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High-resolution functional imaging is providing increasingly rich mea-

surements of brain activity in animals and humans. A major challenge is to

leverage such data to gain insight into the brain’s computational mechanisms.

The first step is to define candidate brain-computational models (BCMs)

that can perform the behavioural task in question. We would then like to infer

which of the candidate BCMs best accounts for measured brain-activity data.

Here we describe a method that complements each BCM by a measurement

model (MM), which simulates the way the brain-activity measurements reflect

neuronal activity (e.g. local averaging in functional magnetic resonance imaging

(fMRI) voxels or sparse sampling in array recordings). The resulting generative

model (BCM-MM) produces simulated measurements. To avoid having to fit

the MM to predict each individual measurement channel of the brain-activity

data, we compare the measured and predicted data at the level of summary stat-

istics. We describe a novel particular implementation of this approach, called

probabilistic representational similarity analysis (pRSA) with MMs, which

uses representational dissimilarity matrices (RDMs) as the summary statistics.

We validate this method by simulations of fMRI measurements (locally aver-

aging voxels) based on a deep convolutional neural network for visual object

recognition. Results indicate that the way the measurements sample the activity

patterns strongly affects the apparent representational dissimilarities. However,

modelling of the measurement process can account for these effects, and differ-

ent BCMs remain distinguishable even under substantial noise. The pRSA

method enables us to perform Bayesian inference on the set of BCMs and to

recognize the data-generating model in each case.

This article is part of the themed issue ‘Interpreting BOLD: a dialogue

between cognitive and cellular neuroscience’.
1. Introduction
To understand how the brain works, we need to build brain-computational

models (BCMs) that can perform cognitive tasks, such as object recognition, plan-

ning and motor control [1]. If our models are to explain human brain function, they

will need to perform complex computations that require rich world knowledge [2].

A BCM that explains a feat of human intelligence, by definition, constitutes an arti-

ficial intelligence (AI) system. Unlike AI systems from engineering, however, it

should also map onto the anatomical components of the brain and explain

measurements of brain activity and behaviour [3]. Testing BCMs of various

levels of complexity has a long history in neuroscience (for examples from neuroi-

maging, see [4–6]). Several studies have begun to evaluate AI-scale neural net

models on the basis of brain-activity data [7–11]; for reviews, see [2,3,12].

On the theoretical side, much is known about the dynamical properties and

computational capabilities of a wide variety of neural network models, ranging

from detailed models of single biological neurons [13] to rate-coding models of

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2016.0278&domain=pdf&date_stamp=2016-08-29
http://dx.doi.org/10.1098/rstb/371/1705
http://dx.doi.org/10.1098/rstb/371/1705
mailto:nikolaus.kriegeskorte@mrc-cbu.cam.�ac�.�uk
mailto:nikolaus.kriegeskorte@mrc-cbu.cam.�ac�.�uk
http://orcid.org/
http://orcid.org/0000-0001-7433-9005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20160278

2
complex feed-forward and recurrent networks that abstract

from the biological details [14,15]. The literature has described

a rich repertoire of functions that can be performed by such net-

works, including feed-forward categorization, autoassociative

memory, general function approximation, dynamic history

compression, working memory, various forms of control and

general approximation of dynamical systems. How these

building blocks work together in biological brains to achieve

intelligent adaptive behaviour, however, remains largely mys-

terious [16,17]. AI has recently achieved major advances using

neural net models that are inspired by biological brains, but

highly simplified [14]. AI is beginning to provide the techno-

logical basis for modelling human brain-computational

functions in their full complexity. However, it is unclear how

we should test and adjudicate among competing BCMs.

On the experimental side, technologies for brain-activity

measurement are rapidly advancing. In animals, two-photon

imaging enables us to jointly measure unprecedented numbers

of neurons (e.g. [18]). In humans, high-field functional magnetic

resonance imaging (fMRI) enables us to image haemodynamic

activity over the entire brain at resolutions approaching a cubic

millimetre per voxel and in smaller volumes at submillimetre res-

olution (e.g. [19]). Electrophysiological recordings at the scalp

and inside the brain offer high temporal resolution and are like-

wise advancing to provide ever greater numbers of jointly

measured channels. However, analysis is typically limited to

data-driven methods and inferential contrasting of experimental

stimuli. The goals of these analyses are (i) to map the brain for

regions or neurons that exhibit differential activation or infor-

mation about the stimuli in their distributed activity patterns

and (ii) to descriptively characterize the profile (known as

‘tuning’) of each measured response across stimulus properties.

To bridge the gap between theory and experiment, we

need to go beyond characterization of response properties

with generic statistical models. We need to use the multivariate

brain-activity measurements to test BCMs that perform the

information-processing tasks we are investigating.

We focus here on a particular class of experiments in sen-

sory neuroscience, where experimental stimuli (e.g. images)

are presented during measurement of brain activity. BCMs of

the perceptual processing take the same stimuli as input and

perform tasks such a visual object recognition. We assume

that there are many measurement channels reflecting the

neural population activity in a cortical area or subcortical

region. The goal of the analysis is to infer which of a number

of BCMs best accounts for the measured brain-activity patterns.

Methods for testing competing BCMs that have been used

in previous studies are encoding models [20–24], represen-

tational similarity analysis [25–27], and pattern-component

modelling [28].

