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Understanding the mechanisms of early cardiac fate determination
may lead to better approaches in promoting heart regeneration.
We used a mesoderm posterior 1 (Mesp1)-Cre/Rosa26-EYFP re-
porter system to identify microRNAs (miRNAs) enriched in early
cardiac progenitor cells. Most of these miRNA genes bear MESP1-
binding sites and active histone signatures. In a calcium transient-
based screening assay, we identified miRNAs that may promote the
cardiomyocyte program. An X-chromosome miRNA cluster, miR-
322/-503, is the most enriched in the Mesp1 lineage and is the most
potent in the screening assay. It is specifically expressed in the
looping heart. Ectopic miR-322/-503 mimicking the endogenous
temporal patterns specifically drives a cardiomyocyte program
while inhibiting neural lineages, likely by targeting the RNA-binding
protein CUG-binding protein Elav-like family member 1 (Celf1).
Thus, early miRNAs in lineage-committed cells may play powerful
roles in cell-fate determination by cross-suppressing other lineages.
miRNAs identified in this study, especially miR-322/-503, are potent
regulators of early cardiac fate.
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MicroRNAs (miRNAs) are small noncoding RNAs 18–24 nt
in length that regulate posttranscriptional gene expression

(1). miRNAs are guided to the 3′ UTR of target mRNAs by
partial sequence complement in the “seed” region, causing degra-
dation of the mRNA transcript and/or translational inhibition. They
are perceived to fine-tune gene expression but also function as
molecular switches (2–5). miRNAs can also exert a fail-safe mech-
anism to silence mRNAs that are superfluous in specific cell lineages
(6, 7). Hence, miRNAs are powerful regulators of cell fates (8).
A few miRNAs are expressed specifically in the heart and

skeletal muscles, namely, miR-1, miR-133, miR-206, miR-208,
and miR-499 (9). Genetic loss- and gain-of-function studies have
revealed a critical role for the miR-1/-133 cluster in the mouse
heart (5, 10–12). Deletion of miR-1-2 resulted in embryo lethality
because of ventricular septal defects and in postnatal death be-
cause of conduction system defects (11). miR-208 and miR-499
are encoded in the introns of cardiac myosin heavy-chain genes
(13, 14). A recent report described the use of striated muscle-
specific miRNAs in reprogramming mouse fibroblasts into car-
diomyocytes, although the efficiency was low (15). Because of the
relatively late onset, these “myomiRs” may need partners that
function early to turn on the cardiac program efficiently. miRNAs
associated with early cardiac progenitor cells (CPCs), which are
often depicted by mesoderm posterior 1 (Mesp1) and Flk1/Pdgfra
expression (16, 17), are largely unknown.
Mesp1 sits high in the regulatory hierarchy of cardiac devel-

opment. It is first expressed at the onset of gastrulation along the
primitive streak and in the premesoderm that eventually gives
rise to the heart. In homozygous Mesp1-deficient embryos, the
Mesp1-lineage cells were delayed in migrating from the primitive

streak to the heart field (18). Mesp1 drives ES cells (ESCs) to-
ward the cardiac fate. Transient expression of Mesp1 accelerated
and enhanced the appearance of cardiac progenitors (19–22).
Despite its pivotal role in cardiogenesis, its expression is highly
transitory. It disappears almost completely before the appearance
of cardiac crescent at embryonic day (E) 7.0, suggesting that it is
not required for cardiac morphogenesis (16, 18). Recent evidence
indicates that Mesp1’s role is broader than previously recognized.
Our global survey of its transactivation targets shows that Mesp1
primarily regulates mesendoderm genes (23). Moreover, Mesp1-
marked cells contribute to skeletal muscles and blood in addition
to cardiovascular lineages (24). Despite this expanded role, its
early onset and relative specificity make Mesp1 a suitable marker
for the earliest CPCs.
Here we report the identification of early CPC-enriched miRNAs,

many of which are direct transactivation targets of MESP1. The
top candidate, the miR-322/-503 cluster, is expressed early and
specifically in the looping heart during embryogenesis. Tempo-
rally controlled induction of miR-322/-503 triggered precocious
and robust cardiomyocyte formation. The miR-322/-503 cluster
targets an RNA-binding factor, CUG-binding protein Elav-like
family member 1 (Celf1), which otherwise leads embryonic stem
cells toward neural fates.

