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cells following co-application of celastrol and arimoclomol
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Abstract Few effective therapies exist for the treatment of
neurodegenerative diseases that have been characterized as
protein misfolding disorders. Upregulation of heat shock pro-
teins (Hsps) mitigates against the accumulation of misfolded,
aggregation-prone proteins and synaptic dysfunction, which is
recognized as an early event in neurodegenerative diseases.
Enhanced induction of a set of Hsps in differentiated human
SH-SY5Y neuronal cells was observed following co-
application of celastrol and arimoclomol, compared to their
individual application. The dosages employed did not affect
cell viability or neuronal process morphology. The induced
Hsps included the little studied HSPA6 (Hsp70B’), a poten-
tially neuroprotective protein that is present in the human ge-
nome but not in rat and mouse and hence is missing in current
animal models of neurodegenerative disease. Enhanced induc-
tion of HSPA1A (Hsp70-1), DNAJB1 (Hsp40), HO-1
(Hsp32), and HSPB1 (Hsp27) was also observed. Celastrol
activates heat shock transcription factor 1 (HSF1), the master
regulator of Hsp gene transcription, and also exhibits potent
anti-inflammatory and anti-oxidant activities. Arimoclomol is
a co-activator that prolongs the binding of activated HSF1 to
heat shock elements (HSEs) in the promoter regions of induc-
ible Hsp genes. Elevated Hsp levels peaked at 10 to 12 h for
HSPA6, HSPA1A, DNAJB1, and HO-1 and at 24 h for
HSPB1. Co-application of celastrol and arimoclomol induced
higher Hsp levels compared to heat shock paired with
arimoclomol. The co-application strategy of celastrol and
arimoclomol targets multiple neurodegenerative disease-

associated pathologies including protein misfolding and pro-
tein aggregation, inflammatory and oxidative stress, and syn-
aptic dysfunction.
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Introduction

As average life expectancy increases worldwide, there has
been an elevation in the prevalence of neurodegenerative dis-
eases such as Alzheimer’s and Parkinson’s diseases (Martin
1999; Chen and Brown 2007; Lang 2010; Dunkel et al. 2012).
Despite numerous clinical trials, few effective therapies for
neurodegenerative diseases have been identified (Dunkel
et al. 2012; Pratt et al. 2015). This may be due to deficiencies
in current animal models to encompass the complexity of the
human brain (Lang 2010; t Hart et al. 2012; McGonigle and
Ruggeri 2014; Sasaki 2015). Furthermore, the progression of
neurodegenerative diseases is multifactorial; hence, targeted
inhibition of a single disease pathology is compensated by
concurrent deleterious pathways (Cavalli et al. 2008; Lang
2010; Dunkel et al. 2012; Huang and Mucke 2012; Sheikh
et al. 2013). Multidrug therapies that target several aspects of
disease pathology are gaining attention and may provide more
effective avenues for treatingmultipathology diseases (Cavalli
et al. 2008; Lang 2010; Dunkel et al. 2012; Huang andMucke
2012; Sheikh et al. 2013; Veloso et al. 2013a, b, 2014).
Additionally, there is an urgent need for treatment strategies
that impact early stages of disease progression, such as syn-
aptic dysfunction (DeKosky and Marek 2003; Lang 2010;
Dunkel et al. 2012; Stephan et al. 2012; Chung et al. 2015).
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Neurodegenerative diseases have been characterized as
Bprotein misfolding disorders^ because a common underlying
pathology is the accumulation of misfolded, aggregation-
prone proteins that disrupt normal cell function leading to cell
death (Muchowski and Wacker 2005; Westerheide and
Morimoto 2005; Asea and Brown 2008; Richter et al. 2010).
Heat shock proteins (Hsps) represent a line of defense against
misfolded proteins (Westerheide and Morimoto 2005; Richter
et al. 2010). Upregulating Hsps is a potential strategy to com-
bat disease pathology and improve clinical outcome for neu-
rodegenerative disease patients (Muchowski and Wacker
2005; Asea and Brown 2008; Pratt et al. 2015).

