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Abstract

Excitement is growing for therapies that harness the power of patients’ immune systems to combat 

their diseases. One approach to immunotherapy involves engineering patients’ own T cells to 

express a chimeric antigen receptor (CAR), to treat advanced cancers, particularly those refractory 

to conventional therapeutic agents. Although these engineered immune cells have made 

remarkable strides in the treatment of patients with certain hematologic malignancies, success with 

solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor 

niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T 

cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from 

those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such 

as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our 

perspective that these features make γδ T cells promising for use in cellular therapy against 

several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T 

cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal 

tumors.
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Introduction

Harnessing the immune system to recognize and destroy tumor cells is quickly becoming a 

cornerstone of cancer treatment. One of the principal treatment modalities within the field of 

cancer immunotherapy has been adoptive T cell therapy (ACT). In this strategy, patient-

derived T cells specific for tumor-associated antigens (TAA) are expanded outside the 

patient’s body and re-infused into the bloodstream to target and destroy cancer cells. These 

tumor-specific cells may be derived in a number of ways, including expansion of antigen-

specific T cell clones, genetic modification of polyclonal T cells to express either a T cell 

receptor or CAR targeting TAAs, or expansion of tumor-infiltrating lymphocytes (TILs)(1–

7). The most widely employed strategy has been TIL infusion, for which a robust body of 

evidence exists indicating that this treatment can induce durable complete responses, even in 

patients in whom other immunotherapies have failed (8, 9). Advances in genetic engineering 

have made it possible to confer tumor specificity to T cells, thus circumventing the need to 

isolate tumor-infiltrating T cells, an obstacle that has restricted broad application of TIL 

therapy beyond a narrow subset of tumors characterized by extensive T cell infiltrates. Using 

viral and non-viral integration approaches, antigen-specific receptors can be introduced into 

T cells (10–12). One such example of an antigen-specific receptor is a CAR, a fusion protein 

in which a TAA-binding moiety (usually a single chain variable fragment [scFv] derived 

from a monoclonal antibody) is linked to an intracellular immunoreceptor signaling domain, 

typically the CD3 ζ chain. CAR T cells can potentially redirect the effector functions of a T 

cell towards any protein or non-protein target expressed on the cell surface. Therefore, CAR 

T cells can recognize a various range of protein and non-protein antigens without 

requirement of antigen processing and presentation by the target cell (6, 13–15). Bypassing 

the requirement for major histocompatibility complex (MHC)-restricted targets also means 

that the CAR T-cell approach can be used as a universal treatment, broadening the potential 

of applicability of adoptive T-cell therapy. In the vast majority of CAR T cell studies, the 

source of T cells used to generate the therapeutic cell product has been the peripheral blood, 

and the T cells expressed αβ receptors rather than γδ receptors (10–13, 16). Moreover, as 

we progress toward better understanding of different aspects of immune system and how 

immune responses generated and regulated in situ, it is becoming clear that the 

characteristics of the tissue microenvironment is as decisive as immune cells in determining 

the initiation, polarization and effector function of immune responses. This therefore 

highlights how local tissue microenvironment in different organs can shape and influence the 

outcome of immune responses (17–20). In this regard, we offer an appraisal of how adoptive 

therapy using CAR T cells bearing γδ receptors may be a promising therapeutic strategy for 

cancers particularly mucosal (epithelial) cancers.

γδ T cells: development, tissue distribution, and function

Mucosal (epithelial) tissues act as physical barriers and contain a wide range of cell 

populations including non-lymphoid and lymphoid immune cells, notably T cells. It has 

been shown that T cells, particularly those bearing γδ receptors, play a pivotal role in 

mucosal tissue homeostasis and immunosurveillance against invading pathogens and 

epithelial stresses such as malignant transformations (21–25). γδ T cells develop mainly in 

the thymus and generate their γδ T cell receptor through V(D)J recombination (26–29). 
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After characteristic gene rearrangements two T cell lineages expressing γδ and αβ receptors 

diverge from a common lymphoid precursor (CLP) (30–32). T cells bearing γδ receptors 

transduce a TCR signal through associated CD3 complexes. In contrast to γδ T cells, which 

comprise 1–10% of circulating T cells in the peripheral blood of healthy adults, T cells 

expressing αβ receptors comprise about 90% of circulating T cells and direct intracellular 

signaling through associated CD3 complexes (33). In contrast to an αβ TCR, a γδ TCR 

directly binds to an antigen without requiring antigen presentation by MHC molecules and, 

as a result, CD4 and CD8 are uncommon on γδ T cells. One of the distinct features of T 

cells bearing γδ receptors is that the majority of these cells are found primarily in epithelial 

and mucosal sites (34, 35). Relatively little is known about the ligands recognized by γδ T 

cells.

Several studies have demonstrated that γδ TCRs can recognize and be activated by a wide 

range of structurally different ligands with various sizes, compositions, and molecular 

structures (36–38). Table 1 summarizes potential ligands of human γδ T cells.

