence using a sliding covariance analysis (Materials and Meth-
ods). This measures the similarity between single-syllable responses
and poststimulus activity of the same duration. To determine the
time course of these correlations, we carried out this analysis over a
range of temporal lags spanning the expected onset of the next
syllable(s) (Materials and Methods). To determine selectivity of
poststimulus activity for the identity of the next syllable(s), we
compared next-syllable correlations with correlations between
poststimulus activity and responses to other syllables in the bird’s
repertoire (i.e., those that did not follow the presented sequences
during song production). For a given sequence, if there were
multiple “next” syllables, each contributed a data point, whereas
the correlations for all “other” syllables were averaged together.

Across all low-entropy transitions, poststimulus activity was
more similar to responses for next syllable(s) than for other
syllables. Fig. 4B presents the average correlation (relative to the
mean expected timing, AT = 0) comparing poststimulus activity
to evoked single-syllable responses for the next syllable(s) in the
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sequence and other syllables. Correlations for next syllables
(red) were greater than the correlations for other syllables
(black). Relative to the expected timing (AT = 0), the peak of
the average correlation for next syllables occurred with a delay
of 7 ms, and the median of peaks for individual correlations
was delayed by 9 ms (Fig. 4B, N = 44). These delays were
similar to the delay observed for temporal tuning (12 ms;
Fig. 3). The maximum correlation coefficients for next syllables
(extracted between —20 and 40 ms after the offset of the
stimulus sequence) were significantly greater than for other
syllables (Fig. 4C, P < 10™*, Wilcoxon signed-rank test; n = 44
syllables). These results indicate that the dynamics of post-
stimulus neural activity in HVC are predictive of upcoming
syllable identity.

Uncertainty of Produced Sequences Modulates the Degree to Which
Poststimulus Activity Is Predictive of Upcoming Syllables. We next
used the diversity of transition uncertainties found in Bf song
sequences to examine whether predictive strength of HVC post-
stimulus activity is modulated by the uncertainty of upcoming syl-
lables. We hypothesized that poststimulus activity induced by
sequences ending in uncertain transitions would be less predictive
of upcoming syllables than for sequences ending in more certain
transitions. Fig. 54 presents for high-entropy transitions (>0.75
bits) average correlations between poststimulus activity and
evoked single-syllable responses for the next syllable(s) in the se-
quence (red) and the other syllables (black). Here, maximum
correlation coefficients were statistically indistinguishable be-
tween next and other syllables (Fig. 5B, P > 0.3, Wilcoxon signed-
rank test, n = 44 syllables; red cross is mean = SEM). Thus, for
high-entropy (i.e., uncertain) transitions, unlike the case for
low-entropy transitions, we did not detect selectivity of post-
stimulus activity for upcoming syllable identity.