Overexpression of Hsps confers neuroprotective benefits in
a number of animal models of neurodegenerative disease in-
cluding Parkinson’s disease (Klucken et al. 2004; Shen et al.
2005), amyotrophic lateral sclerosis (ALS) (Gifondorwa et al.
2007; Kalmar et al. 2008), Alzheimer’s disease (Hoshino et al.
2011), and polyglutamine disease (Labbadia et al. 2012). In
addition to mitigating against protein misfolding and aggrega-
tion, Hsps carry out a number of other neuroprotective func-
tions that include inhibiting apoptosis (Kennedy et al. 2014),
as well as protecting the functional integrity of synapses
(Karunanithi et al. 1999, 2002; Asea and Brown 2008;
Brown 2008; Karunanithi and Brown 2015), which are ad-
versely affected in early stages of neurodegenerative diseases
(Masliah et al. 2001; Scheff et al. 2006; Milnerwood and
Raymond 2010; Stephan et al. 2012; Chung et al. 2015; Wu
et al. 2015). Functional activities of Hsps, such as protein
refolding (Fan et al. 2003; Goloubinoff and De Los Rios
2007; Mayer 2013; Mattoo and Goloubinoff 2014; Dekker
et al. 2015) and disruption of protein aggregates (Nillegoda
and Bukau 2015; Nillegoda et al. 2015), require co-operation
between several different classes of Hsps. Therefore, upregu-
lation of a set of Hsps by activation of heat shock transcription
factor 1 (HSF1), the master regulator of heat shock gene tran-
scription, is more effective than genetic manipulation of indi-
vidual Hsps (Liu et al. 2005; Batulan et al. 2006; Asea and
Brown 2008).

Celastrol induces Hsps in neuronal cells (Chow and
Brown 2007) and is neuroprotective in a number of ani-
mal models of neurodegenerative disease including ALS
(Kiaei et al. 2005), Parkinson’s disease (Cleren et al.
2005), polyglutamine expansion disease (Zhang and
Sarge 2007), and Alzheimer’s disease (Paris et al. 2010).
Celastrol also exhibits potent anti-inflammatory and anti-
oxidant properties (Allison et al. 2001; Jung et al. 2007;
Faust et al. 2009; Kim et al. 2009; Venkatesha et al. 2012;
Wong et al. 2012; Yang et al. 2014; Sharma et al. 2015).
This may provide additional benefits to neurodegenerative
disease patients, as inflammation and oxidative stress are
associated with disease pathology and are thought to ex-
acerbate disease progression (Gao and Hong 2008; Amor
et al. 2010, 2014).

Another compound that modulates the heat shock response
is arimoclomol, which has been shown to improve motor per-
formance and extend lifespan in SOD1G93Amice, a transgenic
animal model of ALS (Kieran et al. 2004; Goloubinoff and De
Los Rios 2007; Kalmar et al. 2008, 2014; McGoldrick et al.
2013; Poppe et al. 2014). Arimoclomol is a co-inducer of
Hsps that prolongs the binding of activated HSF1 to heat
shock elements (HSEs) in the promoter regions of heat shock
genes (Hargitai et al. 2003; Kieran et al. 2004; Kalmar et al.
2014). Interestingly, arimoclomol is currently in human clin-
ical trials for ALS (ClinicalTrials.gov identifier:
NCT00706147) and is well tolerated in ALS patients up to
300 mg/day (Genc and Ozdinler 2013).

In the present report, we evaluate Hsp expression and cell
viability in differentiated human SH-SY5Y neuronal cells fol-
lowing co-application of celastrol and arimoclomol.
Neurodegenerative diseases are protein misfolding disorders
of the adult nervous system that affect differentiated neurons.
SH-SY5Y cells were therefore differentiated to induce forma-
tion of neuronal processes (Jacobs et al. 2006; Ross and
Spengler 2007; Cheung et al. 2009). Our results demonstrate
that co-application of celastrol and arimoclomol, at concentra-
tions that do not affect cell viability or neuronal process mor-
phology, enhances expression of a set of Hsps that includes
the little studied HSPA6 that is present in the human genome
but not in rat and mouse genomes. This co-application strate-
gy targets multiple aspects of disease pathology including
protein misfolding and protein aggregation, inflammatory
and oxidative stress, and synaptic dysfunction that occurs at
early stages of neurodegenerative diseases.