Significance

Compared with microRNAs (miRNAs) enriched in cardiac and
skeletal muscles, little is known about miRNAs expressed in
early cardiac progenitors. Here, we show that mesoderm pos-
terior 1 (Mesp1) transactivates a large number of miRNAs that
may promote cardiomyocyte formation. The miR-322/-503 cluster
has the highest enrichment in the Mesp1 lineage of cardiac pro-
genitor cells, is specifically expressed in the developing heart
tube, and drives precocious cardiomyocyte formation by target-
ing an RNA-binding factor, CUG-binding protein Elav-like family
member 1 (Celf1). This study fills a gap in our knowledge about
miRNAs acting early in the cardiac program and identifies pre-
viously unreported candidates in promoting cardiac regeneration.
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Results
Using Mesp1 Genetic Tracing to Identify miRNAs Enriched in Early
CPCs. To identify miRNAs that regulate early cardiac cell fate,
we used a genetic tracing strategy to label early CPCs. We
crossed the Mesp1Cre/+ and Rosa26EYFP/EYFP mouse strains to
obtainMesp1Cre/+; Rosa26EYFP/+ embryos in whichMesp1 promoter-
driven Cre mediates recombination in the Rosa26 locus and per-
manently marks the Mesp1 lineage with YFP. In agreement with
previous reports (16, 18), Mesp1-lineage cells contributed to the
primitive streak, cardiac crescent, and head folds at E7.5. They
localized to the developing heart, head mesenchyme and inter-
somatic vessels at E9.5 and to the heart and surrounding struc-
tures at E11.5 (Fig. 1A). We generated an Mesp1 lineage-tracking
ESC line (genotype Mesp1Cre/+; Rosa26EYFP/+), UH3 cells (23).
YFP+ signal was absent in undifferentiated UH3 cells and started
to appear from day 3 in a standard hanging-drop protocol. The
signal reached 2.9% at day 5 and did not increase thereafter. In
contrast, Rosa26EYFP/+ ESCs did not express YFP at any time
points, indicating that the reporter activity is contingent on Cre
expression (Fig. 1B). We previously determined that MESP1
protein peaked at day 5 and that day 5 YFP+ cells possessed an early
CPC signature (23).

Next, we identified early CPC-enriched small RNAs by next-
generation sequencing. We obtained 9,461,773 usable reads, of
which 2,465,814 were aligned to miRNAs. We used an arbitrary
cutoff of fold change >2 (YFP+ vs. YFP−) and reads >1,000 to
obtain a list of early CPC-enriched miRNAs (Table S1). Most
miRNAs on the list do not have established roles in cardiac de-
velopment. A cluster of miRNAs—miR-322 and miR-503—had the
highest enrichment (∼25-fold). Members of the miR-17–miR-92
family and its paralogs, the miR-106b–miR-25 family and miR-
106a–miR-363 family, were among the highly enriched. This super-
family is essential for cardiac development: The loss of both the
miR-17–miR-92 and miR-106b–miR-25 clusters led to severe car-
diac defects and embryonic death (25). The miR-302/-367 cluster
also was highly enriched. This cluster reprograms somatic cells to
induced pluripotent stem cells (iPSCs), whereas miR-302 promotes
mesendoderm at the expense of neuroectoderm in human ESCs
(26, 27). The high enrichment of these clusters attests to successful
capturing of important regulatory miRNAs. The heart- and skeletal
muscle-specific miRNAs, namely, miR-1, -133, -206, -208, and -499,
were not expressed at this stage.

