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Abstract

Objective—To develop and validate a novel decision tree-based clinical algorithm to differentiate 

Kawasaki disease (KD) from other pediatric febrile illnesses that share common clinical 

characteristics.

Study design—Using clinical and laboratory data from 801 subjects with acute KD (533 for 

development, and 268 for validation) and 479 febrile control subjects (318 for development, and 

161 for validation), we developed a step-wise KD diagnostic algorithm combining our previously 

developed linear-discriminant-analysis (LDA)-based model with a newly developed, tree-based 

algorithm.

Results—The primary model (LDA) stratified the 1,280 subjects into FC (276), indeterminate 

(247), and KD (757) subgroups. The subsequent model (decision trees) further classified the 

indeterminate group into FC (103) and KD (58) subgroups, leaving only 29 of 801 (3.6%) KD and 

57 of 479 (11.9%) FC subjects indeterminate. The 2-step algorithm had a sensitivity of 96.0% and 

a specificity of 78.5% and correctly classified all KD subjects who later developed coronary artery 

aneurysms.
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Conclusion—The addition of a decision tree step increased sensitivity and specificity in KD/FC 

classification over our previously described LDA model. A multicenter trial is needed to 

prospectively determine its utility as a point of care diagnostic test for KD.
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More effective methods for the early diagnosis of acute Kawasaki disease (KD) are required 

to permit timely IVIG administration and prevention of adverse outcomes. The classic KD 

diagnostic criteria adopted by the American Heart Association (AHA) include fever plus at 

least four of five principal clinical signs (Figure 1)(1). These guidelines, although widely 

adopted by clinicians, occasionally fail to differentiate KD from other pediatric rash/fever 

illnesses(2). Moreover, despite supplementary laboratory criteria to aid in the diagnosis of 

KD patients who manifest only 2 or 3 clinical signs, these incomplete cases may still be 

missed by clinicians(1). Missing the diagnosis can lead to delayed treatment, thus increasing 

the risk of developing coronary artery lesions(3–5).

We previously applied statistical learning using clinical and laboratory test variables, and 

developed a linear-discriminant-analysis (LDA)-based scoring system to differentiate KD 

from febrile controls (FCs)(6) with a sensitivity of 92–94% and a specificity of 88–89%. 

However, 20–30% of subjects in either the KD or FC group remained unclassified, and the 

algorithm performance on KD subjects with incomplete clinical criteria was not 

investigated(6, 7).

In this study, we tested the hypothesis that applying separate tree-based algorithms following 

the LDA algorithm would improve the classification accuracy in differentiating KD from FC 

subjects. This novel integrated algorithm was validated with an independent subject cohort.

Methods

Subjects with KD and febrile controls meeting inclusion criteria were identified from the 

database maintained at the UCSD KD Research Center. Complete demographic and clinical 

data were collected prospectively on all KD and FC subjects. A total of 1,280 subjects (801 

KD and 479 FC) were included in this study (Figure 2; available at www.jpeds.com). KD 

subjects in this study were: a) patients with fever (≥38.0 °C rectally or orally) for no more 

than 10 days plus at least four of the five principal clinical criteria, b) patients meeting fewer 

criteria but with coronary artery abnormalities (Z-score≥2.5 for left anterior descending 

(LAD) and/or right coronary arteries (RCA)) documented by echocardiogram, and c) 

patients meeting fewer than four criteria but meeting the American Heart Association 

(AHA) criteria for incomplete KD by laboratory criteria(1). A concomitant viral infection by 

RT-PCR did not disqualify the patient as a KD subject. Every subject was evaluated 

clinically by one of two expert KD clinicians and the final assignment of a KD diagnosis 

was based on the opinion of these two experts. FC subjects were recruited from the 

Emergency Department (ED) at Rady Children’s Hospital San Diego. All FC subjects had 

unexplained fever, at least one of the five principal clinical criteria for KD, and had 

laboratory tests performed including those commonly ordered for evaluation of KD, which 
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included a complete blood count with manual differential, erythrocyte sedimentation rate 

(ESR), and levels of C-reactive protein (CRP), alanine aminotransferase (ALT), and gamma 

glutamyl transferase (GGT). All patients referred to the ED for evaluation of possible KD 

(approximately 50% of the FC cohort) were offered enrollment as FC subjects in our study. 