Materials and methods

Cell culture and neuronal differentiation

Human SH-SY5Y cells (American Type Culture Collection,
Manassas, VA, USA) were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10 % fetal
bovine serum (FBS) and cultured at 37 °C in a humidified 5 %
CO2 atmosphere. Cells, plated at 4.5 × 104 cells per square
centimeter, were allowed to settle onto the growth surface
for 24 h. Culture plates (10 cm) were used forWestern blotting
experiments or 22 × 22-mm coverslips placed inside six-well
plates for immunofluorescence experiments. Neuronal differ-
entiation was induced by a treatment with 10 μM all-trans-
retinoic acid (R2625; Sigma-Aldrich, St. Louis, MO, USA)
for 72 h under serum-free conditions.

Induction of Hsps

Following 72 h of differentiation, media containing all-trans-
retinoic acid were removed and replaced with fresh serum-free
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DMEM with or without celastrol and arimoclomol. Celastrol
(70950; Cayman Chemical, Ann Arbor, MI, USA) dissolved
in DMSO was added directly to the media. Arimoclomol (gift
f rom Professor Michae l Chee tham, Ins t i tu te of
Ophthalmology, University College London, UK) was pre-
pared fresh for each experiment by dissolving in an appropri-
ate volume of serum-free DMEM and filtering (0.2-μm pore
size). The cells were incubated at the indicated concentrations
for 24 h unless otherwise specified. DMSO treatment alone
was used as a vehicle control for celastrol.

Heat shock

Cells were immersed in a circulating water bath calibrated at
43 °C ± 0.1 °C for 20 min (Chow et al. 2010) and returned to a
humidified 5 % CO2 atmosphere at 37 °C for 24 h before
being harvested for Western blotting. The start of the 20-min
heat shock represents the zero time point (t = 0). Arimoclomol
was added before (HS1; t = 0) or after (HS2; t = 20 min) heat
shock.

Viability assay

For qualitative analysis of cell viability by fluorescence mi-
croscopy, cells were stained with 10 μg/mL propidium iodide
(P4864; Sigma-Aldrich) to identify compromised cells (pink)
and then fixed with 4 % paraformaldehyde (PFA) for 30 min.
PFA was purchased from Canemco Inc. (0173; Canton de
Gore, QC, CA). Hoechst 33258 (94403; Sigma-Aldrich) at
0.5 μg/mL was used as a counterstain for nuclei. For analysis
of neuronal process morphology, cells were fixed as above
and permeabilized in 0.1 % Triton X-100 with 100 mM gly-
cine in PBS. The cells were blocked for 1 h in 5% FBS in PBS
and incubated with primary antibody against α-tubulin
(ab18251; Abcam, Toronto, ON, CA) in 1 % FBS in PBS
overnight at 4 °C. Donkey anti-rabbit AlexaFluor488-conju-
gated secondary antibody (Molec. Probes, Life Tech.,
Burlington, ON, CA) was used. DNA was stained with
300 nM DAPI (Invitrogen, Life Technologies). Cells were
imaged by structured illumination microscopy using an
AxioCam HRm camera with an ApoTome module on an
AxioVert 200M microscope (Carl Zeiss, Toronto, ON, CA).

For quantitative analysis, cells were harvested at the indi-
cated time point after single or co-application of celastrol and
arimoclomol. An equal volume of cell suspension was mixed
with 0.4 % trypan blue (T10282; Life Technologies) and in-
cubated for 2 min. The cell suspension was loaded into a
disposable Countess® cell counting chamber slide, and the
percent of cells stained by trypan blue was quantified using
a Countess® automated cell counter (C10281; Invitrogen, Life
Technologies).

Western blotting and densitometry

At the indicated time points following the application of
celastrol and/or arimoclomol, the cells were harvested, dis-
solved in Laemmli buffer, and boiled for 10 min. Protein
quantification was carried out using the RC DC Protein
Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA).
Thirty micrograms of protein was loaded into each lane and
separated on a 12 % SDS-PAGE gel using the Mini-
PROTEAN 3 Elec t rophores i s Module (Bio-Rad
Laboratories) with a 4 % stacking gel. Proteins were trans-
ferred to nitrocellulose membranes using the Mini Trans-
Blot® Module (Bio-Rad Laboratories). Primary antibodies
for HSPA1A (SPA-810), HSPA6 (SPA-754), HSPA8 (SPA-
815), HSPH1 (SPA-1101), HSPC1 (SPS-771), DNAJB1
(SPA-400), HSPB1 (SPA-803), and Hsp32 (OSA-110) were
purchased from Enzo Life Sciences (Farmingdale, NY, USA).
Primary antibody for β-tubulin (MAB3408) was purchased
from EMD Millipore (Billerica, MA, USA). Horseradish
peroxidase-conjugated secondary antibodies (Sigma-Aldrich)
were detected using enhanced chemiluminescence
(Amersham, Piscataway, NJ, USA). Densitometry was per-
formed using Quantity One® 1-D Analysis software (Bio-
Rad Laboratories).

