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value was found to be 100 µg/mL of AgNPs against cancer 
HeLa cell line.
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Introduction

Nowadays, the multidrug resistance in microbes is becom-
ing a global problem, which is the leading cause of human 
death [1–8]. Therefore, there is a need to search for effi-
cient, safe and affordable antimicrobials to tackle the prob-
lem [7]. Since ancient times, silver and its compounds are 
being used as antimicrobial agents in diseases caused by 
bacteria, fungi and viruses [9–12]. The potential antibacte-
rial activity of silver nanoparticles (AgNPs) against Gram-
positive and Gram-negative bacteria including multidrug 
resistant strains was reported by many researchers [13–16]. 
The formation of biofilm by bacteria is a major threat to 
the health. Such bacteria are embedded in a complex poly-
mer matrix and develop resistance to the antibiotics. The 
biofilms protects the bacterial cells as compared to the free 
living cells. There are various reports on role of AgNPs 
against microbial biofilm [13, 17, 18].

Similarly, Gandhiraj et  al. [19] reported a significant 
anticancer activity of biosynthesized silver nanoparti-
cles against breast cancer cell line MCF-7. The authors 
suggested that the synthesized AgNPs can be used to 
develop potential anticancer agent and active pharma 
molecule. Manivasagan et  al. [20] also found cytotoxic 
effect of AgNPs against HeLa cancer cell line. Supraja 
and Arumugam [21] analysed cytotoxic effect of AgNPs 
and reported that cytotoxicity increased at higher con-
centrations. AgNPs demonstrated higher toxicity to 

Abstract  The authors report the biological synthesis of 
silver nanoparticles (AgNPs) by alkaliphilic actinobacte-
rium Nocardiopsis valliformis OT1 strain isolated for the 
first time from Lonar crater, India. The primary detec-
tion of silver NPs formation was made by colour change 
from colourless to dark brown and confirmed by UV–Vis 
spectrum of AgNPs at 423  nm, specific for AgNPs. Fur-
ther, AgNPs were characterized by nanoparticle tracking 
analysis, Zeta sizer, Fourier transform infrared spectros-
copy (FTIR) and transmission electron microscopy (TEM) 
analyses. FTIR analysis showed the presence of proteins 
as capping agent. TEM analysis revealed the formation of 
spherical and polydispersed AgNPs within the size range 
of 5–50 nm. The antimicrobial activity of silver nanoparti-
cles against Escherichia coli, Klebsiella pneumoniae, Pseu‑
domonas aeruginosa, Staphylococcus aureus and Bacillus 
subtilis was evaluated. The AgNPs showed the maximum 
antibacterial activity against B. subtilis (Gram positive) and 
the minimum against E. coli (Gram negative). The mini-
mal inhibitory concentration values of AgNPs for the tested 
bacteria were found to be in the range of 30–80 µg/mL. The 
AgNPs demonstrated higher antibacterial activity against 
all the bacteria tested as compared with the commercially 
available antibiotics. The cytotoxicity of biosynthesized 
AgNPs against in  vitro human cervical cancer cell line 
(HeLa) demonstrated a dose–response activity. The IC50 
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microorganisms, while showed lower toxicity to mamma-
lian cells as compared with other metals [22].

Biological synthesis of silver nanoparticles by differ-
ent microorganisms such as bacteria [23–26], fungi [7, 
27]; algae [28–30], plants [31–34], actinomycetes [15, 20, 
35] and myxobacteria [36] has been attempted by many 
researchers. Among these organisms, the synthesis of nano-
particles by actinobacteria has been less known [37]. The 
method of biosynthesis is easy and eco-friendly. The actin-
obacteria are the producers of medicinally important bioac-
tive compounds, mainly antibiotics, and those isolated from 
extreme and unexplored environments are predicted to be a 
rich source of novel antimicrobial agents [38].

Lonar Lake is located at Lonar in Buldhana district, 
Maharashtra, India, which was created by a meteor impact 
during the Pleistocene epoch. This lake, which lies in a 
basalt impact structure, is both saline and alkaline in nature 
[39, 40].