We enrolled the remaining FCs from children in the ED presenting with fever and at least 

one of the clinical signs of KD, and excluded patients who had an obvious respiratory or 

gastrointestinal infection because KD would be unlikely to present in this manner. The final 

diagnoses of the FCs were determined by chart review by two expert clinicians (JCB and 

JK) from prospectively collected clinical and laboratory data and from review of 

microbiologic and serologic results and subsequent clinical encounters. Only 3.8% of the 

FCs (18 of 479) had echocardiography to evaluate for possible KD.

Signed consent or assent forms were obtained from the parents of all subjects and from all 

subjects >6 years of age. The study was approved by the Institutional Review Boards of the 

University of California San Diego (UCSD) and Stanford University.

For each subject, we collected the 18 clinical and laboratory test variables retained in the 

final model of the LDA-based algorithm(6). Clinical data included six clinical signs 

associated with KD: illness days (temperature≥38.0 °C); cervical lymph node of at least 1.5 

cm; rash; conjunctival injection; extremity changes including red, swollen, or peeling hands 

or feet; and oropharyngeal changes including red pharynx, red, fissured lips, or strawberry 

tongue. Laboratory test data (obtained prior to administration of IVIG for KD subjects) 

included total white blood cell count (WBC), percentages of monocytes, lymphocytes, 

eosinophils, neutrophils, and immature neutrophils (bands), platelet count, hemoglobin 

concentration normalized for age (ZHgb), CRP, GGT, ALT, and ESR. For test results that 

exceeded the upper or lower limit of the test, we used the numeric value for the limit. 

Subgroups of KD subjects were defined as having either normal coronary arteries (RCA and 

LAD Z-score always<2.5), transiently dilated coronary arteries (RCA and/or LAD Z-

score≥2.5 and resolving within 8 weeks of KD onset), or aneurysms (Z ≥ 5.0 or dilated 

segment 1.5 times the internal diameter of the adjacent segment). We performed a 

multivariate analysis on the clinical and laboratory test variables for KD and FC 

discrimination in our total dataset. Panels combining 18 clinical and laboratory test variables 

were evaluated and the resulting odds ratios, p-values and variable effects on the final model 

were calculated.

Of the 1,280 subjects (801 KD and 479 FC), 489 (261 KD and 228 FC) were from the 

development cohort in our previous study(6) and remained in this study’s development 

cohort. The remaining 791 subjects were assigned into 2 cohorts while maintaining the same 

ratio of KD and FC subjects across cohorts. Of the entire cohort of 1,280 subjects, 228 of 

801 KD subjects and 287 of 479 FC subjects had at least one missing value for the 

laboratory variables. Missing values were imputed among KD and FC subjects, respectively, 

using a method of weighted K-nearest neighbors (Appendix 2; available at www.jpeds.com)

(8). There were 533 subjects with KD and 318 FCs for model development, and 268 subjects 

with KD and 161 FCs for model validation. The study design is outlined in Figure 1. A 2-

step algorithm was developed using the 6 clinical and 12 laboratory test variables to stratify 
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the subjects into three subgroups: FC, indeterminate, and KD. 95% PPV and NPV for KD 

and FC classification were targeted at each step.

Primary model

The previously developed KD algorithm was developed using an LDA method, with days of 

fever, 5 principal clinical criteria, and 12 laboratory test variables as input variables. The 

output of the algorithm was a unique score describing the probability of KD diagnosis for 

each subject(6). Two cutoffs were set to stratify these subjects into 3 classification 

subgroups: FC, indeterminate, and KD(6), allowing 95% accuracy in both KD and FC 

subgroups.

After applying the LDA model, 9.6% (51 of 533) of KD and 33.0% of (105 of 318) FC 

subjects in the development cohort remained indeterminate. The proportions of subjects with 

indeterminate scores, however, differed among the 4 sub-cohorts based on the number of 

principal clinical criteria manifested by each subject. The LDA model performed less well 

for subjects with fewer clinical criteria, yielding indeterminate scores for 28.4% (29 of 102) 

of KD and 43.9% (72 of 164) of FC subjects who manifested only 2 or 3 clinical criteria. 

Therefore, an additional model was developed to improve the adjudication of indeterminate 

subjects based on the number of clinical criteria present.