MESP1 Transactivates Early CPC-Enriched miRNAs. To understand the
transcriptional and epigenetic regulation of the identified miRNAs,
we examined our recently reported datasets of MESP1 ChIP se-
quencing (ChIP-seq) and histone 3 trimethylated at lysine 4
(H3K4me3) ChIP-seq in day 5 CPCs (23) and histone 3 acetylated
at lysine 27 (H3K27ac) ChIP-Seq in enriched mesoderm cells (28).
Because miRNA transcription start sites (TSS) are not well de-
fined, we focused on two classes of upstream regulatory regions.
Of the 140 miRNAs enriched in Mesp1-lineage cells, 85 fall within
a long transcript. Overlapping MESP1 and H3K4me3 peaks were
present within 1.5 kb of the TSS in 64 (45.7%) of these miRNAs.
Of the remaining 55 that do not fall within a long transcript, over-
lapping MESP1 and H3K4me3 peaks were present in 28 (20.0%)
within a distance of 10 kb of the miRNAs. Together, 65.7% of
CPC-enriched miRNAs have both MESP1 and H3K4me3 signa-
tures on their TSSs (Fig. 1 C and D). Frequently, these signatures
also overlap with H3K27ac peaks (alignment of representative
findings are shown in Fig. 1D). Using a Tet-On tetracycline con-
ditional gene-expression system, we induced MESP1 in ESCs and
detected increased expression of the putative downstream miRNAs
(Fig. 1E). These results strongly suggest that MESP1 directly
transactivates miRNAs enriched in early CPCs.
To assess the function, the targets of the top 25 MESP1-activated

miRNAs were predicted using miRanda (www.microrna.org/
microrna/). Next, we compared their fragments per kilobase of exon
per million fragments mapped (FPKM) expression profiles in day 5
YFP+ and YFP− cells (23). Gene Ontology (GO) terms enriched in
the down-regulated genes (796 counts) (Fig. S1A) include neuro-
ectoderm and some endoderm derivatives. In contrast, terms re-
lated to the recently expanded Mesp1 lineages (heart, skeletal
muscle, and blood) were not enriched (Fig. S1B). These data sug-
gest that Mesp1 drives miRNAs to suppress non-Mesp1 lineages.

Using Calcium Transient-Based Screening to Identify Cardiomyocyte-
Promoting miRNAs.Next, we set up a screening assay for miRNAs
that drive cardiomyocyte differentiation in ESCs. Because cal-
cium transients can be recorded in immature cardiomyocytes
(29) and in CPCs when pulsed (30), we designed the following
screening procedure: (i) monolayer wild-type E14 ESCs were
transduced with miRNA lentiviral vectors; (ii) at a series of time
points, Fluo-4 fluorescent calcium indicator was loaded; (iii) an
electric pulse was applied to the culture; and (iv) calcium tran-
sients were recorded (Fig. 1 F and G).
Wild-type and miRNA-transduced E14 ESCs were cultured as

a monolayer in serum-free medium, yielding little spontaneous
cardiac differentiation. No calcium transients were recorded in
wild-type ESCs at day 5 and 6 and were rare at day 7 and 8.
Starting from day 5, ESCs transduced with miR-322/-503 or miR-
17–miR-92 showed multiple (more than four) calcium transients
after pulse (Fig. 1G). Other miRNAs which consistently displayed
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Fig. 1. Identification of Mesp1 lineage-enriched andMESP1-targetedmiRNAs.
(A) Mesp1 lineage tracking during early embryogenesis. (B) Mesp1 lineage
tracking during ESC differentiation in UH3 (Mesp1Cre/+; Rosa26EYFP/+) cells. YFP+

cells started to appear at day 3 and peaked at day 5, as measured by FACS. (C)
Identifying Mesp1 lineage-enriched miRNAs, MESP-targeted miRNAs, and
subsequent bioinformatical and functional assessment. (D) The majority of
Mesp1 lineage-enriched miRNAs are MESP1-transactivation targets. Shown are
alignments of MESP1-binding sites, H3K4me3 and H3K27ac signatures, and
overlapping long transcripts. The body of the arrow indicates the position, and
the arrowhead points to the direction of transcription. (E) MESP1 induced the
expression of its putative target miRNAs. MESP1 was triggered by dox in
Mesp1 Tet-On ESCs. miRNA levels were determined 48 h postinduction. (F)
Functional assessment of miRNAs in a calcium transient-based screening assay.
(G) The miR-322/-503 and miR-17–miR-92 clusters had the strongest cardio-
genic activity in the calcium transient-based screening.
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calcium transients at any time point include the miR-130b/-301b
cluster, the miR-23a–miR-24-2 cluster, miR-340, -378, -335, -31,
-708, -542, -152, and -382, but fewer than four transients were
recorded in any of these miRNAs (Fig. S2). We concluded that
the miR-322/-503 and miR-17–miR-92 clusters have the strongest
cardiomyocyte-promoting activity. Table S2 summarizes selected
CPC-enriched miRNAs, their folds in enrichment, the presence of
MESP1-transactivating sites, and activities in the screening assay.
The calcium-transient screening did not include myomiRs,

because they are not enriched in the early CPCs. Next, we used
the hanging-drop method to validate our screening, with miR-1
and miR-208 as controls. miR-322/-503, miR-1, and miR-208 all
induced higher expression of Tbx5, Nkx2-5, and α-MHC and in-
creased formation of cardiomyocytes (Fig. S3). However, the
relative potential of these miRNAs can be addressed only when
they are expressed in their natural timing and cell types; that
investigation is beyond the scope of this study.