New species of Nocardiopsis, viz., N. valliformis HBUM 
20028 (T), was isolated and described for the first time by 
Yang et al. [41]. We isolated a new strain of Nocardiopsis 
valliformis OT1 from Lonar crater, Maharashtra, India.

The present study was aimed to: (1) isolate and identify 
a new strain of Nocardiopsis valliformis OT1 from extreme 
habitat of alkaline Lonar crater; (2) use N. valliformis OT1 
strain for biogenic synthesis of silver nanoparticles; and (3) 
assess antibacterial and cytotoxic activity.

Materials and methods

Isolation of N. valliformis OT1 strain

The actinobacterium N. valliformis OT1 strain was iso-
lated from soil collected from the rim of Lonar Crater Lake 
located at Lonar in Buldhana district, Maharashtra, India, 
by the serial dilution method described by Golinska et al. 
[42] on the Starch Casein Agar (SCA, [43]) supplemented 
with 5 % NaCl, at pH 8.5.

The pH of collected Lonar Lake soil was found to be 10.4. 
The isolate was maintained on halophilic nutrient agar (5  g 
yeast extract, 10 g casitone, glucose 5 g and 60 g NaCl [44]) 
slants at room temperature and as suspensions of mycelial 
fragments and spores in 20 % glycerol (v/v) at −80 °C for fur-
ther study. The N. valliformis OT1 strain grew in the presence 
of 5–15 % (w/v) sodium chloride and from pH 7.0 to 12.0 (all 
growth tests were carried out on halophilic nutrient agar).

Molecular identification and phylogenetic analysis of N. 
valliformis OT1 strain

The actinobacterium N. valliformis OT1 strain was iden-
tified on the basis of 16S rRNA gene sequence. DNA 

was isolated from biomass harvested following growth 
of the isolate at 27  °C for 7  days in ISP2 broth, pH 
5.5 [45]. DNA was extracted using DNA extraction kit 
(Sigma) according to manufacturer’s protocol, albeit 
with lysozyme at 45 mg/mL and incubation overnight at 
37 °C. The PCR amplification of the 16S rRNA gene was 
performed in a 100-µL reaction mixture containing 8 µL 
template DNA (100  ng), 10  µL PCR buffer (Bioline), 
2  µL of each PCR primer (p27F, p1525R, each 10 mM 
[46], 3.2 µL dNTP mix (12.5 mM; Bioline), 6 µL MgCl2 
(50 mM; Bioline), 2 µL 5 U Taq DNA polymerase (Bio-
line) and 66.8 µL sterile MilliQ water. The PCR ampli-
fications were made with an initial denaturation step at 
95 °C for 1 min, followed by 30 cycles of denaturation 
at 95  °C for 1  min, annealing for 1  min at 55  °C and 
an extension at 72 °C for 1 min; following these proce-
dures there was a final extension step of 72 °C for 5 min. 
The amplified product was purified using PCR purifica-
tion kit (Qiagen). The sequencing reactions were carried 
out by sequencing service of Institute of Biochemistry 
and Biophysics Polish Academy of Sciences, Warsaw, 
Poland.

The search for the closest phylogenetic neighbours 
based on 16S rRNA gene similarity was performed using 
the EzTaxon server (http://eztaxon-e.ezbiocloud.net/, [47]). 
Phylogenetic analyses were carried out using MEGA 6 
[48] and PHYML [49] software packages. Phylogenetic 
trees based on the aligned sequences were inferred using 
the neighbour-joining [50], the maximum-likelihood [51], 
maximum-parsimony [52] tree-making algorithms. The 
root position of the unrooted tree was estimated using the 
16S rRNA gene sequence of Streptomonospora nanhaien‑
sis 12A09T.