Encoding models predict the response of each measurement

channel as a linear combination of the responses of the units of

the BCM to the stimuli. To adjudicate among BCMs, the predic-

tive performance of each model is estimated for a set of novel

stimuli not used in fitting the encoding model. Encoding

models naturally lend themselves to the mapping of tuning prop-

erties across the measurement channels, for example by using

human semantic labels (rather than units of BCMs) as the predic-

tor variables [29]. However, the other techniques can also be used

for mapping by applying them to single voxels or searchlights

across brain locations [30]. Here we are concerned with inferring

the data-generating BCM for a predefined region of interest.

Encoding models can be used to adjudicate between BCMs by
estimating the overall predictive performance of each BCM

across all measurement channels in the brain region of interest.

Modelling each measurement channel as a linear combi-

nation of the model units might account for the way the

measurement channels sample the neuronal activity patterns.

In fMRI, for example, the measurement channels are voxels

that reflect the activity of tens or hundreds of thousands of neur-

ons whose activity gives rise to the haemodynamic signals

washed into the voxel through the vasculature. Local averaging

might be a reasonable approximate model of the measurement

process. However, encoding models require fitting one weight

per BCM unit for each measurement channel. This typically

requires both the measurement of responses to a large training

set of stimuli (in addition to the test set used to adjudicate

between BCMs) and a strong prior on the weights. The particular

prior used for fitting the weights is part of the hypothesis tested

and can affect the results of inference on BCMs. Typically, a 0

mean Gaussian prior on the weights (i.e. L2 regularization) is

used to achieve stable fits. Complex BCMs such as deep neural

networks can have hundreds of thousands of units in a single

layer. While simpler models can account for certain tasks, we

will ultimately need AI-scale models with many parameters to

account for the complexities of the neuronal networks in biologi-

cal brains. Here we explore a class of methods that do not require

fitting a separate predictive model for each measurement chan-

nel. The BCM predictions are evaluated at the level of

summary statistics of the activity measurements.

A summary statistical method for testing BCMs is rep-

resentational similarity analysis (RSA) [25–27]. In RSA, the

representation of each stimulus in the brain region of interest

is compared with the representation of each other stimulus.

This yields a representational dissimilarity matrix (RDM),

which characterizes the representations in terms of the stimu-

lus distinctions it emphasizes. RDMs can be computed for

representations in BCMs and biological brains. Statistical

inference determines which BCM best accounts for the

RDM in the brain region of interest [10,27].

An advantage of RSA is that it does not require fitting a

linear model to predict each measurement channel. The RDM

provides a useful characterization of the representational geo-

metry that abstracts from the roles of particular responses. If

the noise is isotropic (or rendered isotropic by spatial prewhiten-

ing of the responses in analysis [31]) and the Euclidean distance

is used as the representational dissimilarity measure, then any

two representations that have the same RDM provide the

same information about the stimuli. Moreover, down to a

linear transform, the information is represented in the same

format: any information that can decoded from the first rep-

resentation by a given readout mechanism can also be

decoded from the second by the same type of readout mechan-

ism. This holds for any linear or nonlinear readout mechanism,

as long as it can perform a linear transformation (to account for

the rotation of the representational space), for example for linear

and radial-basis-function readout filters. An RDM thus argu-

ably characterizes a functional equivalence class of neuronal

population codes. However, a disadvantage of direct compari-

son of RDMs from measurement channels and RDMs from

BCM units is that the way the channels reflect the neuronal

activities (e.g. as local averages in fMRI) is not accounted for.

As we will see, RDMs computed from measurement channels

do accurately reflect RDMs computed from the underlying

neuronal activity if the measurement channels average across

neurons with random weighting. However, a key observation



brain-computational
model (BCM)

brain computation

activity-
measurement
model (MM)

activity
measurement

model
data

data

model
summary
statistics

summary
statistics

p(data|model)

Figure 1. Evaluating a brain-computational model with brain-activity measure-
ments. To evaluate each of a number of competing BCMs, we would like to
compute the likelihood p(datajmodel) for each model. We need to account
not only for the brain computations (using a BCM) but also for the measurement
process (using an MM). The MM simulates the way the measurement channels
sample the units of the BCM. One approach to inference is to evaluate the like-
lihood at the level of the measurements. This requires fitting a parametrized MM
to predict each individual measurement channel. To avoid having to fit an MM to
each channel, we instead predict summary statistics of the population of possible
measurement channels.
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we explore in this article is that when a population of neurons

that is spatially organized at multiple scales (as seen for many

cortical areas, e.g. early visual cortex) is sampled by local

averaging (as in fMRI voxels), the resulting measurement

channel RDM can differ substantially from the neuronal

RDM. This needs to be taken into account when performing

inference on BCMs [32].

Both encoding models and RSA, in their widely used instan-

tiations, fail to account for our knowledge and uncertainties

about the measurement process. In fMRI, for example, a voxel

can be approximated as a local average, suggesting the use of

positive weights concentrated in a certain small patch of a

BCM’s internal representation corresponding to the patch of

cortex sampled by the voxel. However, the prior typically used

in encoding models assumes merely that the weights are small,

while allowing negative weights and not constraining the spatial

weight distribution. RSA so far implicitly assumed that the

measurement channels sample the neurons with random

weights. Although neuronal recordings and fMRI voxels can

yield strikingly similar RDMs [5,33], we cannot assume that

the random-weight sampling assumption holds in general

throughout the brain for either fMRI or neuronal recordings.