To directly examine how predictive strength differed between
low- and high-entropy sequences, we quantified predictive strength
as the difference between maximum next-syllable correlation coef-
ficients and maximum other-syllable correlation coefficients (AR).
The histogram at Bottom of Fig. 5C plots transition entropies for all
tested sequences. The entropies formed a bimodal distribution, with
a large margin between the low-entropy (red) and high-entropy
(black) modes. A paired comparison of predictive strength for low-
and high-entropy transitions indicated that predictive strength was
larger for low-entropy transitions (0.224 + 0.071; mean + SEM,;
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Fig. 5. Uncertainty of produced sequences modulates the degree to which
poststimulus activity is predictive of upcoming syllables. (A) Time course of
correlation coefficients comparing poststimulus activity to evoked single
syllable responses for the next syllable in the sequence (red) and other syl-
lables in the birds repertoire (black) (mean + SEM; n = 44). AT = 0 is the
average expected time of next syllables. (B) In contrast to results for low-
entropy transitions, for high-entropy transitions we found that maximum
correlation coefficients were statistically indistinguishable between next and
other syllables (P > 0.3, Wilcoxon signed-rank test, n = 44 syllables; black
circles are individual syllables, and red is mean + SEM). (C) Transition un-
certainty modulates the degree to which poststimulus activity is predictive of
upcoming syllables. Difference in correlation coefficients (AR) between next
and other syllables was significantly larger for low-entropy transitions than
for high-entropy transitions (**P = 0.006, Wilcoxon signed-rank test; n = 44
syllables for both).
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thick red line) than for high-entropy transitions (-0.070 + 0.076;
mean + SEM; thick black line) (Fig. 5C, numerical values on left
ordinate, **P = 0.006, Wilcoxon signed-rank test, n = 44 se-
quences for both low and high entropy). Furthermore, average
predictive strength was greater for low-entropy transitions than
for high-entropy transitions in five out of seven individual birds.
These results were further confirmed by regressing AR against
transition entropy for individual transitions (R = —0.28, P =
0.006, n = 88; Fig. 5C, colored dots, numerical values indicated on
right ordinate). There were no significant differences in responses
to the last syllable between the high- and low-entropy sequences
(Fig. S2). These results demonstrate that transition entropy mod-
ulates the predictive strength of poststimulus activity in HVC; low-
entropy transitions induced poststimulus activity that was more
similar to the single-syllable responses for next syllables than other
syllables, whereas high-entropy transitions did not. Correspondingly,
predictive strength (AR) was significantly greater for low-entropy
than for high-entropy sequences.

Discussion

An individual’s ability to form statistical predictions of sequential
events implies that neural circuits must be able to leverage in-
formation about past experience to predict future events (1-4,
8-10, 12, 16, 17, 20-25). We used playback of birdsong to in-
vestigate whether and how activity in sensorimotor nucleus HVC
encodes information about song sequence statistics to predict
upcoming sensorimotor events. We found that song playback
induces ongoing activity in HVC predictive of the timing and
identity of upcoming syllables, and that the strength of this pre-
dictive activity depends on the certainty with which upcoming
syllables occur.

A previous study examining the spectrotemporal selectivity of
HVC auditory responses reported one neuron for which re-
sponses to terminal syllables decreased monotonically as the
delay between syllables was progressively increased (39). How-
ever, that study used stimuli with timing between syllables that
only exceeded the produced ISGs and therefore was not
designed to sample the range of timing delays required to detect
a correspondence between temporal tuning and produced gap
durations. In contrast, we found that responses to playback of
syllable sequences did not decay monotonically as a function of
delay, but rather were greatest when those sequences were pre-
sented with ISGs that matched those normally produced during
singing. Thus, in HVC, the peak of temporal tuning is correlated
with the expected value of the produced ISG distributions for
specific transitions. Because there is no physical energy in the
stimulus during the time between syllables, this temporal tuning
for specific syllable transitions must arise from dynamics of in-
ternally generated neural activity, and is consistent with the hy-
pothesis that the neural dynamics in HVC are predictive of the
temporal statistics of song.

We also tested whether poststimulus activity induced by play-
back of syllable sequences resembled single-syllable responses
evoked by the next syllables in the sequence. Previous studies in
the zebra finch characterized “temporal combination-selective”
cells, in which the response of a neuron to playback of two nor-
mally ordered syllables is supralinear relative to responses to the
syllables in isolation, or in abnormal order (37, 39). Similarly, in
the Bf, HVC responses exhibit long-time, probability-dependent
sequence integration (42). These forms of temporal integration
suggest that neural activity following offset of a particular se-
quence can persist until the presentation of the next syllable in the
sequence. Moreover, enhanced responses to normally ordered
syllables suggest that such neural activity includes some prediction
of the identity of upcoming syllables. Indeed, playback of normally
sequenced elements of the BOS can evoke patterns of activity that
resemble those present during singing (43). Here, we found that,
for low-uncertainty transitions, poststimulus activity following a
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sequence of syllables resembles the temporal structure of activity
that would normally be elicited by playback of the next syllable in
the sequence. Hence, when the next syllable is predictable with
greater certainty, neural responses are predictive of that syllable.
Moreover, in agreement with the intuition that more uncertain
transitions should give rise to weaker predictions about upcom-
ing syllables, poststimulus activity induced by low-entropy tran-
sitions was more selective for upcoming syllables than poststimulus
activity induced by high-entropy transitions.

