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Abstract

A recent meta-analysis published in Psychosomatic Medicine provides convincing evidence that 

certain psychiatric populations have shorter telomeres than nonpsychiatric controls, in accord with 

the strong evidence linking psychiatric disorders with premature mortality. After addressing the 

clinical significance of shorter telomeres, this editorial describes mechanistic pathways that lead to 

telomere shortening. Additionally, two other novel methods for measuring biological markers of 

accelerated aging are briefly discussed, DNA methylation and cellular senescence based on 

p16INK4a; these innovative approaches could be used to confirm and extend our understanding of 

psychiatric patients’ increased health and mortality risks.
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Psychiatric patients have a greater risk for premature all-cause mortality than the general 

population. Epidemiological studies show that the life expectancy for all major psychiatric 

diagnoses is reduced by 7–24 years (1). Indeed, psychiatric illness takes a toll as great or 

greater than the 8–10 year difference exacted by heavy smoking (1).

Highlighting one potential mechanistic pathway to premature mortality, the excellent meta-

analysis from Darrow and colleagues (2) provides convincing evidence that certain 

psychiatric populations have shorter telomeres than nonpsychiatric controls. Other recent 

meta-analyses have only addressed depression and telomere length, but these authors show 

that the effects are broader; depressive disorders, anxiety disorders, and post-traumatic stress 

disorder (PTSD, one of the anxiety disorders), had relatively larger effect sizes than 

psychotic and bipolar disorders. Psychiatric patients are more likely to have poorer health 

behaviors including smoking, poor diets, sedentary lifestyles, and greater alcohol/drug use 

compared to nonpsychiatric populations, but the differences in telomere length persist even 

after adjusting for these factors (2). Accordingly, Darrow et al. suggest that the differences 

may be mediated by accelerated cellular aging.
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In this commentary we first address the clinical significance of shorter telomeres, and then 

we explore mechanistic pathways that lead to telomere shortening. We end by highlighting 

two other novel biological markers of accelerated aging that could be used to confirm and 

extend our understanding of psychiatric patients’ increased health and mortality risks.

Telomeres and health

Telomeres have clinical significance for health: a growing literature has linked shorter 

telomeres with a range of negative outcomes from poor health behaviors to mortality (3). 

Though telomeres typically shorten over the lifespan, chronological age accounts for less 

than 10% of the variance in human telomere length (3). Accordingly, telomeres predict 

mortality and aging-related disease incidence independent of chronological age. For 

example, in a sample of people ages 60 or older, the mortality rate from infectious disease 

was more than eight times higher among those with shorter telomeres than those with longer 

telomeres, and heart disease deaths occurred more than three times as often in the former 

than the latter (4). Even after adjusting for age and other key risk factors including BMI, 

substance use, physical activity, blood pressure, and cholesterol levels, telomere shortening 

predicted all-cause mortality in a Danish population-wide study (5). Likewise, telomere 

shortening has been associated with the occurrence of many common age-related 

morbidities including dysregulated immune function, cancers, diabetes, and multiple aspects 

of cardiovascular disease (3, 6).

Conversely, reductions in inflammation and/or oxidative stress may affect telomere length. 

In a randomized controlled trial, four months of omega-3 supplementation significantly 

reduced both inflammation and oxidative stress and simultaneously lengthened leukocyte 

telomeres (7). Other researchers have also shown that telomeres can grow under certain 

conditions (8–12).

In addition to explaining the route from psychiatric disorders to mortality, telomere 

shortening may also exacerbate the vulnerability of psychiatric patients to premature death. 

For example, although depressive symptoms were associated with increased mortality and a 

shorter disease-free survival time among bladder cancer patients at diagnosis, patients who 

had both higher depressive symptoms and short telomeres had a four-fold increased 

mortality risk (13).

Mechanistic pathways to telomere shortening

Telomeres can be maintained or lengthened by telomerase, an intra-cellular enzyme that 

adds telomeric DNA to shortened telomeres (3). Telomere length is also regulated in part by 

exposure to proinflammatory cytokines and oxidative stress (3, 14, 15). Inflammation 

triggers T-cell proliferation, one known cause of telomere shortening (3). Oxidative stress 

promotes telomere erosion during cellular replication, and thus leukocyte telomere 

shortening reflects the joint burden of inflammation and oxidative stress. Inflammation and 

oxidative stress are both heightened in anxiety and depressive disorders (16, 17).