Statistical analysis

GraphPad Prism 5 software was employed for data analysis.
Student’s t test was used to test for statistical significance. A p
value of less than 0.05 (or 0.01 where indicated) was consid-
ered statistically significant. Data represent the mean ± the
standard error of the mean (SEM) for three independent rep-
licates. For Hsp protein levels, optical densities were normal-
ized and plotted as the difference relative to the vehicle control
condition.

Results

Co-application of celastrol and arimoclomol enhances
induction of a set of Hsps in differentiated human
neuronal cells

Differentiated human SH-SY5Y neuronal cells were treated
with celastrol, plus or minus arimoclomol. As shown in
Fig. 1a, inclusion of arimoclomol with celastrol enhanced
the induction of several Hsps, compared to celastrol alone.
This included the little studied HSPA6 that is found in the
human genome but not in the genomes of rat and mouse and
hence is lacking in current animal models of neurodegenera-
tive diseases (Chow and Brown 2007; Noonan et al. 2007a, b;
Chow et al. 2010). In addition to HSPA6, enhanced induction
was also observed following co-application of celastrol and
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arimoclomol for HSPA1A (Hsp70-1), DNAJB1 (Hsp40), HO-
1 (Hsp32), and HSPB1 (Hsp27). Induction of HSPA1A and
HSPB1 was detected at 0.1 μM celastrol plus arimoclomol,
whereas induction of HSPA6 was observed at 0.3 μM
celastrol plus arimoclomol. Induction was not observed for
constitutively expressed HSPH1 (Hsp105), HSPC1
(Hsp90a), and HSPA8 (Hsc70). As shown in Fig. 1b, statisti-
cally significant enhanced induction of HSPA6, HSPA1A,

HSPB1, DNAJB1, and HO-1 was observed following co-
application of 0.3 μM celastrol and 250 μM arimoclomol,
compared to either celastrol or arimoclomol alone.

Enhanced induction of Hsps is maintained using a fivefold
lower concentration of arimoclomol

To determine whether enhanced induction of Hsps could be
achieved using a lower concentration of arimoclomol, differ-
entiated human neuronal cells were co-treated with 0.3 μM
celastrol plus or minus arimoclomol at concentrations ranging
from 50 to 250 μM. As shown in Fig. 2, quantitative analysis
demonstrated that levels of induction of HSPA6, HSPA1A,
DNAJB1, HO-1, and HSPB1 were maintained when the

Fig. 1 Enhanced induction of a set of Hsps by co-application of celastrol
and arimoclomol to differentiated human neuronal cells. a Differentiated
SH-SY5Y neuronal cells were treated with celastrol (0.1–0.3 μM)with or
without arimoclomol (250 μM). Cells were harvested after 24 h and Hsps
examined byWestern blotting.β-Tubulin was used as a loading control. b
Quantification of Hsp levels relative to vehicle control for co-application
of 0.3 μM celastrol plus 250 μM arimoclomol (Cel + Arim), 0.3 μM
celastrol (Cel), and 250μMarimoclomol (Arim). Induction (#p < 0.01) of
HSPA6, HSPA1A, HO-1, HSPB1, and DNAJB1 was seen following
application of celastrol alone or in combination with arimoclomol.
Significant enhanced induction (*p < 0.05; **p < 0.01) was observed
following co-application of celastrol and arimoclomol, compared to
celastrol alone. Levels of constitutively expressed HSPH1, HSPC1, and
HSPA8 did not change with celastrol and arimoclomol application alone
or in combination

Fig. 2 Hsp induction maintained when the concentration of arimoclomol
decreased fivefold. a Hsp induction profile following co-application of
celastrol (0.3 μM) and arimoclomol (50, 100, 150, 200, or 250 μM). b
Comparable levels of Hsp induction were observed when arimoclomol
concentration was reduced from 250 to 50 μM for HSPA6, HSPA1A,
DNAJB1, HO-1, and HSPB1
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arimoclomol concentration is lowered fivefold from 250 to
50 μM. Levels of constitutively expressed HSPH1, HSPC1,
and HSPA8 were not affected.