miR-322/-503 Specifically Drives a Cardiomyocyte Differentiation
Program. The miR-322/-503 cluster is encoded in an intergenic
region on the X-chromosome [miR-322 stem–loop, chromosome
X: 53054255–53054349 (−); miR-503 stem–loop, chromosome
X: 53053984–53054054 (−)]. The coding sequences for both
miRNAs are highly conserved among placental mammals. There
are additional miRNAs in this locus, but they either lack pla-
cental mammal conservation (miR-351) or were enriched to a
much lower degree (miR-542/-450b) in CPCs. We first used a
LacZ-knockin reporter allele (31) to determine the expression
pattern of miR-322/-503. β-Galactosidase activity was detected in
the truncus arteriosus, bulbus cordis, the wall of common ven-
tricular chamber, and sinus venosus of the primitive heart at E8.5
and E9.5 and in the heart and somites at E10.5 (Fig. 2A). To
decide if miR-322/-503 persists in later stages, we microscopically
dissected E14.5 organs and assayed miR-322/-503 expression by
real-time RT-PCR. Both miRNAs had the highest expression in
the heart and tongue and the lowest expression in the brain (Fig.
2B). Together, these data indicate that the miR-322/-503 cluster
initially expresses in the Mesp1 lineage of progenitor cells and
persists in the heart and some skeletal muscles.
Next, we used an ESC differentiation model to study the cardio-

genic function of miR-322/-503. First, we determined that endogenous
miR-322 andmiR-503 levels started to rise at day 3 and peaked at day
5 (Fig. 2C), following a pattern similar to that of Mesp1 (23, 32). To
mimic this temporal pattern, we generated stable miR-322/-503 Tet-
On ESC lines in which a single dose of doxycycline (dox) increased
miR-322 and miR-503 expression by more than 10-fold within 24 h
(Fig. 2 D and E). Day 3 dox supplementation resulted in precocious
cardiomyocyte formation. At day 6.5, spontaneously contracting
clusters with well-formed sarcomeric structures were widely present in
cultures with dox but were absent in cultures without dox (Fig. 2F).
At day 10, when the cultures were further differentiated, cultures with
dox showed significantly increased cardiac troponin T (cTnT)-positive
cardiomyocytes compared with the dox-free cultures (23.4 vs. 7.6% by
FACS) (Fig. 2G). We assayed developmental markers at a series of
time points: Dox induced significantly increased levels of
cardiomyocyte markers (Tbx5, Mef2c, Nkx2-5, and α-MHC) but
had little effect on pluripotency (Oct4 and Sox2) or mesendoderm
markers (Eomes, T,Gsc, andMesp1) (Fig. 2H). Thus, miR-322/-503
acts at a specific developmental stage and is a potent inducer of the
cardiomyocyte program.
We asked if ectopic miR-322/-503 also affects other lineages.

Skeletal muscle progenitor markers Myf5 and Pax3 were signif-
icantly up-regulated, indicating that miR-322/-503 induce skeletal
muscle differentiation (Fig. 3A). Endothelial cell markers Flk1 and
Pecam1 showed modest increases, but the prevalence of positive
VE-Cadherin staining was indistinguishable in cultures with and
without dox (Fig. 3 B and C), suggesting that the role of miR-
322/-503 in endothelial cell differentiation is complex and
perhaps is not as powerful as in cardiomyocyte differentiation.
There was no differential expression of the smooth muscle marker
SM-actin in cultures with and without dox (Fig. 3 B and C).