Here we argue that a generative measurement model (MM)

should be integrated into statistical inference on BCMs

(figure 1). A natural solution is to simulate the effect of measure-

ments by means of a method of sampling from the units of a

BCM that mimics the way our measurements sample neuronal

activity. The MM may have unknown parameters, for which

prior distributions are specified. By simulating the brain com-

putation (by the BCM) as well as the measurements (by the

MM), we can predict the distribution of measurements for

each BCM. To perform inference on a set of BCMs, we need

to compare the predicted measurement distribution with the

actual measurements. To compute the posterior over BCMs,

we will estimate the likelihood for each BCM.

The method we describe has the following key novel

features:

— The measured response channels are considered as

a sample from a population of response channels that might

have been measured from a given brain region.

— A measurement model (MM) provides a probabilistic

characterization (expressing our knowledge and uncer-

tainties) of the process through which the measurement

channels reflect neuronal activity.
— Each BCM predicts a distribution of responses across the

population of potential measurement channels and

the predicted distribution is compared with the data

at the level of summary statistics, obviating the need for

fitting a separate MM to each measurement channel.

— Statistical inference is performed by computing the

posterior, i.e. the probability of each BCM given the data.

We use a deep neural network for visual object recog-

nition to simulate fMRI data by taking local weighted

averages. Data are simulated for the five visuotopic convolu-

tional layers of the network, which are considered as five

distinct BCMs. The simulated dataset enables us to test the

proposed method for inferring BCMs, as the ground-truth

computational mechanism that generated the data is known

in each case. We demonstrate the effect of the measurement

process on the apparent representational geometry and show

that modelling the measurements, without knowledge of the

precise measurement parameters (local averaging range,

voxel-grid placement), enables us to infer the data-generating

BCM for each of the five layers of the network.
2. Material and methods
(a) Deep neural net model as testbed for inference on

brain-computational models
We use the deep neural network for visual object recognition from

Krizhevsky et al. [34], known as AlexNet, as a testbed for inference

on BCMs. AlexNet is a deep neural network trained by backpro-

pagation ([35,36]; for a review, see [37]) to recognize which of

1000 object categories a natural photograph displays. AlexNet

uses a convolutional architecture [38] inspired by the primate

visual system. The first convolutional layer detects a set of features

in the image. Each higher convolutional layer detects a set of fea-

tures in the preceding layer. Each feature template is detected all

over the two-dimensional image space by convolving the feature

template with the image (or preceding layer) and passing the

result through a rectifying non-linearity (rectified linear units:

negative values set to 0). As a result, the convolutional layers

(first five layers) are visuotopic with receptive fields increasing

from layer to layer, as in the primate visual system.

(b) Measurement model for blood-oxygen-level-
dependent functional magnetic resonance imaging

We pretend that AlexNet is a biological brain and simulate the data

we would expect to obtain if we measured it with blood-oxygen-

level-dependent (BOLD) fMRI [39]. We assume that each fMRI

voxel measures a local average of neuronal activity [40–42]. Voxels

may reflect not only activity occurring within their boundaries, but

also activity outside close-by, whose effects on the local blood

oxygen level flow into the voxel over the period of measurement.

We therefore assume that each voxel signal is a Gaussian-weighted

local average. The local-averaging range depends on the details of

vascular physiology (including the point spread function of the vaso-

dilatory response), the voxel size and the cortical magnification

factor, which defines what visual angle corresponds to a millimetre

distance on the cortex in a retinotopic visual area. Since some of

these parameters vary substantially [43] across human subjects, the

precise local averaging range is unknown. We therefore assume a

prior distribution over this parameter.

Each convolutional layer contains a spatial image map for each

of a number of features. This corresponds to the local topological

maps (e.g. of orientations in V1) nested inside the global
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Figure 2. Locally averaging fMRI voxels exhibit different tuning than the
neurons they sample. A set of neurons (lined up horizontally at the
bottom along a single spatial dimension) have a variety of tuning functions
(columns of the bottom rectangle). The arrangement of the neurons in cortex
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rapidly along the cortex (features 4 – 6), but will approximately preserve
selectivities that vary slowly along the cortex (features 1 – 3).
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retinotopic maps in early visual cortical areas. The fact that the

model defines not only a computational process, but also the

spatial arrangement of the computational units, enables us to pre-

dict how the model’s internal representations would be reflected in

locally averaging fMRI voxels.

A voxel sampling a little patch of V1 will average signals from

neurons with very similar spatial receptive fields and selectivities

for different orientations. We therefore expect that orientation-

specific signals will be attenuated in the voxel patterns, whereas

information about the overall spatial distribution of contrast

across the image will be better preserved (figures 2 and 3). It is unli-

kely that a voxel samples all orientations (and similarly the entire

range of selectivities for other properties like spatial frequency and

colour) exactly equally [44–52]. To simulate an fMRI voxel,

we assume that the different features at the sampled location con-

tribute to the signal with weights drawn uniformly from the

interval [0,1].

(c) Measurement channels as samples from a
population

An idea central to our method is that the measurement channels

should be considered as samples from a population of possible

measurement channels. All modalities of brain-activity measure-

ment provide only subsamplings of the complex spatio-temporal

dynamics of brain activity. Two-photon imaging enables us to

measure a large proportion of the neurons in certain small ani-

mals, but it is limited in its temporal resolution. Electrode

recordings are spatially and temporally precise, but limited to

an almost vanishingly small subset of neurons. The voxels of

fMRI, though strong in number and often covering the entire

brain, average across tens or hundreds of thousands of neurons.