Secondary model

To improve the classification of subjects in the indeterminate group from the first analysis, 

we used 2-step data mining methods to combine the advantages of multiple models to 

achieve better predictive accuracy than is possible with any individual model(9). Random 

forest models constructed by a set of decision trees were developed(10, 11). Subjects were 

divided into 4 sub-cohorts based on the number of KD criteria that they manifested (Figure 

1). Separate models were then developed for each sub-cohort. Specifically, subjects in the 

development cohort were further randomly partitioned into two sub-cohorts (Sub-cohort I 

and Sub-cohort II). A ‘forest’ of 300 binary ‘trees’ was constructed using randomly selected 

samples and variables (clinical and laboratory test variables) of Sub-cohort I. At each node, 

‘trees’ were split by choosing a split variable value producing the maximum node 

separation. ‘Trees’ were constructed until each of the terminal nodes reached a sample size 

of 1. Final decisions were reached by averaging the decisions of each ‘tree’. The derived 

algorithm was then calibrated with Sub-cohort II by setting two thresholds that stratified all 

the subjects into 3 classification subgroups (FC, indeterminate, and KD), allowing 95% PPV 

and NPV. The performance of the algorithm was tested on the validation cohort. The 

modeling details appear in Appendix 3 (available at www.jpeds.com).

Performance analyses

Performance of the 2-step model was demonstrated by sensitivity, specificity, PPV, and NPV. 

Classification of incomplete KD subjects and subjects developing coronary artery 

abnormalities was analyzed. Indeterminate subjects were analyzed to explore the model 

limitations. Performance of models derived with reduced numbers of input variables 

(missing data) was tested to explore its robustness in KD/FC classification.
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Results

The demographic and clinical details of development and validation cohorts are presented in 

Table I. Asian patients were over-represented among KD subjects and underrepresented 

among FCs, compared with the San Diego population at large (12%). FCs had a clinically 

determined or culture-proven etiology for their febrile illnesses (Table II; available at 

www.jpeds.com). Viral diagnosis was established by viral culture, direct fluorescent 

antibody testing, or polymerase chain reaction assays. Viral syndrome was defined as a 

febrile illness that resolved without specific treatment and for which no specific pathogens 

could be identified.

Multivariate analysis and 2-step analyses of KD and FC

We compared KD and FC subjects using Fisher exact tests for categorical variables, and 

odds ratios and likelihood ratio tests for continuous variables (Tables III and IV; available at 

www.jpeds.com). Each sub-cohort had different statistically significant clinical variables in 

the univariate analysis and independent predictors in the multivariate analysis (Tables III and 

IV), supporting the need to develop models for each sub-cohort separately. The impacts of 

each variable to the classification decision in secondary models were measured by the 

percent increase of model mean square error due to the permutation of the variable values 

(Table V; available at www.jpeds.com).

By applying the previously derived primary LDA-based model and the score cutoffs that 

achieved 95% PPV and NPV(11), 90.0% (721 of 801) of KD subjects and 57.4% (275 of 

479) of FC subjects were correctly classified; 0.1% (1 of 801) of KD subjects and 7.5% (36 

of 479) of FC subjects were erroneously classified, and 9.9% (79 of 801) of KD subjects and 

35.1% (168 of 479) of FC subjects were left indeterminate.

The secondary random forest models, applied to 4 sub-cohorts of remaining indeterminate 

subjects, correctly classified 60.8% (48 of 79) of KD subjects and 60.1% (101 of 168) of FC 

subjects. The secondary models erroneously classified 2.5% (2 of 79) of KD subjects and 

6.0% (10 of 168) of FC subjects, and 36.7% (29 of 79) of KD and 33.9% (57 of 168) of FCs 

remained indeterminate.

The 2-step algorithm correctly classified 96.0% (769 of 801) of KD subjects and 78.5% (376 

of 479) of FC subjects (Figure 3), with targeted ≥ 95% PPV and NPV. Only 3.6% (29 of 

801) and 11.9% (57 of 479) of KD and FC subjects remained indeterminate, whereas 9.9% 

of KD subjects and 35.1% of FC subjects were left indeterminate by the original LDA 

model.