To determine if inhibition of miR-322 or miR-503 impairs
cardiac differentiation, we generated “miR-Zip”-expressing
E14 ESCs. The control culture showed evident cardiomyocyte
formation at day 8, with expression of cardiac factors (Tbx5,
Mef2c, Nkx2-5, and α-MHC) and sarcomeric α-actinin. Either
miR-322 or miR-503 miR-Zip down-regulated these markers sig-
nificantly, suggesting an obligatory role of miR-322/-503 in car-
diomyocyte formation in ESCs (Fig. S4).

Global Assessment of Transcriptome upon miR-322/-503 Induction
Indicates Specific Inhibition of Ectoderm Lineages. To gain a global
picture of reactive transcriptome changes upon miR-322/-503 ex-
pression, we surveyed the mRNA in day 4 (24 h after dox in-
duction) cultures with and without dox by microarray. A total of
618 genes were up-regulated, and 892 genes were down-regulated.
The most significant GO terms enriched in up-regulated genes
were “heart development” and “skeletal system development”
(Fig. 3D). The most significantly up-regulated cardiac genes in-
clude Hand2, Wnt2, Isl1, Tbx20, Foxc1, and Tbx5, among others
(Fig. 3E). Interestingly, “blood vessel development” and “vascula-
ture development” were enriched in both up- and down-regulated
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Fig. 2. miR-322/-503 specifically drives a cardiomyocyte differentiation pro-
gram. (A) miR-322/-503 is specifically expressed in embryonic hearts at E8.5,
E9.5, and E10.5, as determined by a knockin LacZ reporter. (B) miR-322 and
miR-503 expression is highest in the heart and skeletal muscles. The expression
levels were determined by real-time RT-PCR and normalized to GAPDH.
(C) Temporal patterns of miR-322 and miR-503 expression during ESC differ-
entiation. (D) Schematic diagram of monolayer differentiation of miR-322/-503
Tet-On ESCs. Dox (1 μg/mL) was supplemented at day 3. (E) Verification of
induced miR-322 and miR-503 expression 24 h after dox supplementation.
(F) Ectopic miR-322/-503 induced the precocious appearance of cardiomyocytes.
α-Actinin was stained at day 6.5. (G) Ectopic miR-322/-503 augmented total
yields of cardiomyocytes. cTnT was stained and analyzed by FACS at day 10.
(H) Ectopic miR-322/-503 induced significant increases in cardiac transcription
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nificant effect on pluripotent markers (Oct4 and Sox2) or mesoderm markers
(Eomes, T, Gsc, and Mesp1). n ≥ 3; *P < 0.05 vs. control cells.
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genes, supporting a complex role of miR-322/-503 in vascular
endothelial cell differentiation (Fig. 3 D and F). The most sig-
nificantly enriched GO terms in down-regulated genes were “ec-
toderm development” and “neural tube development,” strongly
suggesting that miR-322/-503 drives the cardiomyocyte program at
the cost of neuroectoderm lineages. The most suppressed genes
pertinent to the neuroectoderm were Cdh2, Zic3, Msx1, Sox2,
Sox3, Rcor2, Otx2, and Neurod1 (Fig. 3G).

Celf1 Is a Direct Target of miR-322/-503. In our search for the miR-
322/-503–targeted cell-fate regulators, our attention was drawn
to a family of Celf proteins. Every member of this family except
Celf3 was down-regulated upon miR-322/-503 induction (Fig. 3H).
Celf binds RNA and regulates RNA decay, alternative splicing, and
translation. Celf proteins are stage- and lineage-specific, implying
that they have roles in lineage determination. We studied the ex-
pression patterns of the relatively abundant members. In E7.5
embryos, Celf1, Celf2, and Celf4 were localized in the ectoderm. In
E9.5 and E10.5 embryos, they were located predominantly in neural
tissues (Fig. 4A and Fig. S5A). Among a range of E14.5 embryonic
organs, all Celf proteins had the highest expression in the brain
(Fig. 4 B and C and Fig. S5B). We reasoned that although all Celf
members may be targets of miR-322/-503, Celf1 is a chief candidate,
because (i) it is widespread but differentially expressed among
organs; (ii) it is regulated mainly through posttranscriptional
mechanisms; (iii) it inhibits skeletal muscle differentiation and
induces muscle wasting in myotonic dystrophy (33, 34); and (iv) it
was biochemically determined to be a degradation target of miR-
503, although the biological significance of this finding is unclear
(35).
Using several computational programs (www.microrna.org/