Not only do we take an informational subsample from neur-

onal activity, but the particular sample we take is determined by
many factors beyond our control. We may target certain brain

regions. However, the particular neurons we record from with

electrodes or the particular sets of neurons sampled by our

fMRI voxels are not under our control. Understanding the par-

ticular responses we happen upon is of limited interest. Rather

the goal is to overcome the idiosyncrasies of a particular dataset

and infer the underlying computational mechanism. To achieve

this, we can view the measurement channels as a random

sample from a population of possible measurement channels

and target summary statistics of the population that can be

robustly estimated from our particular sample and are rich

enough to distinguish between candidate BCMs.

(d) Representational distances and the Johnson –
Lindenstrauss Lemma

Representational distances, assembled in an RDM that contains a

distance for each pair of stimuli, provide summary statistics with

desirable properties. First, an RDM abstracts from the measure-

ment channels and instead describes the relationships between

representations. Second, an RDM provides a rich characterization

of a representation that is likely to discriminate functionally dis-

tinct brain representations. Information is lost in the summary. In

the case of an RDM, what is lost is the information about which

dimension of the representational space each measurement chan-

nel reflects. An RDM specifies an equivalence class of neuronal

representations, all of which afford linear readout of the same

properties of the stimuli (assuming that the noise is multinormal

and the distance is the Mahalanobis distance).

When considering a human population such as the Dutch,

we are very comfortable with the idea that we can rely on a

random sample of, say, 500 Dutch people to estimate the average

height of the Dutch population. If we measure representational

distances as averaged squared activity differences, we likewise

expect the average across a sufficiently large random sample of

particular channels to be a good estimate of the average across

the population of measurement channels. The RDM of average

squared differences computed from our measurements will be

a good approximation of the RDM we would obtain if we had

the entire population of possible measurement channels.

The Johnson–Lindenstrauss Lemma (JL Lemma) states that

distances between P points in an N-dimensional space are

approximately preserved when the coordinates of the points

are recoded along M , N new axes that are oriented ran-

domly—as long as M . O(log P)1 [53]. This means that for

sufficiently large P, the minimally required M is proportional

to log(P). Distances are approximately preserved when randomly

weighted averages are taken (equivalent to projections onto

randomly oriented axes) or dimensions are selected at random.

Importantly, the number M . O(log P) of random samples

required is independent of the dimensionality N of the original

space.

This means that we expect a sufficiently large random sample

of individual neurons from a population code to give us a good

estimate of the RDM we would measure had we recorded the

entire population. It also means that we expect a sufficient

number of fMRI voxels to give us an RDM similar to that obtained

from the neurons if the fMRI voxels sampled the neurons ran-

domly (e.g. if neurons of different selectivity were randomly

located in the measured region). This may explain why RDMs

from cell recordings and fMRI can look surprisingly similar [5].

However, in general, the neurons are not randomly located

within a region, and so fMRI voxels do not take averages of

random subsets of neurons. Voxels are, thus, not expected to

give us RDMs that match those expected for neuronal recordings.

For example, a voxel in V1 will average neurons with similar

spatial receptive fields that are selective for different orientations.

An RDM from fMRI is therefore expected to show weaker
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Figure 3. Distortion of the apparent representational geometry by locally averaging voxels. This figure illustrates a worst-case scenario of how sampling with locally
averaging fMRI voxels might distort the apparent representational dissimilarities. A set of eight stimuli (grey discs with black symbols) is presented to a primate one by
one, all at the same retinal location. In the V1 representation (a), bars of opposite orientation (horizontal, vertical) in the same location (left half of the disc, right half of
the disc) drive separate sets of neurons. Bars in different locations within the disc also drive separate sets of neurons. (a) The stimuli arranged in 2D, such that their
distances on the page reflect their V1 representational dissimilarities. The stimulus pairs that are most distinct are stimulus pairs with opposite orientations in both
locations (opposed corners). When the V1 representation is sampled with locally averaging fMRI voxels (b), neurons preferring opposite orientations in a single location
are pooled and the orientation information is attenuated (though probably not lost altogether, cf. [44,49]). We therefore expect two stimuli with bars in the same
locations to elicit similar fMRI patterns, irrespective of the bars’ orientation. As a result, the stimulus pairs that are most similar in the fMRI voxels are those that are most
distinct in the neurons. The V1-neuron RDM is expected to be negatively correlated with the V1-voxel RDM. These observations hold for this particular stimulus set, not
in general. The arrangements drawn here are approximate and designed to ensure visibility of all stimuli. (Qualitatively similar results obtain with MDS using Euclidean,
cosine or city block distance to measure representational dissimilarity and various MDS cost functions including metric stress, stress and strain).
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distinctions than an RDM from neurons between stimuli differing

in local stimulus orientation, but similar distinctions between

stimuli differing in the global distribution of contrast energy

across the image (figure 3).

We can account for such distortions by modelling the

measurements. To model locally averaging measurement chan-

nels, we need to make predictions about the spatial layout of

the BCM units, as provided, for example, by the visuotopic

maps in deep convolutional neural networks. If an alternative

spatial layout or measurement process appeared plausible, then

this should be implemented as a generative model and included

in the prior hypothesis space for Bayesian inference.

The RDM computed from a sufficient number of measure-

ment channels is expected to be a good approximation of the

RDM computed for the population of channels, of which the

actual measurements can be considered a random sample.

Note that this also implies that repeating the measurement and

simulating the measurement (in either case taking a different

random sample from the population of channels) should yield

consistent RDMs.