Time course of neuronal induction of Hsps
after co-application of celastrol and arimoclomol

Inducible members of the HSPA family, HSPA6 and
HSPA1A, demonstrated maximal levels at 12 h after co-
application of 0.3 μM celastrol with 50 μM arimoclomol.
As shown quantitatively in Fig. 3, HSPA6 levels declined at
18 h, whereas HSPA1A levels were maintained. HO-1
attained maximal levels at 12 to 24 h. HSPB1 increased pro-
gressively from 6 to 24 h, while DNAJB1 reached maximal
levels at 10 h. Levels of constitutively expressed HSPH1,
HSPC1, and HSPA8 did not show a significant change.

Comparison of celastrol and heat shock to induce
neuronal Hsps when paired with arimoclomol

Celastrol activates HSF1 monomers to a trimerized form that
binds to HSEs in the promoter regions of inducible heat shock
genes resulting in their upregulation (Westerheide et al. 2004;
Salminen et al. 2010). Heat shock is the classical activator of
HSF1, the master regulator of Hsp induction (Morimoto 1993;

Sarge et al. 1993). Celastrol and heat shock were compared in
their ability to induce Hsps in differentiated human neuronal
cells when coupled with arimoclomol as co-inducer. As
shown quantitatively in Fig. 4, co-application of celastrol
and arimoclomol at 0.3 and 50 μM, respectively, resulted in
an enhanced induction of HSPA6 compared to celastrol alone.
However, heat shock applied concurrently with arimoclomol
(HS1), or immediately preceding arimoclomol (HS2), resulted
in no detectable induction of HSPA6. Similarly, co-application
of celastrol and arimoclomol resulted in a greater induction of
HSPA1A, HO-1, HSPB1, and DNAJB1 compared to heat
shock paired with arimoclomol. Hence, celastrol co-applied
with arimoclomol is a more efficient strategy for Hsp upregu-
lation in differentiated human neuronal cells compared to heat
shock paired with arimoclomol. Upregulation was not ob-
served of constitutively expressed HSPH1, HSPC1, or
HSPA8 following celastrol plus arimoclomol or heat shock
plus arimoclomol.

Effect of celastrol and arimoclomol co-application
on the viability of differentiated human neuronal cells

Viability assays were conducted in order to determine the
effect of co-application of celastrol and arimoclomol on dif-
ferentiated human neuronal cells at dosages that resulted in

Fig. 3 Time course of neuronal
induction of Hsps after co-
application of celastrol and
arimoclomol. a Co-application of
celastrol (0.3 μM) and
arimoclomol (50 μM) to
differentiated human SH-SY5Y
neuronal cells. bQuantification of
Hsp levels relative to vehicle
control (*p < 0.05). Peak
induction of HSPA6, HSPA1A,
DNAJB1, and HO-1 was
observed at 10–12 h. Levels of
constitutively expressed HSPH1,
HSPC1, and HSPA8 did not
change. Y-axis = relative Hsp
level
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enhanced Hsp induction. Propidium iodide (PI) dye exclusion
microscopy showed that neuronal cell viability was observed
following co-application of celastrol and arimoclomol at 0.3
and 50 μM, respectively, but severely impacted if
arimoclomol was increased to 250 μM in combination with
0.3 μM celastrol (Fig. 5a, cells with PI uptake indicated in
pink). Arimoclomol alone at 250 μM, or increasing celastrol
to 1.5 μM (Fig. 5c), resulted in cellular uptake of PI, whereas
comparatively little PI uptake was observed for arimoclomol
or celastrol alone at 50 and 0.3 μM (Fig. 5a). As shown in
Fig. 5d, quantification employing cellular uptake of trypan
blue revealed that 84.2 % ± 3.77 cell viability is maintained
following application of celastrol and arimoclomol at the op-
timized concentrations (0.3 and 50μM, respectively), alone or
in combination. Cell viability decreased slightly as celastrol
concentration was increased from 0.3 to 0.5 μM with a major
decrease at 1.5 μM celastrol and at 250 μM arimoclomol.

An important marker of neuronal stress is the integrity of
neuronal processes which retract in challenged cells (Kroemer
et al. 2009). As shown in Fig. 5b, extensive neuronal process
morphology (visualized by α-tubulin staining) was apparent

at 0.3 μM celastrol and 50 μM arimoclomol, alone or in com-
bination, but severely impacted when arimoclomol was in-
creased to 250 μM alone or in combination with celastrol.
Elevation of celastrol to 1.5 μM resulted in the loss of neuro-
nal process morphology (Fig. 5c).