microrna/), including Miranda and TargetScan, we predicted the
putative miR-322/-503 target sites on the Celf1 3′ UTR (Fig. 4D).
Because the seed sequences of miR-322 and miR-503 differ by only
1 nt, they likely share the same target site. We cloned a fragment

containing Celf1 3′ UTR into pmirGLO for luciferase reporter
assays. When miR-322/-503 was present, the pmirGLO-Celf1 3′
UTR showed more than 50% decrease in luciferase activity, but
mutations in the target site showed little decrease (Fig. 4E). During
ESC differentiation, a reverse correlation between the expressions
of Celf1 and miR-322/-503 was evident (Fig. 4F). Celf1 protein was
reduced by dox-induced miR-322/-503 in miR-322/-503 Tet-On
ESCs (Fig. 4G). In addition, endogenous Celf1 was down-regulated
in a dose-dependent manner by increasing amounts of ectopic miR-
322/-503 in 293T cells (Fig. 4H). These findings strongly suggest
that Celf1 is a direct target of miR-322/-503.
We reasoned that, if Celf1 is one of the chief targets of

miR-322/-503, inhibition of Celf1 should mimic the function of ec-
topic miR-322/-503. We asked if Celf1 knockdown would promote
the cardiomyocyte program. In the presence of shRNA against
Celf1, which showed high efficacy in inhibiting Celf1 protein ex-
pression (Fig. 4I), the cardiac program was significantly enhanced, as
evidenced by increased expression of cardiac transcription factors
(Tbx5,Mef2c, andNkx2-5) and cardiac structure genes (α-actinin and
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α-MHC), whereas pluripotent genes (Oct4 and Sox2) and mesoderm
genes (Eomes and T) were largely unaffected (Fig. 4 J and K).

Celf1 Drives Neuroectoderm and Inhibits Cardiac Differentiation.
Celf1 expression drops sharply at day 5 when both miR-322 and
miR-503 peak during ESC differentiation (Fig. 4). We asked how cell
fates are affected if the Celf1 expression pattern is perturbed. We
generated Celf1-Flag Tet-On ESCs and induced Celf1-Flag with dox
(1 μg/mL) at day 4 (Fig. 5 A and B). At day 8, spontaneous con-
tractility was evident in control cultures but was rare in cultures
containing dox. By straining α-actinin, we observed well-formed sar-
comeric structures in control cultures but not in cultures containing
dox (Fig. 5D). In contrast, the early neural marker Tuj1 was fre-
quently present in cultures containing dox, which also contained well-
formed Tuj1+ neurites (Fig. 5F). Survey of lineage markers showed
that Celf1 inhibited cardiac transcription factors (Tbx5, Mef2c, and
Nkx2-5) and the structure gene α-MHC, whereas it promoted early
neural markers (Notch3, Sox1, Nestin, and Pax6) (Fig. 5 E and G).
To test further the notion that miR-322/-503 targets Celf1 and

impacts cell-fate decisions, we induced simultaneous miR-322/-503
and Celf1 expression in miR-322/-503/Celf1 Tet-On ESCs (Fig. 5
H–J). The ectopic Celf1 does not contain the original 3′ UTR and
thus is not subjected to miR-322/-503 targeting. miR-322/-503 and
Celf1 coexpression largely reproduced the results of Celf1 ex-
pression alone (Fig. 5 J and K), but the effect of miR-322/-503 was
abolished. There was a slight delay in differentiation even in the
uninduced culture, suggesting low-level (undetectable) leakage of
Celf1, but induction of both miR-322/-503 and Celf1 led to re-
duced cardiac myocyte formation (Fig. 5K) and expression of
cardiac genes (Fig. 5L).

Discussion
In this study we used a lineage-tracking system to isolate the
Mesp1 lineage of CPCs and captured their enriched miRNAs.
Reprogramming human somatic cells to cardiomyocytes often
involves Mesp1 (30, 36, 37), justifying the identification of ef-
fectors downstream of Mesp1. The miRNAs identified here
represent early regulators of cardiac fate, likely at the stages of
cardiac mesoderm formation and cardiac program initiation. In
agreement with this notion, miRNAs that specify mesoderm (let-7,
miR-18, and miR-302) and/or are essential for cardiac develop-
ment (the miR-17–miR-92 superfamily) were among the most
highly enriched (25, 38, 39). Previously identified heart- and
skeletal muscle-specific miRNAs—miR-1, -133, -208, -499, and
others—were not expressed in Mesp1 CPCs. Mesp1 lineage-
enriched miRNAs represent a valuable resource for dissecting
early cell fate and cardiomyocyte differentiation. However, it will
be critical to distinguish which miRNAs act at prerequisite steps,
and which are directly involved in cardiac fate establishment.
Our epigenetic data suggest that Mesp1 directly transactivates