(e) Probabilistic representational similarity analysis
The JL Lemma is useful, because it enables us to compute the

RDM predicted by each BCM with an MM. For each BCM and

setting of the MM parameters, there is a population of measure-

ment channels, each sampling the representation at a different

location. We can simulate a large sample from the population

of measurement channels and compute an RDM prediction

from that sample.

(i) Implementation of the functional magnetic resonance
imaging measurement model

Here the only MM parameter was the local-averaging range,

which was specified as the full width at half maximum

(FWHM) of a Gaussian kernel defining the local averaging. The
FWHM was specified in units corresponding to grid steps for

each convolutional map. For example, the first convolutional

layer of AlexNet has maps that are 55 by 55 pixels large. Thus,

1 unit corresponds to 1/55 of the visual angle spanned by the

input image. We used a prior composed of a discrete set of

20 values equally spaced in the range [0,16], thus covering a

very wide interval of local-averaging ranges. In addition to Gaus-

sian smoothing across retinotopic positions, the measurement

channel simulation also pooled across different feature maps in

each convolutional layer. After smoothing each feature map,

each unit was assigned a weight drawn randomly from the inter-

val [0,1]. For each retinotopic location, the weight vector across

feature maps was scaled to sum to 1. Then the weights were

used to compute a weighted sum across feature maps. All

weights used in this local averaging scheme were positive,

reflecting the notion that fMRI voxels sample neuronal activity

patterns by local integration [32,49]. Our scheme implements a

particular model of the nature of fMRI measurements. Note

that alternative models can easily be used in the same inferential

framework. All that is required is a forward simulation of the

measurement channels.
(ii) Simulation of data for 12 subjects
We simulated data from each of the five convolutional layers

(BCMs) of AlexNet for 12 subjects. For each subject and BCM,

we used a different value for the local averaging range and

noise level, which were randomly chosen from the prior. Each

simulated dataset comprised 500 simulated voxels, which were

randomly sampled from a population of simulated voxels

obtained by Gaussian smoothing (using the local-averaging

range parameter to define the FWHM) and random weighting

of feature maps using weights drawn uniformly from the unit

interval. The MM parameters chosen in the data simulation

were not available to the statistical inference procedure, reflecting

the fact that these are unknown parameters in the analysis of real

data. The analysis had no information about which BCM
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Figure 4. Classical RSA without modelling of the measurement process can fail to identify the data-generating BCM when measurements distort the represen-
tational geometry. Frequentist RSA without a measurement model performed for simulated fMRI data from different layers of AlexNet. Voxels were simulated as local
averages. Because the local averaging by the voxels is not accounted for in the analysis, the ground-truth data-generating model (red text label) does not reach the
noise ceiling (grey bar) for BCMs conv2 – conv5. For two of five ground-truth BCMs (conv3 or conv4), the true model is not the best-performing model. Group
analysis for 12 simulated subjects. Stars indicate significant RDM correlations. Grey rectangles are noise ceilings, whose upper and lower edges indicate upper and
lower bounds on the performance expected for the unknown true model given the noise in the data and the inter-subject variability. Black lines above the noise
ceilings indicate significant differences between models (subject-as-random-effect signed-rank tests, FDR , 0.05). Note the substantial noise reflected in the low
noise ceiling, approximately matching expectations for a small fMRI study. The same simulated dataset was analysed with the proposed pRSA method without and
with an MM in figures 7 and 9.
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generated the data (the target of the inference), the local-aver-

aging range, the noise level or the particular randomly chosen

locations sampled by the simulated voxels.

(iii) Crossvalidated Mahalanobis distance as measure of
representational dissimilarity

We used the crossvalidated Mahalanobis (crossnobis) distance as

the estimator of representational dissimilarity. Crossvalidated

distance estimators are attractive because they are unbiased,

reliable and interpretable [27,31,54,55]. The Mahalanobis dis-

tance computed from noisy data provides a positively biased

estimate of the Mahalanobis distances of the noise-free true pat-

terns. For example, if the true distance is 0, the Mahalanobis

distance will be positive whenever there is noise in the data.

Classical RSA uses rank correlation of RDMs to achieve robust-

ness to biases and non-linearities introduced by the way the

representational dissimilarities are measured [25]. The crossnobis

distance is unbiased, that is its expected value matches the Maha-

lanobis distance. In particular, if the true distance is 0, the

crossnobis distance estimate will be symmetrically distributed

about 0. The interpretable zero point and undistorted (albeit

noisy) reflection of the true distances may give us added

power to distinguish among BCMs. Moreover, we recently
derived a multinormal approximation of the distribution of

crossnobis RDMs in closed form [56]. This multinormal model

enables us to evaluate the likelihood (probability of a crossnobis

RDM estimate given a BCM and MM) and thus obviates the need

to model the effect of noise by simulation or to rely on an

approximate Bayesian computation [57,58].