Together, these results demonstrate that the dynamics of
internally generated neural activity are predictive of the iden-
tity of upcoming syllables, and that the uncertainty of a given
transition modulates the strength of this prediction. This pre-
dictive activity may, in part, contribute to long-time probability-
dependent sequence integration (42), by providing a “trace” of
the preceding sequence and a prediction of the upcoming syl-
lable. Specifically, incoming sensory signals from a syllable may
be integrated with “reverberating” activity evoked by the pre-
ceding sequence. Interestingly, distorted auditory feedback
during singing has a larger effect on sequence production and
HVC neural activity at more entropic transitions (35). This
could reflect differences in the strength of “prediction” for
upcoming syllables in ongoing activity, which might promote
the corresponding, highest probability transitions. Given the
strong sensory-motor correspondences in HVC, the entropy-
dependent, predictive poststimulus activity demonstrated here
could be a basis for biasing upcoming transitions and for the
differential effects of distorted auditory feedback on higher vs.
lower entropy transitions.

Although our results derive from recordings in HVC, the
mechanisms that underlie generation of predictive activity are
likely distributed across multiple nuclei. The network mecha-
nisms underlying syllable sequencing include contributions from
local microcircuits in HVC (31-36, 44), reefferent activity
through extended brain circuits (e.g, HVC - RA - ... —
HVC) (45), and activation due to sensory feedback (29, 35, 46).
Our observation that the dynamics of poststimulus activity were
slowed by ~10 ms relative to the expected timing of song [for
both temporal tuning (Fig. 3 D and E) and peak predictive
strength (Fig. 4B)] also suggests that the song generation net-
work is in a different state during singing, perhaps resulting from
different neuromodulatory tone (47), or from additional excit-
atory inputs that are not activated during playback experiments
(32-35, 45).

Our findings have similarities to observations in other systems
in which neural circuitry encodes information about the statistics
of experience. For example, in the visual system of mice, spa-
tiotemporal patterns of spontaneous neural activity resemble
those evoked by visual stimuli for a period immediately following
stimulus presentation (48). Similarly, spontaneous activity in the
experienced ferret visual system can exhibit greater similarities to
activity evoked by natural movies than in naive ferrets, suggesting
that spontaneous activity reflects prior natural sensory experi-
ence (49). Moreover, the hippocampus in many species has been
implicated in both the encoding and recall of memory episodes,
and spontaneous hippocampal neural dynamics have been as-
sociated with sequence prediction (23, 24, 26, 28). These ob-
servations and others indicate that prior experiences can shape
predictive neural activity, as we have observed here. Our results
additionally indicate that such predictive neural activity reflects
the strength of statistical regularities of specific events in an in-
dividual’s long-term experiences. We have provided converging
lines of evidence indicating that playback of sequences of sylla-
bles induces internally generated neural activity, the dynamics of
which are predictive of the learned temporal-sequential statistics
of specific sensory-motor events from long-term exposure. Our
results derive from a sensorimotor circuit specialized for per-
ception and production of song. Hence, it remains to be determined
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whether there is similar encoding of stimulus specific predictions
in other systems. However, the utility of statistical predictions
for a variety of neural computations and the ability of Hebbian
learning to engrain these statistics in neural circuits (50) sug-
gest that similar properties of neural dynamics may be a general
feature of sensory and motor circuits.

Materials and Methods

Twelve male Bfs (age, >110 d) were used in this study. During experiments,
birds were housed individually in sound-attenuating chambers (Acoustic
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