a number of miRNAs. A majority of predicted targets of the top
25 miRNAs were down-regulated in the Mesp1 lineage, with GO
terms outside Mesp1-regulated lineages, supporting a hypothesis
that Mesp1 uses miRNAs to inhibit other lineages. The best can-
didate, the miR-322/-503 cluster, exemplifies this notion by a strong
inhibitory effect on neural differentiation. Such a role has not been
previously appreciated. miR-322(-424; miR-424 is the human
ortholog of miR-322)/-503 is implicated in angiogenesis (40, 41),
mammary epithelial involution after pregnancy (42, 43), cancers
(acting as a tumor suppressor) (44, 45), and myotube formation
(46). Our data suggest that its primary role during embryogenesis is
regulating cardiac muscle differentiation. It is worth noting that null
mutants of miR-322/-503 were not embryonically defective but had
adult-onset anomalies (white fat accumulation) (43). However, such
phenotypes may be the outcome of masking by multiple miRNAs
(e.g., the miR-15 family) sharing the same seed sequence (47).
The identification of a cardiac- and skeletal muscle-specific

X-chromosome locus is of fundamental importance. One of the
future directions is to determine if miR-322/-503 and other miRNAs in
this locus contribute to gender differences in cardiac development and
diseases. Notably, the immediate upstream gene, Plac1, is paternally

imprinted (48). miR-322/-503 and other miRNAs in this locus also
may be imprinted and subjected to tight dose control.
Celf1 may be one of the important targets that mediate the

function of miR-322/-503. Its best-known function is in the
pathogenesis of myotonic dystrophy 1 (DM1), a common mul-
tisystem disorder that chiefly affects the skeletal and cardiac
muscles. In DM1, the disease gene DMPK1 harbors an expansion
of CUG triplet repeats on its 3′ UTR which misregulate the
RNA-binding factors MBNL1 and Celf1 (49). Both MBNL1 and
Celf1 contribute to DM1 pathogenesis, but only Celf1 is re-
sponsible for muscle wasting and weakness. Ectopic Celf1 im-
pairs myoblast differentiation (50, 51). Neurite overgrowth was
recently observed in DM1 ESCs, suggesting uncontrolled neural
differentiation (52). Here we show that Celf1 impairs cardio-
myocyte differentiation but promotes neural lineages. Such a
function agrees with Celf1’s high expression in the neural lineages.

-D
ox

+D
ox

Celf1Flag

-Actin

A
Mesp1

R
el

at
iv

e
Le

ve
l

*1
0Oct4

2 3 4 5 6 8Day

R
el

at
iv

e
Le

ve
l

Sox2

Day

R
el

at
iv

e
Le

ve
l

C

Day0 1 2 3 4 5 6 7 8
Differentiation

Celf1Flag-tet-on ESC -Dox
+Dox

B

Day0
0.3
0.6
0.9
1.2

0
0.3
0.6
0.9
1.2

0
2
4
6
8

2 3 4 5 6 8 2 3 4 5 6 8

2 3 4 5 6 8Day

R
el

at
iv

e
le

ve
l

Oct4

2 3 4 5 6 8Day0

0.5

1.0

1.5

R
el

at
iv

e
le

ve
l*

10
3 Mesp1

2 3 4 5 6 8Day0

0.5

1.0

1.5

R
el

at
iv

e
le

ve
l

Sox2

2 3 4 5 6 8Day
0

0.3
0.6
0.9
1.2
1.5

R
el

at
iv

e
le

ve
l*

1 0
4 Tbx5

*
*

2 3 4 5 6 8Day
0

0.6

1.2

1.8

R
el

at
iv

e
le

ve
l*

10
4 Nkx2-5

*

2 3 4 5 6 8Day
0

1.2

2.4

3.6

R
el

at
iv

e
le

ve
l*

10
4 -MHC *

L

Embryonic stem cell Mesp1+ progenitor Myocyte
(Cardiac & Skeletal)

miR-322/503

Celf1
Neural cell

miR-322/503, -17-92,
-302-367,-542, -335...