(iv) Bayesian inference on brain-computational models
For each subject, we performed Bayesian inference using the

following equation:

pðmjdÞ � pðmÞ �
P

i pðdjm,uiÞ � pðuiÞP
j pðmjÞ �

P
k pðdjmj,ukÞ � pðukÞ

: ð2:1Þ

The index m, for model, identifies the BCM. p(mjd) is the

posterior over models given the subject’s data-based RDM esti-

mate. The unique values of the RDM are stored in vector d,

which contains the crossnobis distance estimates in the lower

triangular region of the condition-by-condition RDM. p(m) is

the prior over the BCMs, which we assume here to be uniform.

p(djm, u) is the likelihood, i.e. the probability of observed

data RDM d given the BCM m and the MM with parameter

vector u. In the present implementation, the MM has a single par-

ameter that specifies the local-averaging range (FWHM). p(u) is



MDS

RDM space

conv1
conv2
conv3
conv4
conv5

conv1

0 max

RDM dissimilarity

conv2

conv3

conv4

conv5

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5

local-averaging range
different random samples
of (locally averaging) voxels

Figure 5. RDMs are robust to random sampling of locally averaging measurement channels, but strongly reflect the brain-computational model and the range of
local averaging in measurement. MDS (left) was used to visualize the pairwise differences among the RDMs (matrix of Euclidean distances between RDMs on the
right). Each point corresponds to an RDM. The MDS arrangement is optimized for the 2D distances between points to best represent (in the sense of least squared
deviations) the differences between RDMs. For clarity, the set of RDMs was restricted to five different local-averaging ranges (circle size). RDMs shown are for the no-
noise condition, where random variability results only from the random sampling of 500 simulated voxels among the population of measurement channels. Clusters
of overlapping points correspond to sets of five RDMs resulting from repeated sampling of the representation with a fresh set of 500 voxels placed at random
locations in the BCM’s representation. The difference between two RDMs was measured by the Euclidean distance between their dissimilarities. The MDS arrange-
ment minimizes the metric stress criterion.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20160278

7

the prior over the MM parameter vector. The prior p(u) is rep-

resented by a sample ui of parameter values. We used an

equally spaced set of 20 values (i ¼ 1, 2, . . . , 20) of the local-aver-

aging range, representing a uniform prior. We therefore set

p(ui) ¼ 1/20.

To evaluate the likelihood p(djm, u), we used a recently

derived multinormal model of the sampling distribution of cross-

nobis distance vectors d [56] in the space spanned by the D ¼
(K2 2 K )/2 pairwise distances among the K stimuli. First, the

BCM m is used to generate a response vector to each stimulus.

Then the MM with parameter vector u is used to simulate a

large sample from the population of measurement channels for

each stimulus. A noise-free RDM m0ðm, uÞ is computed for the

stimulus set using the entire set of simulated measurement chan-

nels. We then fit a scaling factor s that scales m0ðm, uÞ so as to

best fit the data RDM d in a least-squares sense:

s ¼ arg min
s
ðks �m0ðm, uÞ � dk2

2Þ: ð2:2Þ

This estimate served our purposes here, but a better approach

is to set s by iteratively reweighted least squares, so as to maxi-

mize the likelihood in equation (2.4).

We refer to the scaled model RDM as:

m ¼ mðm, u, sÞ ¼ s �m0ðm, uÞ: ð2:3Þ

As derived in Diedrichsen et al. [56], the likelihood pðdjm, uÞ
is approximated by:

pðdjm, uÞ¼ pðdjmðm, u, sÞÞ

¼ exp �D
2

logð2pÞ�1

2
logðjVjÞ�1

2
ðd�mÞTV�1ðd�mÞ

� �
:

ð2:4Þ

This is a multinormal distribution centred on m, whose

shape is defined by stimulus-pair-by-stimulus-pair covariance
matrix V, with D2 ¼ ((K2 2 K )/2)2 entries:

V ¼ 4
DWJ

Np
þ 2

JWJ

NpðNp � 1Þ

� �
� trðSR � SRÞ

P2
: ð2:5Þ

Here W denotes element-by-element matrix multiplication.
D is the stimulus-pair-by-stimulus-pair second-moments
matrix of the activity differences among the true activity pat-
terns. J is the stimulus-pair-by-stimulus-pair covariance
matrix of estimated pattern differences across data partitions,
which is a function of SK, the stimulus-by-stimulus covari-
ance matrix of the measured response patterns. Np is the
number of partitions of the data used to compute the crossva-
lidated (crossnobis) estimates of the Mahalanobis distances.

Note that V depends on both the model (via D, a function of the

assumed true activity patterns) and the data (via J and SR). J

depends on SK, the stimulus-by-stimulus covariance matrix of the

response-pattern estimates. SR is the channel-by-channel covari-

ance matrix of the residuals of the linear pattern estimation model.

In sum, for each BCM and each setting of the local averaging

range, we simulated a noise-free RDM m0ðm,uÞ for the set of

92 object images used in Kriegeskorte et al. [5]. For a given

single-subject data simulation, we computed RDM d, SK and

SR. We used equations (2.2) and (2.3) to fit the scale factor and

compute m. For each combination of a BCM m and an MM par-

ameter u, this enabled us to compute V and the likelihood

pðdjm, uÞ using equations (2.4) and (2.5). For each BCM m, each

of the 20 samples ui represented an equal portion of prior

probability mass pðuiÞ ¼ 1=20. We therefore computed the mar-

ginal likelihood as the mean of the likelihoods pðdjm, uiÞ across

i ¼ 1, 2, . . . , 20.