During embryonic development, γδT cells encoding specific Vγ gene segments exit from 

thymus at defined periods during fetal and neonatal development, and then migrate to and 

populate different epithelial tissues in adult animals (39). The first T cells appear to express 

γδ T cell receptors. In the mouse, γδ T cells are developed in distinct waves in the fetus, 

and each wave homes to specific sites in the adult animal. At about two weeks of gestation, 

the first wave of γδ T cells, expressing Vγ5, populates the epidermis. After a few more 

days, Vγ5 bearing T cells decline and are replaced by a second wave of T cells expressing 

Vγ6, which homes to the epithelia of the reproductive and airway tracts. The third wave 

represents Vγ4 bearing T cells, which become established in the spleen and epithelium of 

the lung. After birth, although γδ T cells expressing Vγ1, 2, and 7 are still produced and 

migrate to lymph nodes, the αβ T cell lineage becomes dominant and comprises the 

majority of thymocytes (∼95%). The γδ T cells produced at this stage (expressing Vγ1, 2, 

and 7) are different from those produced earlier. They have much more diverse receptors, 

and most of these γδ T cells migrate to peripheral lymphoid tissues rather than to epithelia 

(Figure 1). Their functional significance is unclear; however, it seems that all these changes 

are related to the pattern of receptors expressed by γδ T cells in humans. It should be noted 

that, however, the thymus is not necessarily required for complete development of some γδ 
T cells, so that many γδ T cells, after exiting from bone marrow, can directly migrate to 

peripheral tissues, such as vagina, intestine, lung, and skin, where they can employ their 

effector functions. Such thymus-independent γδ T cells comprise about 50% of the T cell 

subsets in intestinal epithelial tissues (27, 29). Extensive investigations have demonstrated 

that human γδ T cells consist of three main populations based on δ chain expression. γδ T 

cells expressing Vδ1 chains are the dominant population in the intraepithelial layer of 

mucosal surfaces and comprise a minor population in the peripheral blood. They have a 

central role in maintenance of epithelial integrity with respect to damage, infection, or 

transformation (33, 40–42). Another major subset of γδ T lymphocytes expresses a Vδ2 

chain, which is almost exclusively paired with one particular Vγ chain (Vγ9, also known as 

Vγ2), and comprises the majority of circulating γδ T cells in healthy human adults, 

populating up to 50%-90% of the peripheral γδ T cell (33). Intriguingly, upon activation, 

Vδ2 T cells acquire features of professional antigen presenting cells (APCs) including the 
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expression of costimulatory, adhesion, and antigen presenting molecules such as CD86, 

CD80, CD11b, CD18, CD54 and MHC-II (43–45). A third population of γδ T cells express 

Vδ3 and account for approximately 0.2% of circulating T cells, comprising CD4+, CD8+, 

and CD4− CD8− subsets. They variably express CD56, CD161, HLA-DR, and NKG2D. Vδ3 

T cells are a minor population in the blood but are more dominant in the liver and in 

leukemic patients. Upon activation with IL-2, Vδ3 T cells are expanded and recognize CD1d 

and, thereby, can lyse CD1d+ target cells and release cytokines such as IL-17 and IFN-γ 
(46). A substantial body of evidence now demonstrates that γδ T cells play a central role in 

defending the host against a wide range of infections as well as sterile stresses such as 

malignant transformation. γδ T cells accomplish this through multiple mechanisms 

including regulation of stromal cell function by production of growth factors, granzyme-

mediated lysis of infected or stressed cells, production of a range of cytokine and 

chemokines to regulate both immune and non-immune cells (Table 2), antigen presentation 

leading to αβ T cell priming, and induction of dendritic cell (DC) maturation (43, 47–50).

Adoptive T cell Therapy for Cancer

Adoptive T cell therapy involves the isolation and ex vivo expansion of tumor-specific T 

cells, often isolated from tumor-infiltrating lymphocytes (TILs), and then re-infusion of 

these lymphocytes either in a modified or unmodified state into the patient’s body. Adoptive 

transfer of tumor-specific T cells has demonstrated robust antitumor immune responses in 

some cancers such as melanoma and virus-associated malignancies (8, 9). For instance, it 

has been shown that TIL infusion can induce complete remissions even in patients with 

metastatic melanoma who have not responded to other immunotherapy options (8). 

However, the generation of TILs has generally not been feasible for most cancers and even 

in melanoma is not successful for all patients. Moreover, in the majority of cancers, tumor 

cells evolve and deploy multiple mechanisms to escape immunity through either evading 

antigen recognition or subverting normal antitumor immune responses. For example, tumors 

downregulate MHC expression, express inhibitory ligands such as PD-L1, and produce or 

induce immunosuppressive cytokines or tumor-favoring growth factors such as TGF-β (84, 

85). In this regard, efforts to stimulate endogenous T cells against cancer are often futile.