Many psychiatric disorders have shared genetic underpinnings (2). Comparing across the 

individual diagnoses that were most strongly associated with telomere shortening in Darrow 
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and colleagues’ (1) analysis — the anxiety disorders (including PTSD) and depressive 

disorders— reveals a common phenomenology: an exaggerated inflammatory reactivity to 

stressors. The ability to minimize inflammatory responses to stressful encounters influences 

the burden that stressors place on an individual. Larger, more frequent, or more persistent 

stress-related changes in inflammation would have negative consequences for health, 

including a greater inflammatory impact on telomeres.

Prior depression may sensitize individuals such that they become more responsive to 

subsequent stressors and have a greater risk for future depressive symptomatology (18, 19). 

Depression and anxiety can play a sensitizing role in the promotion of stress-related 

inflammatory responses as well (20–22). Early life stress is associated with shorter 

telomeres, and early adversity also amplifies inflammatory responsiveness (22, 23).

Psychiatric illness is complex, and inflammation may only contribute to increased morbidity 

and mortality in subpopulations. For example, about a third of depressed patients have 

inflammatory values that are noticeably higher than the majority of nondepressed 

comparison subjects (16). Thus, inflammation clearly plays an important role in substantial 

subpopulations and undoubtedly contributes to telomere shortening in those subgroups, but 

other pathways also contribute to the excess psychiatric-related morbidity and mortality. 

Below we briefly describe two other promising markers that have strong relationships with 

chronological age; these markers provide additional avenues for understanding the 

heightened morbidity and mortality associated with psychiatric illness.

DNA methylation (DNAm)

Epigenetic changes in DNA methylation (DNAm) can give rise to heritable changes in gene 

expression (24). Indeed, DNAm can change across the lifespan, providing a molecular 

mechanism through which social and behavioral factors are translated into health outcomes 

(24). For example, the differences in DNA methylation in identical twins rise with age, a 

phenomenon termed “epigenetic drift” (25).The development of two DNAm age algorithms 

that are reliably related to chronological age has provided new tools to investigate questions 

related to accelerated aging (26, 27). DNAm age correlates highly with chronological age (r 

≥ 0.96 for both algorithms); Hannum’s algorithm is based on blood samples, while Horvath 

has shown the replicability of his algorithm across cell types, tissues, and organs (26, 28). 

Although both the Hannum and Horvath DNAm age algorithms show strong relationships 

with chronological age, they have just 6 overlapping loci and 11 overlapping genes (26, 27, 

29).

DNAm age predicts accelerated age-related decline and early mortality. Individuals with 

higher levels of epigenetic aging relative to their actual age had a higher mortality risk (30). 

Data from a large population-based cohort of German older adults linked epigenetic aging 

acceleration with frailty (31). Other researchers showed that greater age acceleration was 

associated with poorer cognition, lung function, and grip strength measures (30).

Stressors can provoke persistent changes in DNA methylation (32, 33). For example, 

cumulative lifetime stress in an urban, African American cohort predicted accelerated 
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epigenetic aging (34). In a longitudinal study of deployed military personnel, traumatic 

stress was associated with accelerated epigenetic aging (35). Lifetime PTSD severity was 

associated with accelerated DNAm age estimates compared to chronological age; 

furthermore, advanced DNAm age in this cohort was also linked with neural changes and 

had indirect relationships with working memory performance (29). What is more, early life 

social stressors like low SES can predispose individuals to develop greater proinflammatory 

responses to biological and behavioral stimuli, reflecting epigenetic DNAm influences on 

stress reactivity and proinflammatory cytokine production (36).

Cellular senescence: p16INK4a

The expression of p16INK4a in peripheral blood T-cells provides another human aging 

biomarker. Increasing exponentially with chronological age, p16INK4a expression rises 

nearly 10-fold over 60 years in humans; in contrast, telomere length decreases less than 

twofold over the same interval (37). A key effector of cell senescence and a cell cycle 

inhibitor that controls stem cell dynamics, p16INK4a actively influences aging (38). Greater 

p16INK4a expression is associated with higher IL-6, smoking and smoking history, and 

sedentary behavior (37). In genetic mouse models, p16INK4a inactivation has attenuated 

cellular senescence and slowed premature aging (38).

In conclusion, understanding the increased morbidity and mortality in psychiatric 

populations is important. Aging reduces telomere length, alters DNA methylation patterns, 

and heightens p16INK4. A broader analysis of the key pathways through which psychiatric 

illness accelerates biological aging and age-related diseases is an important future direction 

that may help identify new avenues for intervention.
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