We assumed a uniform prior over BCMs. Thus, to obtain the

posterior distribution (five probabilities here, one for each candi-

date BCM) for a given simulated dataset for a single subject, we

normalized the vector of marginal likelihoods to sum to 1. For

each data-generating BCM, the group posterior over candidate
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Figure 6. Noise mixes the RDM distributions associated with different BCMs. For each BCM (conv1 – 5) and each MM (local-averaging kernel widths indicated by
circle size), RDMs for two different noise levels are shown in MDS arrangements. In the no-noise condition, the only source of random variability in the RDMs is the
random sampling of 500 locally averaging measurement channels. No noise is added to the channel responses. In the maximal noise condition, the amount of noise
added is the upper limit of the noise levels used in simulating the single-subject data. Noise is differently reflected in Mahalanobis distance RDMs (a) and crossnobis
distance RDMs (b). Noise nonlinearly distorts data-based Mahalonobis distances in comparison to the Mahalanobis distances among the true patterns. Noise creates a
positive bias, which is strong for short distances and weak for long distances. High noise flattens Mahalanobis RDMs and makes them converge on a point in RDM
space where all pairwise distances are equal and long. The crossnobis distance estimator, by contrast, is unbiased. Its expected values match the Mahalanobis
distances among the true patterns. High noise, then, pushes RDMs in random directions and can mix the RDM distributions associated with different BCMs in
the periphery. Conventions as in figure 5. MDS based on Euclidean distances among RDMs, minimizing metric stress.
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BCMs was obtained by multiplying the single-subject posteriors

and renormalizing the vector of probability masses to sum to 1.
3. Results
(a) The measurement process distorts the apparent

representational geometry
We wanted to test whether the local averaging of simulated

neurons (i.e. BCM units) by voxels would distort the apparent

representational geometry and entail incorrect inferences when

the measurement process was not accounted for. To this end,

we analysed the simulated fMRI data for each BCM with clas-

sical frequentist RSA [27], using model RDMs computed from

the BCMs without an MM (figure 4).

Results clearly demonstrated the effects of the measurement

on the RDMs. For all BCMs except convolutional layer 1, the
data-generating BCM did not reach the noise ceiling, indicating

that the model RDMs (not accounting for the measurements)

failed to fully explain the data (simulated fMRI voxels that aver-

age locally). In three of five cases (conv1, conv 2, conv 5), the

best-performing BCM was still the ground-truth BCM that

had generated the data. However, incorrect inferences did

occur (conv3, conv 4), where another BCM achieved a higher

RDM correlation than the data-generating BCM.

The noise level in the simulation was purposely set quite

high so as to pose a real challenge for inference. This is reflected

in the low noise ceilings (grey rectangles in figure 4), which

indicate the expected performance of the true model given

the noise and inter-subject variability [27]. For this dataset,

the true model never significantly outperformed all competing

candidate models.

This shows that the RDM distortions caused by local aver-

aging are not negligible in comparison to the RDM differences
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between BCMs. Measurement-related RDM distortions are

large enough to mislead us about the data-generating BCM.

To visualize the effect of sampling BCM units with local

averages on the RDMs, we performed multidimensional scal-

ing (MDS) on the RDMs (figures 5 and 6). Results confirm

that local averaging strongly affects the RDM (figure 5).

Two RDMs for the same BCM but different ranges of local

averaging were often more different than two RDMs for

different BCMs. In contrast to the worst-case scenario of

figure 3, we used a set of 92 real-world object photos here.

The strong effect of local averaging on the RDMs therefore

cannot be dismissed as an idiosyncrasy of an artificial

stimulus set.

Encouragingly, different BCMs are associated with separ-

ate distributions in RDM space. The local-averaging range

moves the RDM along a one-dimensional manifold in RDM

space (figure 5), but the manifolds for different BCMs do

not intersect. Adding a high level of noise may lead to

mixing of the RDM distributions (figure 6). Note, however,

that apparent mixing of the distributions in the 2D MDS
arrangement does not imply mixing in the high-dimensional

RDM space. The remaining inferential analyses will address

the degree to which the data-generating BCM can be inferred

from a data RDM by modelling the predictive probability

density over RDM space for each BCM with a prior of the

local-averaging parameter of the MM.

(b) Repeated simulations of the measurement yield
consistent representational dissimilarity matrices

Estimating the RDM for a given BCM and local averaging

range repeatedly from different random samples of simulated

measurement channels yields almost identical RDMs (clus-

ters of overlapping circles in figure 5). This might be

surprising in light of the fact that the RDMs are based on sep-

arate draws of 500 samples from the population of simulated

fMRI voxels. However, this result is consistent with the JL

Lemma. It means that the data-generating model can be

inferred from RDM summary statistics. We need not model

the idisyncrasies of the particular voxels we measured.
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Figure 8. Inferring the data-generating computational model under uncertainty about how fMRI voxels downsample neuronal activity. The matrix shows the RDM
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Instead all we need is to model a random sample of locally

averaging measurements drawn from the same population

of possible measurements as the actual measurements.
(c) Probabilistic representational similarity analysis
without a measurement model fails to accurately
infer the data-generating brain-computational
model

This article introduces both pRSA and the use of MMs. To

understand the effect of each of these innovations, we first ana-

lysed the simulated data (same as analysed with classical RSA

in figure 4) using pRSA without an MM. Each BCM was used

to predict an RDM that was computed from all units of the con-

volutional layer in question, without taking local averaging

samples. The noise was modelled using the multinormal

model of the sampling distribution of crossnobis RDMs as

explained in the Methods.

Although pRSA correctly recognized convolutional layers

1 and 3, assigning a posterior probability of nearly 1 to the

data-generating model in both cases (figure 7), the analysis

failed to recognize convolutional layers 2, 4 and 5. At the

group level, the inference suggested that the data-generating

model was convolutional layer 3 and the posterior prob-

ability assigned to layer 3 in each case again approached

1. This unsettling failure of probabilistic inference is

explained by the fact that the inference is performed on the

basis of incorrect assumptions. The analysis incorrectly

assumed that one of the five layers must have generated

the data and that the RDMs were computed from the original
units without local averaging. The failure of inference high-

lights the need for modelling the measurement process.