One strategy to overcome the paucity of TILs available in most tumor types is to reprogram 

T cells to recognize tumor-associated antigens using genetic engineering approaches. The 

most common strategies have been to introduce genes encoding either 1) high-affinity αβ 
TCRs that were previously cloned from tumor-reactive T cells, or 2) chimeric antigen 

receptors, usually comprising an antigen-specific single-chain antibody variable fragment 

(scFv) linked, via hinge and transmembrane domains, to one or more of the intracellular 

domains of T cells such as CD3ζ, CD28, or 4-1BB. In these treatment modalities, T cells are 

isolated from the blood of patients, genetically modified in vitro, expanded, and re-infused 

back into the bloodstream (86, 87). T cells expressing αβ TCRs can target intracellular 

antigens but are restricted to a specific HLA type, require costimulatory signals, are 

susceptible to antigen presentation defects such as MHC loss, and, as explained above, have 

the potential to pair with endogenous TCR αβ chains to create new TCRs with unknown and 

potentially self-reactive specificities. Chimeric antigen receptor (CAR) T cells have several 

potential advantages, including the ability to provide a costimulatory signal through the 
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CAR, lack of requirement for a MHC-restricted peptide complex, and ability to recognize a 

wide range of antigens including carbohydrates and lipids without the need for antigen 

presentation (6, 13–15). One limitation is that CARs require cell surface antigen targets.

Clinical trials testing adoptive transfer of CAR T cells have shown remarkable responses in 

patients with B lymphoid malignancies, notably relapsed or refractory acute lymphoblastic 

leukemia (ALL) (11–13, 88–90). However, adoptive CAR T cell therapy for solid tumors 

has shown limited success so far, likely due to immunosuppressive tumor 

microenvironments, lack of tumor-specific antigens, and insufficient trafficking of CAR T 

cells to tumor sites (91, 92). To overcome these barriers, several ingenious strategies have 

been deployed, including design of inhibitory CARs (iCARs), logic-gated CARs, 

introduction of chemokine receptor genes that match the chemokines produced either by 

tumor or tumor associated cells (e.g. CCR2b which binds to CCL2-derived neuroblastoma 

cells), or endowing CAR T cells with immunostimulatory ligands (e.g. CD40L), 

immunostimulatory cytokines (e.g. IL-12, IL-15, and IL-7), chimeric inhibitory receptors 

(e.g. PD-1/CD28), or basement membrane-degrading enzyme (e.g. heparanase) (93–104). 

However, these interventions have yet to be proven in clinical trials, and it remains to be 

seen whether effective responses against solid tumors can be achieved with these measures.

Why adoptive CAR γδ T cell cancer therapy?

Most current immunotherapeutic approaches aim at inducing antitumor responses via 

stimulation of the adaptive immune system, which is dependent on MHC–restricted αβ T 

cells. Most current adoptive T cell therapies for cancer have employed αβ T cells with 

MHC-restricted TCRs or MHC-independent CARs (8, 9, 13, 105). Despite remarkable 

progress in our understanding of adaptive immunity toward tumors, durable responses are 

rare. Adoptive T cell therapy using αβ TCRs has several disadvantages: αβ T cells require 

specific tumor-associated antigens (TAAs) and appropriate costimulatory molecules for 

activation. Loss of TAA expression, development of defects in antigen presentation, loss of 

MHC molecules, and/or absence of costimulatory molecules renders tumor cells resistant to 

αβ T-cell–mediated cytotoxicity or induces anergy of specific T cells (106). We postulate 

that several characteristics of γδ T cells make them an attractive T cell subset in which to 

apply CAR T cell therapy for solid tumors, including their inherent anti-tumor activity and 

ability to home to epithelial tissues.

Anti-tumor activity of γδ T cells

In contrast to αβ T-cells, γδ T cells are not susceptible to antigen processing and 

presentation defects (although tumors could still potentially lose expression of the TAA γδ 
TCR ligand), and are thus an appealing T cell subset for clinical cancer immunotherapy. 

Growing evidence indicates that γδ T cells play a critical role in tumor immunosurveillance 

and anti-tumor immune responses. Girardi et al. showed that epithelial localization of γδ T 

cells may contribute to prevention of tumor formation in mice prone to develop epithelial 

malignancies. They demonstrated that mice lacking γδ cells are highly susceptible to 

cutaneous carcinogenesis (107). Liu and colleagues also showed that prostate tumor-bearing 

mice treated intravenously (i.v.) with syngeneic γδ T cells developed measurably less 

disease compared with control mice. Tumor-bearing mice treated i.v. with γδ T cells also 
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showed superior survival compared with untreated mice (108). An interesting study on 

human dysgerminoma and seminoma conducted by Zhao and colleagues showed that γδ 
TILs accumulate within the granulomatous inflammation of tumor tissues. Such infiltrating 