Discussion

As the prevalence of neurodegenerative diseases in the human
population ramps up as average life span increases, few effec-
tive therapies for these neural diseases, particularly
Alzheimer’s, have been identified to date despite a large num-
ber of clinical trials (Lang 2010; Dunkel et al. 2012; Pratt et al.
2015). This may be due to the multifactorial nature of neuro-
degenerative diseases, and targeted inhibition of a single dis-
ease pathology may be compensated by concurrent deleteri-
ous pathways (Cavalli et al. 2008; Lang 2010; Dunkel et al.
2012; Huang andMucke 2012; Sheikh et al. 2013). Multidrug
therapies that target several aspects of disease pathology are
gaining attention and may provide more effective avenues for

Fig. 4 Neural induction of Hsps by co-application of celastrol and
arimoclomol compared to heat shock paired with arimoclomol. a Hsp
induction profile following co-application of celastrol (0.3 μM) and
arimoclomol (50 μM) or 43 °C heat shock for 20 min (HS) plus or
minus arimoclomol (50 μM). Arimoclomol was added either

concurrently (HS1) or subsequent to (HS2) heat shock. b Quantification
of Hsp levels relative to vehicle control (*p < 0.01). Higher levels
(#p < 0.05) of HSPA6, HSPA1A, HO-1, HSPB1, and DNAJB1 were
observed following co-application of celastrol and arimoclomol
compared to heat shock plus arimoclomol. Y-axis = relative Hsp level
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Fig. 5 Effect of co-application of celastrol and arimoclomol on cellular
viability and neuronal process morphology of differentiated human SH-
SY5Y neuronal cells. a Propidium iodide (pink) staining indicated that
co-application of celastrol and arimoclomol did not induce neuronal cell
death. Hoechst 33258 (blue) was used to identify neuronal nuclei by
DNA staining. Differential interference contrast (DIC) imaging was
employed to view neuronal morphology. b Neuronal processes were
assessed by staining with α-tubulin (green). Nuclei are stained with
DAPI (blue). Arrows—long neuronal processes; arrowheads—retracted
neuronal processes. c High concentrations of celastrol (1.5 μM)

compromised neuronal viability.Upper panel—rounding of neuronal cell
bodies (observed by DIC) and uptake of propidium iodide; lower
panel—retraction of neuronal processes (arrowhead). d Quantification
of cell viability by trypan blue staining. After low-dose co-application
of celastrol and arimoclomol for 24 h at the optimized concentrations (0.3
and 50 μM, respectively), 84.2 % ± 3.77 neuronal viability (dotted line)
was maintained. Significant (*p < 0.05; **p < 0.01) loss of cell viability
was observed at 250 μM arimoclomol or 1.5 μM celastrol. Scale bars
represent 20 μm (Color figure online)
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treating multipathology diseases (Cavalli et al. 2008; Lang
2010; Dunkel et al. 2012; Huang and Mucke 2012; Sheikh
et al. 2013; Veloso et al. 2013a, b, 2014). There is also an
urgent need for treatment strategies that impact early stages
of disease progression (DeKosky and Marek 2003; Lang
2010; Dunkel et al. 2012). Synaptic dysfunction and loss are
an early phenomenon in neurodegenerative diseases, which
have been characterized as protein misfolding disorders
(Stephan et al. 2012; Chung et al. 2015). Upregulation of
Hsps has been shown to protect synapses at a functional level
(Karunanithi et al. 1999, 2002; Brown 2008; Karunanithi and
Brown 2015).