We compared the ability of the 2-step algorithm in terms of sensitivity, specificity, PPV, and 

NPV to the use of the AHA guidelines for KD diagnosis in the absence of echocardiography 

(Figure 4; available at www.jpeds.com). Results showed that the algorithm had a sensitivity 

of 96.0% versus AHA guidelines of only 72.2%. AHA guidelines had a higher specificity of 

93.5% versus our specificity of 78.5%. However, when it came to PPV and NPV, the AHA 

guidelines and the 2-step algorithm had the same PPV around 95%, and our NPV was 99.2% 
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whereas AHA guidelines had a NPV of 66.8%. Thus, use of the algorithm was better at 

picking up more patients with KD, and having a better NPV for patients without KD.

Algorithm performance in sub-cohorts stratified by age, illness day, and CRP

The diagnosis of KD in young infants can be particularly challenging. This algorithm 

performed well (Table VI; available at www.jpeds.com) among subjects ≤ 6 months of age 

(n=92; 69 KD and 23 FC subjects). The PPV and NPV for these infants were both 100%. 

The sensitivity was 97.1% and specificity was 87.0%. Only 2 (3%) KD subjects and 3 (13%) 

FC subjects were indeterminate. Among subjects > 6 months of age (n=1188; 732 KD and 

456 FC subjects), the PPV, NPV, sensitivity, and specificity were slightly lower (93.9%, 

99.2%, 95.9%, and 78.1%, respectively). The indeterminate frequency of these older KD and 

FC subjects were 3.7% (27 of 732) and 11.8% (54 of 456). The distribution of correctly 

classified, erroneously classified, and indeterminate subjects did not differ significantly 

among the two age groups (P = 0.12 by Chi-squared test). Importantly, the algorithm 

performed well in different age groups including the most vulnerable age group: patients 

under 6 months of age.

To determine the effect of duration of illness on algorithm performance, we divided the 

subjects into four sub-cohorts based on illness day (≤ 3 days [n=251]; 4–5 days [n=435]; 6–

7 days [n=390]; 8–10 days [n=204]) and analyzed the algorithm’s performance for each sub-

cohort (Table VI). PPVs, NPVs, and sensitivities remained similar (< 7% variation) among 

these sub-cohorts. The specificity levels decreased monotonically with illness duration from 

85.7% the group of ≤ 3 days of illness to 61.2% the sub-cohort of 8–10 days of illness. The 

distribution of correctly classified, erroneously classified, and indeterminate subjects did not 

differ significantly among different sub-cohort of illness days (P = 0.27 by Chi-squared test).

In our study there were 242 of 479 (50.5%) FC subjects who had CRP values of at least 3.0 

mg/dL. Of these FCs, the algorithm correctly classified 72.7% (176 of 242) of the subjects, 

erroneously classified 12.8% (31 of 242) of the subjects, and left 14.5% (35 of 242) of the 

subjects indeterminate. Of these 242 subjects, 61 subjects fulfilled the criteria for incomplete 

KD based on AHA guidelines. This algorithm correctly identified 42.6% (26 of 61) as FCs 

and left 41.0% (25 of 61) as indeterminate subjects requiring further evaluation. For the 237 

FC subjects who had CRP values less than 3.0 mg/dL, the algorithm classified 84.4% (200) 

correctly as FC, 6.3% (15) erroneously as KD, and 9.3% (22) as indeterminate. Such results 

demonstrate the utility of the algorithm as a classification tool for front-line clinicians to 

evaluate suspected KD when echocardiography is not readily available.

Algorithm performance for subjects with incomplete KD

Of 801 KD subjects, 646 had complete KD, 155 met AHA criteria for incomplete KD with 

62 showing coronary changes (57 had transiently dilated coronary arteries and 5 had 

aneurysms) on the initial echocardiogram. For the 93 incomplete KD subjects with normal 

echocardiograms, the algorithm classified 80.6% (75) correctly as KD, 1.1% (1) erroneously 

as FC, and 18.3% (17) as indeterminate. Compared with the original LDA model (26.9% 

indeterminate), the 2-step model improved the correct adjudication of incomplete KD by 

almost one-third.
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Classification of KD with coronary artery abnormalities

Because the prompt diagnosis of the subset of KD subjects who developed coronary artery 

aneurysms is of paramount importance, the model’s performance was separately evaluated 

for subjects in regard to coronary artery status (Figure 5). Of the 32 KD subjects who were 

erroneously classified or indeterminate, 26 had normal and 6 had transiently dilated 

coronary arteries (with worst Z-scores ranging from 2.66 to 4.35 for the LAD and/or RCA). 