γδ T cells showed autologous tumor killing activity, which could be inhibited by 

monoclonal antibodies against Vδ. These cells also produced proinflammatory cytokines 

such as TNF-α and IFN-γ. The authors concluded that γδ T cells accumulating in 

dysgerminoma and seminoma exhibit anti-tumor activity through TCRs and these γδ T cells 

also play a role in the formation of granulomatous inflammation (109). Todaro et al. showed 

that γδ T cells can kill colon cancer stem cells, a subpopulation demonstrated to be 

responsible for tumor initiation, growth, metastasis, resistance to conventional cancer 

therapies, and thereby, cancer relapse (110). A separate study showed that Vγ9Vδ2 T 

lymphocytes recognize, trogocytose, and efficiently kill imatinib-resistant CML cell lines 

pretreated with zoledronate (111). Liu and colleagues demonstrated that ex vivo expanded 

apoptosis-resistant human Vγ9Vδ2 T cells are able innately to recognize and kill human 

prostate tumor cell lines in vitro (112). γδ T cells have been consistently identified and 

isolated from TIL in various types of cancer, including colorectal, breast, prostate, ovarian, 

and renal cell carcinoma (25, 113–116). γδ T cell lines and clones established from TIL 

recognize and destroy autologous tumor cell lines and a wide range of related tumors 

probably due to the recognition of shared activating ligands (See Table 1). γδ T cells show 

potent MHC-unrestricted cytotoxicity, a high potential for cytokine secretion, inherent 

potential for antitumor effects, apparent lack of alloreactivity, broad-spectrum recognition of 

cancer cells through direct recognition of TAAs (e.g. heat shock proteins, major 

histocompatibility complex class I chain-related gene A/B, F1-ATPase and 

phosphoantigens), and ability to present antigens to αβ T cells professionally. These features 

not only lead to direct recognition of tumor cells but also enhance their antitumor activity 

through recruitment of other immune cells (Figure 2) (37, 42, 44).

Several studies have demonstrated a role for human γδ T cells in recognition of transformed 

cells. γδ T cells have been found with increased frequency in disease-free survivors of acute 

leukemia following allogeneic bone marrow transplantation (117, 118). In addition, adoptive 

transfer of ex vivo-expanded human γδ T cells in a mouse tumor model further supports the 

in vivo antitumor effects of γδ T cells. For example, Devaud and colleagues demonstrated 

that concomitant injections of Vδ2-(negative) clones could prevent the development of 

HT29 tumors (119). Moreover, they showed that a systemic i.p. treatment with Vδ2-

(negative) clones delayed the growth of HT29 s.c. tumors. Various clinical trials have 

demonstrated that γδ T cells-based immunotherapy is a promising approach for fighting 

many cancers (Table 3). Intriguingly, γδ T cells preferentially destroy cancer cells and show 

low, if any, reactivity towards healthy cells, a characteristic that has inspired considerable 

interest in exploring their therapeutic potential. Xu and colleagues showed that synthesized 

TCR Vδ2 CDR3 peptides derived from tumor infiltrating lymphocytes (TILs) in ovarian 

epithelial carcinoma (OEC) could bind specifically to tumor cell lines and tissues but not 

normal tissues (116). In another study, Corvaisier et al isolated a Vγ9Vδ2 T cell clone from 

the ascites of a colon cancer patient. This isolated clone showed robust activity against a 

large fraction of colon carcinoma and melanoma cell lines, but did not affect a normal colon 

cell line, colon fibroblasts, or melanocytes. Similar reactivity patterns against colon 
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carcinoma cell lines were also observed using polyclonal Vγ9Vδ2 T cells of various origins 

(120). Viey and colleagues also shown that phosphostim-expanded peripheral Vγ9Vδ2 T 

cells have a selective lytic potential toward autologous primary renal tumor cells but not 

renal normal cells. The lytic activity involved the perforin-granzyme pathway and was 

mainly TCR and NKG2D receptor-dependent (114). The impact of γδ TCR expression 

intensity in natural γδ T cells on anti-tumor activity is not known yet and should be 

investigated.

Genetically engineered γδ T cells

Many studies have shown that TCR αβ gene transfer might lead to generation of neoreactive 

TCR heterodimers resulting from pairing with the endogenous α and β chains. The possible 

formation of such mixed TCRs, which are not subject to thymic selection and thus might 

have harmful autoreactive specificities, is an inherent disadvantage of αβ TCR transfer to 

αβ T cells. For instance, Bendle et al demonstrated that mice adoptively transferred with 

TCR gene-modified polyclonal T cells developed a lethal autoimmune disease (121). One 

potential solution to this problem is transfer of αβ TCRs into γδ T cells to eliminate the 

possibility of mispairing. Van der Veken et al. investigated the function of γδ T cells 

engineered to express human αβ TCRs and reported that these cells exhibited high levels of 

cytotoxic activity and cytokine release. They also confirmed the absence of mixed TCR 

heterodimer formation (122). In another study, the same team also demonstrated that TCR-

transduced γδ T cells have potent antileukemic activity and produce IFN-γ and IL-4, 

particularly in the presence of transferred CD4 or CD8 molecules (123). Hiasa and 

colleagues showed that γδ T cells co-transduced with TCR αβ and CD8 αβ genes acquire 

antitumor activity and secrete cytokines in both αβ- and γδ-TCR-dependent manners. 