In the present report, we demonstrate that co-application of
celastrol and arimoclomol enhances the induction of a set of
Hsps in differentiated human SH-SY5Y neuronal cells at dos-
ages that do not affect cell viability or neuronal process mor-
phology. This includes upregulation of HSPA6 (Hsp70B’), a
little studied member of the HSPA (Hsp70) family that is
present in the human genome, but not in rat and mouse
(Chow and Brown 2007; Noonan et al. 2007a, b, 2008a, b;
Chow et al. 2010; Ramirez et al. 2014). Recently, we have
demonstrated a unique feature of HSPA6, namely localization
to transcription sites in human neuronal cells during recovery
from stress-induced inhibition (Khalouei et al. 2014), a feature
that is missing in current animal models of neurodegenerative
diseases which lack HSPA6. The present problem of therapeu-
tic compounds, identified in rodent models of disease, that fail
to translate to effective treatments in the human clinical setting
could be addressed by the generation of primate animal
models using the common marmoset (Lang 2010; t Hart
et al. 2012; McGonigle and Ruggeri 2014; Sasaki 2015).
Rodent models fail to encompass the complexity of the human
brain (Lang 2010; t Hart et al. 2012; McGonigle and Ruggeri
2014; Sasaki 2015). Interestingly, the HSPA6 gene is found in
the marmoset genome (NCBI gene ID: 100411854).
However, marmoset models are in early testing stages; hence,
it is important to investigate the effects of potential therapeutic
compounds in differentiated human neuronal cells.

The rationale for co-application of celastrol and
arimoclomol to human neuronal cells is as follows. Celastrol
was identified in an NIH-sponsored drug screen aimed at iden-
tifying potential therapeutic compounds that could suppress a
hallmark of neurodegenerative diseases, namely protein
misfolding resulting in aggregation (Abbott 2002;
Heemskerk et al. 2002). Subsequently, celastrol was shown
to be beneficial in a number of animal models of neurodegen-
erative diseases, including ALS (Kiaei et al. 2005),
Parkinson’s disease (Cleren et al. 2005), polyglutamine dis-
ease (Zhang and Sarge 2007), and Alzheimer’s disease (Paris
et al. 2010). Celastrol also exhibits potent anti-inflammatory
and anti-oxidant properties in several animal models of in-
flammation and apoptosis to combat other aspects of neuro-
degenerative disease pathology (Allison et al. 2001; Faust

et al. 2009; Kim et al. 2009; Sharma et al. 2015). In human
SH-SY5Y neuronal cells, which are employed as a model
system in the present study, it has been demonstrated that
celastrol prevents the increase in reactive oxygen species that
is observed following exposure to the mitochondrial toxin
rotenone (Choi et al. 2014). The mechanism of action of
celastrol involves activation of HSF1 monomers to a
trimerized form that binds to HSEs in the promoter regions
of inducible heat shock genes resulting in their upregulation
(Westerheide et al. 2004; Salminen et al. 2010; Sharma et al.
2015).

Arimoclomol is a co-inducer that acts by prolonging the
binding of heat shock transcription factor HSF1, the master
regulator of the heat shock response, to HSE elements in the
promoter regions of stress-inducible genes resulting in
prolonged transcription of Hsp genes (Hargitai et al. 2003).
In a mouse model of ALS, arimoclomol was found to improve
motor performance and extend lifespan of SOD1G93A trans-
genic mice (Kieran et al. 2004; Kalmar et al. 2008, 2014;
McGoldrick et al. 2013; Poppe et al. 2014). Interestingly,
arimoclomol is now in phase IIb/III clinical trials
(ClinicalTrials.gov identifier: NCT00706147) for the treat-
ment of ALS (Genc and Ozdinler 2013).

By combining celastrol and arimoclomol at low dosages in
differentiated human SH-SY5Y neuronal cells, enhanced pro-
tein expression was observed in a set of inducible Hsp genes,
including HSPA6, relative to individual application of either
compound. Neuronal cell viability and process morphology
were maintained following co-application of these com-
pounds at low-dose concentrations which result in enhanced
Hsp induction. Higher doses of either arimoclomol or celastrol
reduced cell viability, as has been reported for celastrol (Jantas
et al. 2013). The ability of heat shock or celastrol to induce
Hsps in differentiated human neuronal cells, when paired with
arimoclomol, was analyzed. Co-application of celastrol and
arimoclomol resulted in greater induction of Hsps compared
to arimoclomol coupled with heat shock conditions that we
have previously used on SH-SY5Y neuronal cells (Chow et al.
2010).