(d) Probabilistic representational similarity analysis
using a measurement model accurately infers the
data-generating brain-computational model

Figure 8 suggested that the effects of measurement can be

accounted for by simulation. We performed pRSA with an

MM parametrized by the local-averaging range (figure 9).

We placed a broad uniform prior on the local-averaging

range. The analysis was blind to the local-averaging range

and noise level randomly chosen in simulating each subject’s

data. It had to take those uncertainties into account in

the inference.

For each BCM and local-averaging range drawn from the

prior, we predicted a Gaussian density in crossnobis RDM

space, based on the multinormal model of the sampling dis-

tribution of crossnobis RDMs. The predictive probability

density for a given BCM was thus a mixture of Gaussians.

We marginalized the likelihood to obtain the model evidence

and compute the posterior over the BCMs.

At the single-subject level, there were 60 datasets (each of

five ground-truth BCMs for each of 12 simulated subjects). Of

these 60 datasets, 2 were recognized incorrectly, i.e. the infer-

ence assigned an incorrect candidate model the highest

posterior probability; 58 were recognized correctly. At the

group level, all five BCMs were recognized correctly and

assigned a posterior probability approaching 1.

These results suggest that pRSA with MMs works well

when its assumptions are correct. It also suggests that the
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predictive distributions of the different BCMs do not overlap

excessively in RDM space. As a result, the data-generating

BCM can be accurately inferred from the data.
4. Discussion
(a) Inference on complex brain-computational models

with summary statistics
Realistic process models of brain computation require large

numbers of computational elements, which may ultimately

approach the number of neurons in the brain to be modelled.

We need to test such models with massively multivariate

brain-activity measurements. This poses a formidable corre-

spondence problem: How do the units of a BCM affect each

of the measurement channels? We have argued that for

model comparison it is unnecessary to estimate a separate

MM for each measurement channel. The idiosyncrasies of

each channel in a given dataset are of no interest to us
because they do not reflect the brain-computational mechan-

ism. We showed that we can infer the data-generating BCM

by predicting distributions of summary statistics of the stimu-

lus-by-channel response matrix from each candidate BCM.

We explored the RDM as a particular summary statistic.

This led to the introduction of probabilistic RSA, in which

the posterior over BCMs is estimated on the basis of the

distributions of RDMs predicted by the BCMs.

(b) Modelling the measurement channels as a sample
from a population of measurement channels

Key insights were (i) that we can treat the measurement

channels as a random sample from a population of poten-

tial measurement channels and (ii) that we can model our

knowledge about the way the measurements sample the com-

putational units. A natural and flexible way to express what we

know about the measurement process is by means of a forward

simulation. Because we do not have precise knowledge of all

determinants of the measurement process, we need a way to
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express our uncertainty. We can put priors on the unknown

parameters of the MMs. The simulation draws the para-

meters of the MM from the prior, sampling the space of MMs

considered possible. This enables us to account for the way

a given computational process might be reflected in the

brain-activity measurements.

In the method we implemented here, a BCM’s predictive

probability density function over crossnobis RDM space is a mix-

ture of Gaussians, whose means trace a manifold parametrized

by the MM parameters. The multinormal model of the sampling

distribution of crossnobis RDMs [56] accounts for the effect of

measurement noise and provides the Gaussian primitives from

which the predictive density for each BCM is built.

We focused on fMRI and assumed that the signals in fMRI

voxels constitute local averages of computational units. A

voxel reflects signals from a local region extending beyond its

cuboid boundaries, because it reflects signals carried in through

the local vasculature. We modelled this process as a local

Gaussian-weighted average of the activity. Because we are

uncertain about the cortical magnification (ratio of millimetre

in the cortical map over degrees visual angle in the visual

field) and about the range of signal integration beyond the

boundaries of each voxel, we placed a prior on the width of

the Gaussian filter, through which the measurements reflected

the activity patterns across the computational units. Other mod-

alities of brain-activity measurement will require different MMs.

An advantage of our approach is that a forward simulation of

how the measurements sample the neurons suffices for doing

inference that takes the measurement process into account.

(c) Current limitations and future directions
The observations and ideas in this paper provide a starting

point for pRSA. Likelihood-based inference promises greater

sensitivity than classical rank-correlation-based RSA infer-

ence (Diedrichsen et al. 2016). However, additional

development and validation will be needed before pRSA is

ready for neuroscientific applications. Current limitations

include: (1) The BCM-predicted RDM-distributional model
is informed about the data via the scaling parameter s and

the covariance matrices
P

K and
P

R. We need to determine

whether this biases the inference and explore ways to

model our uncertainty about these latent variables and mar-

ginalise across them. (2) It is unclear how our current

implementation handles violations of the model assump-

tions. We need to implement model checking to infer

whether all BCMs fail to explain the data. (3) The method

has not yet been tested on real fMRI data. (4) Finally, a com-

prehensive quantitative comparison to frequentist RSA in

terms of sensitivity (to BCM distinctions) and specificity

(false-positives control) is still missing. Frequentist RSA cor-

rectly revealed that BCMs conv2-5 fell short of explaining

the data when no MM was used in analysis (bars below

noise ceiling). It also revealed its own inability to distinguish

different BCMs (few significant differences). Measurement

modelling could also be integrated into frequentist RSA. Ide-

ally, our future method for inferring brain-computational

mechanisms should combine the advantages of frequentist

and Bayesian inference. Whatever this method turns out to

be, it will need to take into account our knowledge and

uncertainties about the measurement process.
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