Furthermore, αβ TCR and CD8-transduced γδ T cells rapidly respond to target cells 

compared with conventional αβ T cells (124).

Rischer et al. demonstrated that peripheral blood-derived Vγ9Vδ2 T cells transduced with 

retroviral vectors encoding either GD2 or CD19-specific CARs had high CAR expression, 

could be readily expanded, and demonstrated antigen-specific IFN-γ secretion and 

cytotoxicity against tumor cell targets. These in vitro tests suggested that CAR-expressing 

γδ T cells might serve as potent and specific antitumor effector cells (125). More recently, a 

study conducted by Deniger et al. also showed that in vitro aminobisphosphonate-

propagated Vγ9Vδ2 CAR T cells could secrete proinflammatory cytokines and kill CD19+ 

tumor cell lines in vitro, but that they could also inhibit tumor growth in a mouse xenograft 

model (16). In addition to CAR-mediated stimulation, direct tumor antigen recognition by 

the γδ TCR and its consequent signaling cascade might have an additive stimulating effect 

on CAR γδ T cells.

Regulatory functions of γδ T cells

While γδ T cells clearly show potent antitumor activity, there are some reports that describe 

regulatory function of these cells in the tumor microenvironment. Peng et al. reported a 

dominant γδ T cell population among lymphocytes infiltrating breast tumors that exhibited a 

potent immunosuppressive activity on naive and effector T cell responses and also blocked 

the maturation and function of DCs. These regulatory γδ T cells did not express FoxP3 or 
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CD25 (classical markers of conventional Tregs) and did not exert their immunosuppressive 

activities by IL-10 or TGF-β. The authors showed that these immunosuppressive activities 

could be reversed by human TLR-8 ligands (126). However, Hua and colleagues 

demonstrated that blood-derived γδ T cells can acquire a classical regulatory phenotype (i.e. 

expression of FoxP3, CD25, and CTLA-4) following stimulation with plate-bound anti-Vδ 
antibody. These cells could also secrete IL-10 and TGF-β and, as a consequence, suppress 

CD4+ T cell proliferation (127). It is important to note that the suppressive γδ T cells in 

these studies were of a distinct subtype expressing Vδ1. However, Traxlmayr and colleagues 

showed that peripheral blood Vγ9Vδ2 T cells can acquire inhibitory function in response to 

IL-12 secreted by DCs. Thus, it appears that while Vγ9Vδ2 have inherent anti-tumor 

activity, they are subject to IL-12 mediated negative feedback (128).

Clinical-scale expansion of γδ T cells for therapeutic application

One important consideration in adoptive T cell therapy is the ability to generate sufficient 

numbers of cells to conduct human clinical trials. The conventional approaches used to 

expand αβ T cells such as anti��CD3 antibodies and IL-2 usually do not result in efficient 

expansion of γδ T cells. Two strategies using γδ T cells for cancer immunotherapy have so 

far been explored: i) the adoptive transfer of ex vivo-expanded γδ T cells and ii) in vivo 

therapeutic application of γδ-stimulating phosphoantigens or aminobisphosphonates 

together with low-dose IL-2. Several investigators developed protocols for culturing and 

expansion of γδ T cells based on their reactivity to bisphosphonate drugs. These drugs, 

however, expand Vγ9Vδ2 cells but do not stimulate Vδ1 T cells. Lopez and colleagues 

developed a pan-γδ T cell expansion protocol in which anti-CD2 monoclonal antibody can 

generate IL-12-dependent signals that not only protect human γδ T cells from mitogen-

induced apoptosis (i.e. activation induced cell death) but also lead to production of large 

numbers of viable and functional γδ T cells. They showed that these expanded γδ T cells 

retain their anti-tumor activity against a wide range of hematologic and solid primary tumors 

and cell lines. (129) In another study, Siegers et al. enhanced expansion capacity of γδ T 

cells (up to 24,000-fold) via stimulation of peripheral blood mononuclear cells (PBMC) by 

Concanavalin A (ConA) without requirement for feeder cells (130). Lamb et al, using 

irradiated leukemic feeder cells and low-dose IL-2, were able to enhance expansion of γδ T 

cells up to 1200-fold (131). Finally, Deniger and colleagues, using γ-irradiated K562-

derived artificial antigen presenting cells (aAPCs) plus soluble IL-2 and IL-21, could 

generate up to 109 CAR γδ T cells start in with fewer than 105 total cells (16). In most 

clinical trials, 1–5 × 106 CAR+ αβ T cells/kg (∼ 108 total) are infused (11, 13). It seems 

likely that clinical-scale generation of CAR γδ T cells will be possible using these 

optimized expansion protocols.