Therapy options that target multiple aspects of neurodegen-
erative disease pathology are gaining popularity and may pro-
vide more effective avenues for treatment (Cavalli et al. 2008;
Lang 2010; Dunkel et al. 2012; Huang and Mucke 2012;
Sheikh et al. 2013; Veloso et al. 2013a, b, 2014). Celastrol
exhibits anti-inflammatory and anti-oxidant properties
(Allison et al. 2001; Jung et al. 2007; Faust et al. 2009; Kim
et al. 2009; Venkatesha et al. 2012; Wong et al. 2012; Yang
et al. 2014; Sharma et al. 2015). In addition to inducing Hsp
upregulation to prevent misfolding and aggregation of mutant,
disease-associated proteins, celastrol also has the potential to
reduce inflammatory and oxidative stress that accompanies
neurodegeneration and is thought to exacerbate disease pro-
gression (Gao and Hong 2008; Amor et al. 2010, 2014).
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Another requirement for the advancement of effective ther-
apies for the treatment of neurodegenerative diseases is for
treatment options that can impact early stages of disease pro-
gression (DeKosky andMarek 2003; Lang 2010; Dunkel et al.
2012). Synaptic dysfunction and loss have been recognized as
an early phenomenon in neurodegenerative diseases (Masliah
et al. 2001; Scheff et al. 2006; Shankar and Walsh 2009;
Milnerwood and Raymond 2010; Stephan et al. 2012; Wu
et al. 2015). Our studies have demonstrated that overexpres-
sion of Hsp70 and heat shock preconditioning protects synap-
ses at a functional level (Karunanithi et al. 1999, 2002; Brown
2008; Karunanithi and Brown 2015). Using biochemical iso-
lation of synaptic fractions and electron microscopy immuno-
cytochemistry, we have demonstrated that Hsp70, Hsp32, and
Hsp27 localize to synaptic components where they may be
involved in synaptic repair and protective mechanisms
(Bechtold and Brown 2000; Bechtold et al. 2000).
Furthermore, Hsc70 forms a complex with Hsp40 at synapses
following hyperthermia in the cerebral cortex (Chen and
Brown 2007). Other studies indicate that overexpression of
Hsp70 induces synaptic plasticity in Drosophila neuromuscu-
lar junctions that results in higher levels of neurotransmitter
release and improved locomotor performance (Xiao et al.
2007). Chen et al. (2014) observed upregulation of pre- and
post-synaptic proteins through an HSF1-dependent transcrip-
tional mechanism and reduction of amyloid-β-induced synap-
tic toxicity and memory impairment.

During normal human brain development, synaptic con-
nections are overproduced and selective elimination (i.e., syn-
aptic pruning) subsequently takes place to shape the develop-
ing brain based on activity levels at individual synapses
(Stephan et al. 2012; Schafer and Stevens 2015; Wu et al.
2015; Hong et al. 2016). Aberrant reactivation of synaptic
pruning mechanisms during neuronal aging has recently been
proposed to contribute to early synapse dysfunction and loss
that is seen inmany neurodegenerative diseases (Stephan et al.
2012; Chung et al. 2015; Wu et al. 2015). Upregulation of
Hsps could have beneficial effects on mitigating against syn-
aptic loss and dysfunction during aberrant reactivation of syn-
aptic pruning at early stages in the progression of neurodegen-
erative diseases.

Co-application of celastrol and arimoclomol resulting in
upregulation of a set of Hsps, including HSPA6 which is pres-
ent in the human genome and not in current animal models of
neurodegenerative diseases, has the potential to influence sev-
eral aspects of disease pathology including protein misfolding
and protein aggregation, inflammatory and oxidative stress,
and synaptic dysfunction. Celastrol has shown therapeutic po-
tential in a number of animal models of neurodegenerative
diseases including ALS (Kiaei et al. 2005), Parkinson’s dis-
ease (Cleren et al. 2005), polyglutamine disease (Zhang and
Sarge 2007), and Alzheimer’s disease (Paris et al. 2010) and
has the added benefit of being a potent anti-inflammatory and

anti-oxidant (Allison et al. 2001; Jung et al. 2007; Faust et al.
2009; Kim et al. 2009; Venkatesha et al. 2012; Wong et al.
2012; Yang et al. 2014; Sharma et al. 2015). Arimoclomol is a
co-inducer that amplifies the induction of Hsps, prolongs life
and motor performance in an animal model of ALS (Hargitai
et al. 2003; Kieran et al. 2004; Kalmar et al. 2008, 2014), and
is current ly in cl inical t r ials on human pat ients
(ClinicalTrials.gov identifier: NCT00706147). Co-
application of celastrol and arimoclomol represents a potential
multitarget therapeutic strategy for the treatment of neurode-
generative diseases that could impact disease mechanisms,
such as synaptic dysfunction, at early stages of disease
progression.
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