M

0.4

0.8

1.2

0

100 m100 m

-Dox +Dox
D

Day0
0.8
1.6
2.4
3.2
4.0

R
el

at
iv

e
Le

ve
l*

10
4 Tbx5

Day

R
el

at
iv

e
Le

ve
l*

10

Mef2c

Day

R
el

at
iv

e
Le

ve
l*

10
4 Nkx2-5

R
el

at
iv

e
Le

ve
l*

10
4

Day

-MHC
E

0

2

4

6

0.4
0.8
1.2
1.6
2.0

0
0.5
1.0
1.5
2.0
2.5

0

*

*

*
* *

*

*

*

2 3 4 5 6 8 2 3 4 5 6 8 2 3 4 5 6 8 2 3 4 5 6 8

H I
miR-322

Dox- +
0
2
4
6
8

Fo
ld

s
in

in
du

ct
io

n

*
miR-503

0
4
8

12

Dox- +

* -D
ox

+D
ox

J
-Dox

α-Actinin/ DAPI

+Dox
K

Day0 1 2 3 4 5 6 7 8
Differentiation

miR-322/503/Celf1-tet-on
ESC

-Dox
+Dox

Celf1Flag

-ActinFo
ld

s
in

in
du

ct
io

n

50 μm 50 μm

50 m50 m

TuJ1/ DAPI

F

-Actinin/ DAPI

Day

Notch3

R
el

at
iv

e
Le

ve
l

R
el

at
iv

e
Le

ve
l*

10

Day

Sox1

Day

R
el

at
iv

e
Le

ve
l*

10
2 Pax6

R
el

at
iv

e
Le

ve
l*

10
5

Day

Nestin
G

-Dox +Dox

0.5
1.0
1.5
2.0
2.5

0
2
4
6
8

0
1
2
3
4
5

0

4
6
8

10

2
0

*
* *

*

* *

*

*
*

*

2 3 4 5 6 8 2 3 4 5 6 8 2 3 4 5 6 8 2 3 4 5 6 8

Fig. 5. Celf1 inhibits cardiomyocyte and induces neuroectoderm differentiation
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Celf1 binds to mRNAs of muscle genes and regulates their stability,
as assayed in C2C12 myoblasts (53). However, understanding the
lineage-specification mechanisms of Celf1 will require a full-scope
future study in an unbiased system.
In summary, we have identified miRNAs downstream of Mesp1

that may suppress non-Mesp1 lineages during differentiation. These
miRNAs are a valuable resource and a significant addition to the net-
work of early cardiac-fate regulators. The miR-322/-503 cluster, which
specifically regulates the cardiomyocyte program, is the most pro-
mising candidate of these miRNAs. Further study of these miRNAs
may lead to new drug candidates for treating cardiac and skeletal
muscle injuries, such as myocardial ischemia andmuscular dystrophies.

Methods
Cell Culture. ESC lines bearing the Mesp1Cre/+; Rosa26EYFP/+ genotype, produced
by crossing Mesp1Cre/+ and Rosa26EYFP/EYFP mouse strains, were established us-
ing the E3.5 blastocyst outgrowth methods. ESC differentiation was performed
under serum-free conditions (17, 19). For cardiac differentiation, activin (10 ng/mL)
(R&D Systems) was added for the first 4 d. For neural differentiation, SB431542
(10 μM) (TOCRIS) and FGF2 (12 ng/mL) (R&D Systems) were added.

Calcium Transient-Based Screening. miRNA inserts were cloned into lenti-
viral vector pLL3.8 (19). ESCs were infected at a multiplicity of infection of
100. In screening, miRNA-transduced cells were cultured in cardiac dif-
ferentiation medium in glass-bottomed 96-well plates. On differentia-
tion days 5–8, Fluo-4 NW calcium dye (1:1,000) (Life Technologies) was
added, and the plates were scanned by a high-throughput microscope
(Vala Sciences) to monitor calcium transients following an electrical pulse
(6 v, 2 s).

Additional technical details are provided in SI Materials and Methods.
Sequences of primer sets and probes used in real-time RT-PCR are provided
in Table S3.
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