Migration pattern of γδ T cells

Another favorable characteristic of γδ T cells is the localization of specific subsets to 

mucosal epithelial surfaces. This could be a decisive factor for successful immune or tumor-

surveillance function. Until recently, the nature of the molecular interactions between 

epithelial cells and epithelia-associated T cells was elusive, particularly how the inherent 

cytotoxic activity of such T cells is regulated and targeted properly to stressed or 

transformed, but not healthy, epithelial cells. Two different forms of co-receptor molecules 
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have been identified that enable epithelial cells to interact with and to regulate the activity of 

dETCs and intestinal intraepithelial T lymphocytes (iIELs) independent of antigen 

recognition and TCR specificity. Mouse dETCs and the Vγ2Vδ2 population present in 

human peripheral blood express NK cell receptors such as NKG2D, which deliver an 

activating stimulus when ligated. The ligands for NKG2D are MICA and MICB, which are 

expressed on human intestinal epithelial cells, and Rae1 (retinoic acid early inducible 1) and 

the minor histocompatibility antigen H60 which are expressed on mouse skin epithelial cells 

(132–134). A second γδ TCR co-receptor is the non-classical MHC class I molecule, 

thymus leukemia antigen (TL), which is expressed solely by intestinal epithelial cells that 

preferentially bind the homotypic form of CD8 (CD8αα) that is uniformly expressed by γδ 
iIELs (135, 136). Such co-receptor interactions might inhibit iIEL proliferation and 

cytotoxicity and stimulate cytokine release instead which might have an important role in 

homeostatic regulation of epithelial lining and activation and survival of iIELs (137, 138). 

Various studies showed that MICA/B and Rae1 are expressed by tumor cells (139, 140). 

Since MICA/B, and Rae1 are expressed on epithelial tumor cells, these proteins provide a 

means by which γδ T cells might function in antitumor immunity, as a consequence of 

signals derived from both the γδ T cell receptor and NKG2D.

Tissue-specific homing of γδ T cells to mucosal epithelial tissues such as skin, reproductive, 

and gastrointestinal tracts, as well as to tumors originating from these tissues, has important 

implications for the design of novel immunotherapeutic approaches. As mentioned above, 

one of the potential problems of adoptive T cell therapy is insufficient trafficking of effector 

T cells to tumor sites. The efficiency of adoptively transferred T cells infiltrating the tumor 

site has been found to correlate well with clinical responses in patients (141–144). Of the 

large number T cells expanded ex vivo and infused, only a small fraction eventually reaches 

the tumor site. Because γδ T cells inherently express different adhesion molecules and 

chemokine receptors that facilitate their migration to mucosal or epithelial tissues, these 

cells may penetrate mucosal-derived tumors much more efficiently than αβ T cells. For 

example, γδ T cells express CCR6, which is required for epidermal trafficking, and thus 

these cells are a logical choice for introducing CARs targeting malignant skin lesions(145). 

Adhesion molecule αEβ7 (CD103) is also found on 95% of iIELs and on other mucosal T 

cells but on only 2% of peripheral blood lymphocytes (146, 147). Nicol and colleagues have 

also reported that ex vivo aminobisphosphonate-activated autologous Vγ9Vδ2 T cells have 

an activated effector memory phenotype and express chemokine receptors predictive of 

homing to peripheral tissues. As a result of these phenotypic traits, adoptively transferred 

Vγ9Vδ2 T cells predominantly traffic to the lungs, liver, and spleen and, in some patients, to 

metastatic tumor sites outside these organs (148). In another study, using radioisotope-

labeled human and mice γδ T cells, Beck and colleagues reported that adoptively-

transferred γδ T cells localize to breast tumors in a mouse model of human breast cancer. 

Furthermore, their biodistribution studies showed that adoptively transferred γδ T cells 

traffic differently in tumor-bearing mice compared to healthy with fewer γδ T cells 

localizing into the spleens of tumor-bearing mice. They concluded that their findings provide 

a robust preclinical evidence for using ex vivo expanded adoptively transferred γδ-T cells as 

a form of cell-based immunotherapy for the treatment of breast cancer (149). Ali et al 

demonstrated that the microbial phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl 
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pyrophosphate (HMBPP) plus IL-2 treatment of macaques induced a prolonged major 

expansion of circulating Vγ2Vδ2 T cells that expressed CD8 and produced cytotoxic 

perforin. Interestingly, HMBPP-expanded Vγ2Vδ2 T cells accumulated in the lung and 

lasted for 3–4 months. Lung- accumulated Vγ2Vδ2 T cells are also had an effector memory 

phenotype and produced considerable amounts of IFN-γ up to 15 weeks post treatment (54). 

Brandes et al. also showed that peripheral blood Vγ9Vδ2 T cells express CXCR4 and 

transiently increase its expression following phosphoantigen stimulation (150). 