Thus, the algorithm correctly classified all 28 subjects who developed aneurysms based on 

baseline clinical criteria and laboratory test results before the echo was done. The 

distribution of these 28 subjects over the three sub-cohorts was shown in Figure 6 (available 

at www.jpeds.com). Five of these 28 subjects manifested 2 or 3 criteria and were diagnosed 

by echocardiography. In addition, 57 subjects who manifested 2 or 3 criteria had dilation of 

the coronary arteries (Z score >2.5) and were diagnosed on this basis. The decision support 

tool correctly identified 81% (50 of 62) of subjects with incomplete KD diagnosed by 

echocardiographic criteria. Thus, the decision support tool could be used on the initial 

examination to improve the diagnosis of KD.

Erroneously classified and indeterminate subjects

Clinical and laboratory test variables were analyzed to profile the subjects with erroneous or 

indeterminate classification by the model. Of the 32 erroneously classified or indeterminate 

KD subjects, 30 manifested 3 or fewer KD principal criteria. Thus, the majority exhibited 

incomplete clinical characteristics at the time that the algorithm was applied. On the other 

hand, 70 of 103 erroneously classified or indeterminate FC subjects manifested 3 or more 

KD principal criteria. Distributions of the 12 laboratory test variables were compared among 

the correctly classified, erroneously classified, and indeterminate KD and FC subgroups 

(Figure 7; available at www.jpeds.com). The KD subjects erroneously classified as FC had 

laboratory test values comparable with those of correctly classified FCs. Conversely, the 

laboratory test values of indeterminate KD/FC subjects were intermediate to those of the 

correctly classified KD and FC subjects. Adenovirus is well-known to mimic many of the 

clinical and laboratory features of KD(12). For the 28 FC subjects with adenovirus infection 

documented either by culture, direct fluorescent antibody testing, or PCR in the validation 

cohort, the algorithm classified 57% (16) correctly as FC, 18% (5) erroneously as KD, and 

25% (7) as indeterminate. Such clinical and laboratory test result patterns likely explain the 

misclassification by the algorithm.

Impact of variable reduction in algorithm performance

Because patients typically have incomplete data early in their evaluations, we studied the 

effect of eliminating variables, beginning with the least-weighted (Figure 8; available at 

www.jpeds.com). The frequency of certain classifications decreased with the reduction in 

variable number from 18 to 3. A 9-variable algorithm including 6 clinical variables (5 KD 

principal criteria plus illness days) and 3 laboratory variables (ZHgb, eosinophil percentage, 

and WBC count) had an 80% classification certainty rate for KD and FC subjects and 42% 

for incomplete KD subjects. In our study cohort, there were 228 of 801 KD subjects and 287 

of 479 FC subjects having missing laboratory values. The impact of these subjects on 

algorithm performance was also explored (Appendix 2 and Table VII; Table VII available at 
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www.jpeds.com). Missing laboratory data did not affect the algorithm performance and both 

the negative and positive predictive value was preserved (Table VII).

Discussion

The sequential use of a primary LDA-derived algorithm to perform initial classification and 

secondary decision-tree-based algorithms applied in parallel to sub-cohorts of indeterminate 

cases resulted in improved classification certainty in differentiating KD from clinically 

similar febrile illnesses. The diagnosis of patients with incomplete KD criteria is also 

challenging. The algorithm correctly classified 80.6% of subjects with incomplete KD who 

fulfilled AHA laboratory criteria. In contrast to the AHA algorithm that requires an 

echocardiogram as part of the evaluation, this algorithm is intended for use at the point of 

care in settings where echocardiography would not be readily available. The algorithm 

correctly classified 80.6% of KD subjects who manifested three or fewer KD principal 

criteria and were diagnosed by echocardiography. Furthermore, the algorithm correctly 

classified all 28 KD subjects who went on to develop the most severe complication, coronary 

artery aneurysms.