Consequently, high production of CXCL12 by breast cancer associated fibroblasts (CAFs) or 

any tumor microenvironment containing CXCL12 could recruit Vγ9Vδ2 cells to the tumor 

site (151, 152). It should be noted that γδ T cells cannot be considered as a single group of 

cells; rather, the functions they carry out differ according to the tissue distribution of the 

cells, the structure of their antigen receptors and the local microenvironment.

Conventional therapies and γδ T cells

Interestingly, it has been shown that dermal γδ T cells are radioresistant, a quality that could 

permit the infusion of cells concomitantly with radiotherapy; however, this requires further 

study (153, 154). Ma and colleagues have reported that chemotherapy induces a rapid and 

prominent infiltration of IL-17–producing γδ (Vγ4 and Vγ6) T lymphocytes (γδ T17 cells) 

that precedes the accumulation of Tc1 CTLs within the tumor site (155). They concluded 

that γδ T17 cells contribute to chemotherapy-induced anticancer immune responses. 

Contrary to naive αβ T cells or stem central memory αβ T cells, this chemoresistant feature 

of γδ T could also be strategically incorporated into clinical trials in which CAR γδ T cell 

therapy is given in combination with chemotherapy regimens (156). Another potential 

advantage of γδ T cells is that unlike αβ T cells, they are not restricted to MHC, and thus 

utilizing engineered allogeneic donor-derived γδ T cells expressing CAR transgene could 

theoretically be used as an off-the-shelf universal product, though this application would be 

limited to very immunocompromised patients (e.g. after allogeneic stem cell transplantation) 

or following intensive lymphodepletion to avoid host immune rejection.

CAR γδ T optimization and manipulation

One question that has not yet been addressed is whether CAR design for γδ T cells might 

require optimization in light of the γδ TCR molecular structure and costimulation. It has 

been shown that γδ T cells express a series of costimulatory molecules such as CD28, 

CD27, and 4-1BB (CD137). Ribot et al showed that CD28 is constitutively expressed on γδ 
T cells and promotes survival and proliferation via IL-2 production (157). In another study, 

DeBarros and colleagues addressed the impact of CD27 costimulation on activation of 

human γδ T cells. They found that administration of soluble recombinant CD70 (CD27 

ligand) enhanced Vγ9Vδ2 T cell expansion in vitro. Moreover, CD27 signals not only 

promote upregulation of Cyclin D2 and anti-apoptotic gene regulator Bcl2a1 but also induce 

production of high levels of IFN-γ (158). Thus, the synergy between TCR γδ and CD27 

signals should be explored for clinical expansion of Vγ9Vδ2 T cells. Upon activation, γδ T 

cells also express CD137 (4-1BB). Intriguingly, Maniar et al. demonstrated that activated 

Vγ9Vδ2 T cells express high levels of CD137L, which can act as a ligand for CD137 on T 

and NK cells and may also have a role in Vγ9Vδ2 T cell activation, likely by reversing 

signal transduction (159). A similar possibility may apply for CD70, which is highly up-
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regulated in Vγ9Vδ2 T cells following stimulation by phosphoantigens, but this requires 

further investigation. Song et al. reported that αβ T cells expressing CARs with CD27 

signaling domains exhibited increased proliferation, Bcl-XL up-regulation, and resistance to 

apoptosis. They also showed that tumor regression effected by these cells was similar to that 

of CD28- or CD137-costimulated CARs, and in vivo persistence was superior to CD28 and 

similar to 4-1BB (160). Given the role of CD27 in γδ T cell physiology, transducing these 

cells with CD27-containing CARs would be an appealing strategy.

Concluding remarks

γδ T cells are a unique and conserved population of lymphocytes. The identification of 

tumor-expressed ligands that are recognized by these cells (but not by αβ T cells), together 

with their potent cytotoxic antitumor activity, have recently stimulated considerable interest 

in the development of γδ T cell-based immunotherapies for several types of cancers, 

including renal cell carcinoma, colorectal cancer, multiple myeloma, and certain leukemias. 

In this review, we offer the hypothesis that utilizing a γδ-derived CAR T cell product to 

target mucosal epithelial cancers will improve antitumor immune responses. This is because 

γδ T cells not only have inherent migration tropism to mucosal sites but also because 

NKG2D ligands expressed on tumor cells derived from these tissues can enhance the 

antitumor activity of the adoptively transferred T cells, potentially acting in synergy with 

CAR stimulation and reducing the likelihood of immune escape through antigen loss. It is 

worthy of note that Deniger and colleagues have observed decent antitumor immune 

responses with anti-CD19 CAR γδ T cells, and thus similar antitumor responses might be 

expected against mucosal epithelial cancers, but this remains to be investigated. As we 

described above, some γδ T cells have immunosuppressive function, and it may be 

important to eliminate some subsets such as Vδ1 from infusion products prior to 

administration. Recent data also suggest that the in vitro activation of human γδ T cells in 

response to phosphoantigens is enhanced in the absence of CD4+CD25high regulatory T cells 