There are both strengths and limitations to our study. We enrolled well-characterized, 

phenotypically similar control subjects, of whom approximately one-half were referred to 

our ED specifically for evaluation of possible KD. Thus, we used development and 

validation cohorts that mirror the patient population for which a classification algorithm 

would be most useful. In addition, the algorithm used widely available laboratory tests 

coupled with easily observable clinical signs and can be adapted as a computer- or smart 

phone-based tool. Nonetheless, 3.6% and 11.9% of KD and FC subjects, respectively, 

remained indeterminate. The algorithm performed less well when ≤3 clinical criteria were 

present. Although subject age did not adversely affect algorithm performance, illness day 

did have an impact with a greater proportion of FC correctly identified early in the course of 

the illness. The algorithm had a higher sensitivity but lower specificity for subjects having 8 

to 10 days of fever compared with those having 3 or fewer days of fever. The natural 

evolution of laboratory values in acute KD is for the inflammatory markers to diminish with 

time. Thus, by 8 to 10 days of fever, many of the key components of the algorithm were 

already starting to normalize, thus making some of the KD subjects look more like the 

FC(13). The goal of KD management is to treat with IVIG as soon as the diagnosis can be 

established. Thus, the fact that the algorithm performed well discriminating KD patients 

from FC in the early phase of their illness makes the algorithm more valuable as a tool to 

ensure timely diagnosis and treatment. Integration into this algorithm of additional 

biomarkers that better differentiate KD and FCs could help to improve its performance. 

Incorporating nuanced clinical data such as limbal sparing of conjunctival injection or 

perineal accentuation of rash could also result in better diagnostic performance. Those data 

were not captured for this study, however, as the intention was to computationally capture 

the differences between patients to provide support for the more inexperienced practitioner. 

In the absence of a diagnostic test for KD diagnosis, there is always a possibility that 

subjects were erroneously classified. Thus, the best diagnostic tool will only be as good as 

expert clinicians until the etiology of KD is discovered and specific diagnostic tests can be 

devised. Before this algorithm can be widely adopted, it must be evaluated as a clinical 
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device by the Food and Drug Administration, which will require prospective testing in larger 

cohorts from different medical centers where the "gold standard", including the use of 

echocardiography on FC subjects, is established by other experts. The detailed algorithm 

will be made available to interested investigators upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AHA American Heart Association

ALT alanine aminotransferase

CRP C-reactive protein

ED Emergency Department

ESR erythrocyte sedimentation rate

GGT gamma-glutamyl transferase

ZHgb hemoglobin concentration normalized for age

IVIG intravenous immunoglobulin

KD Kawasaki disease

LAD left anterior descending

LDA linear discriminant analysis

RCA right coronary artery

WBC white blood cell count
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Figure 1. 
Workflow to create a 2-step statistical algorithm for distinguishing KD and FC subjects. 

LDA- and decision-tree-based models developed based on clinical and laboratory test 

variables were applied in sequence to construct a 2-step algorithm, partitioning the subjects 

into 3 diagnostic classifications (FC, KD, and indeterminate). PPV and NPV of 95% were 

achieved at each step.
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Figure 3. 
Diagnostic performance of the 2-step algorithm applied to the development and validation 

cohorts. Top: classification of subjects. Bottom: sensitivity, specificity, PPV, NPV, and 

proportions of subjects with indeterminate scores.
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Figure 5. 
Performance of the algorithm according to coronary artery status of subjects.
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Table 1

Demographic characteristics of study cohorts

Characteristics Development cohort Validation cohort

KD (n=533) FC (n=318) P KD (n=268) FC (n=161) P

Age, months, median

(IQRa)

29.8
(15.8, 52.0)

30.7
(15.4, 61.8)

0.22b 30.4
(16.8, 52.6)

45.0
(18.9, 79.1)

<0.001b

Males, n (%) 337 (63.2) 191 (60.1) 0.38c 157 (58.6) 98 (61) 0.69c

Race/ethnicity, n (%) <0.001c 0.03c

  African American 22 (4.1) 8 (2.5) 11 (4.1) 3 (2)

  Native American 2 (0.4) 0 (0) 1 (0.4) 0 (0)

  Asian 91 (17.1) 26 (8.2) 45 (16.8) 11 (7)

  Caucasian 120 (22.5) 83 (26.1) 72 (26.9) 45 (28)

  Hispanic 175 (32.8) 124 (39.0) 84 (31.3) 59 (37)

  Mixed 109 (20.5) 60 (18.9) 45 (16.8) 32 (20)

  Other/unknown 14 (2.6) 17 (5.3) 10 (3.7) 11 (7)

a
Interquartile range

b
Rank sum test

c
Fisher’s exact test
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