(Tregs), supporting the idea that diminishing Treg activity might be beneficial in CAR γδ T 

cell-based immunotherapy of cancers (164). Combining CAR αβ T cells with CAR γδ T 

cells might also enhance therapeutic efficacy due to concomitant targeting of both 

circulating and tissue-resident tumor cells. Additionally, because CAR γδ T cells can act as 

a professional antigen presenting cells, combination therapies with other modalities of 

immunotherapy such as checkpoint inhibitors, oncolytic viruses, vaccines, or cytokines 

could synergistically amplify recruitment and function of tumor-infiltrating lymphoid and 

non-lymphoid cells. However, little is known about the effect of tumor-infiltrating immune 

inhibitory cells, cytokines, and checkpoint ligands on γδ T cell antitumor activity and more 

investigation will be important to understand the function of γδ T and/or CAR γδ T cells in 

context of the tumor immunosuppressive microenvironment. Conceptualizing which tumor 

types are most likely to respond to CAR αβ and/or γδ T cell therapy by categorizing those 

tumors according to their origin and their microenvironment will help investigators choose 

the appropriate combinations of immunotherapy for each particular cancer. Finally, although 

γδ T cells are an appealing T cell subset for adoptive T cell therapy, protocols for their 

therapeutic use, particularly in the case of expansion in vitro to obtain sufficient cell 

Mirzaei et al. Page 11

Cancer Lett. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



numbers for adoptive cell transfer, need to be optimized. We look forward to the results of 

future studies unlocking the promise of γδ T cells for adoptive cellular cancer therapy
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Highlights

• γδ T cells are unique and crucial cell population in mucosal epithelial 

microenvironment.

• Utilizing CAR γδ T would be a promising immunotherapeutic strategy 

at least for mucosal-derived malignant lesions.

• Engineered γδT cells would be as a new platform for adoptive T cell 

cancer therapy
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Figure 1. 
Developmental waves of mouse γδ T cell generation
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Figure 2. 
Functional advantages of γδ T cells for CAR T cell cancer therapy
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Table 1

human γδ T cell ligands

Subset Antigen Reference(s)

Vγ1.3Vδ2 Histidyl-tRNA synthetase (51)

Vγ4Vδ5 Endothelial protein C receptor (EPCR) (52)

Vγ9Vδ2 Alkylamines (53)

Phosphoantigens (pAgs) Butyrophilin 3A1
(BTN3A1)+ Pyrophosphate
molecules

(38)

(E)-4-hydroxy-3-methyl-
but-2-enyl pyrophosphate
(HMBPP)

(54)

Isopentenyl pyrophosphate
(IPP)

(55)

Bromohydrin
pyrophosphate (BrHPP)

(56)

Endogenous mevalonate
metabolites

(57)

Agonistic monoclonal
antibody (called 20.1)

(58)

Surface mitochondrial
F1-ATPase-related
structure/Apolipoprotein
A-I

(59, 60)

ULBP4(a soluble
isoform of RAET1E)

(61)

Ligands on Daudi &
Molt-4 cell lines

(62, 63)

Human MutS homolog (64)

Vδ1 Lipohexapeptides (65)

CD1c–expressing cells (66)

Vγ2Vδ8(clone) HSV glycoprotein I (67)

Vδ1 (IELs) MICA & MICB (25, 68)

Vδ1 (blood γδ T cells) CD1d–sulphatide (69)

CD1d-α-GalCer (70)

Various Phycoerythrin (71)

HSV, herpes simplex virus; MICA, MHC class I polypeptide-related sequence A; MICB, MHC class I polypeptide-related sequence B; RAET1E, 
Retinoic acid early transcript 1E, ULBP4, UL16-binding protein4
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Table 2

Cytokines produced by human and murine γδ T cells

Subset (Origin) Cytokines Reference(s)

Murine

DETCs IL-1α, IL-2, IL-3, IL-4, IL-6, IL-7, GM-CSF, TNFα, IFNγ, CCL3,
CCL4, CCL5, XCL1

(72–74)

Lung-resident γδ T
cells

IL-2, IL-4, IFNγ, IL-17, CXCL1, CXCL10 (75–77)

Peritoneal Vδ1 cells IL-17, CCL3, CCL5 (78, 79)

Human

Vδ1 cells CCL3, CCL4, CCL5 (80)

Vδ2 cells IL-2, TNFα, IL5, IL-13, IL-4, GM-CSF, CCL3, CCL4, CXCL10,
CXCl13

(48, 81)

Skin Vδ2 cells TNFα, IFNγ, IL-17, IL-8, CCL1, CCL-3, CCL-4, CCL-5 (82, 83)

CCL, CC-chemokine ligand; CXCL, CXC-chemokine ligand; DETC, dendritic epidermal γδ T cell; XCL, XC-chemokine ligand
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