Synthesis of silver nanoparticles (AgNPs) from N. 
valliformis OT1 strain

N. valliformis OT1 strain was grown in 250-mL Erlen-
meyer flasks containing 100 mL halophilic nutrient broth 
(pH 8.5) and incubated in the orbital shaker (150  rpm) 
at 27 ± 1 °C for 8 days. The biomass was harvested by 
centrifugation at 6000g for 10  min and washed thrice 
with sterile distilled water to remove the attached 
medium components. Then, the biomass was resus-
pended in 100  mL sterilized distilled water and incu-
bated at 27 ± 1 °C for 48 h. Thereafter, the biomass was 
filtered through Whatman filter paper no. 1 in order to 
obtain cell-free filtrate. Later, the filtrate was addition-
ally harvested by centrifugation and treated with 1  mM 
silver nitrate solution, and kept at room temperature 
for 2–3  days. The supernatant (without silver nitrate) 
was used as control. The synthesized AgNPs were col-
lected by centrifugation (12,000g for 30  min). After 

http://eztaxon-e.ezbiocloud.net/
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centrifugation, the supernatant was removed and the 
AgNPs were dried at 40 °C overnight. The mass of dried 
silver nanoparticles was estimated in milligrams. For fur-
ther studies nanoparticles were dissolved in sterile dis-
tilled water/broth to obtain desired concentrations.

Characterization of silver nanoparticles

Visual detection

After treatment of cell filtrate with silver nitrate, the pre-
liminary detection of biosynthesized silver nanoparticles 
was carried out by visual observation of colour change 
from colourless to dark brown, which indicates the forma-
tion of Ag-nanoparticles.

UV‑visible spectroscopy analysis

Absorption spectrum of the reaction mixture was measured 
between 200- and 800-nm wavelength range by UV–Vis 
spectrophotometer (NanoDrop ND-2000, Thermo Scien-
tific, USA).

Zeta potential analysis

To understand the stability of biosynthesized silver nano-
particles, the zeta potential was measured. Nanoparticle 
samples (25 µL) were diluted 10 times and then sonicated 
for 15  min at 20  Hz. The mixture was filtered through 
0.22-µm filter and used for zeta potential measurement by 
Malvern Zetasizer 90 (ZS 90, Malvern Instruments Ltd, 
UK).

Fourier Transform Infrared Spectroscopy (FTIR) analysis

To determine the biomolecules responsible for the reduc-
tion of silver ions and stabilization of AgNPs in the solu-
tion, the FTIR analysis was carried out. The powder of syn-
thesized AgNPs was combined with dry KBr in the ratio 
of 1:100. AgNPs were characterized by FTIR spectros-
copy (PerkinElmer FTIR-2000, USA) in the range 4000–
400 cm−1 at a resolution of 4 cm−1.

Nanotracking analysis (NTA)

The nanotracking analysis was performed to measure the 
average size of the synthesized AgNPs. Five microlitres of 
the nanoparticle sample was diluted with 2  mL of nucle-
ase-free water, then injected into the sample chamber and 
observed through camera coupled with the nanoparticle 
tracking analyser NanoSight LM20 (Malvern Instruments 
Ltd, UK).

Transmission Electron Microscopy (TEM) Analysis

The size and morphology of the AgNPs were analysed by 
FEI Tecnai F20 X-Twintool (Fei, USA) transmission elec-
tron microscopy operating at an acceleration voltage of 
100 kV. The sample was prepared on a carbon-coated cop-
per grids (400 µm mesh size) by dropping a small amount 
of solution of AgNPs. The sample was then allowed to dry 
at room temperature prior to measurements. The obtained 
data were assessed by Statistica Software (StatSoft, USA).

Antibacterial activity of AgNPs

Activity of AgNPs individually and in combination 
with antibiotics against bacteria using disc diffusion 
method

The biosynthesized AgNPs from strain N. valliformis OT1 
were screened against Gram-positive bacteria, namely 
Staphylococcus aureus (ATCC6338) and Bacillus subti‑
lis (PCM2021 = ATCC 6633), and Gram-negative bacte-
ria including Escherichia coli (ATCC8739), Pseudomonas 
aeruginosa (ATCC10145) and Klebsiella pneumoniae 
(ATCC700603) by disc diffusion method on Trypticase soy 
agar (TSA, Becton–Dickinson). The 100  µL of bacterial 
inoculum (1 × 106 CFU/mL) was spread on to the surface 
of medium with sterile spreader. Subsequently, sterile disc 
(Ø 5  mm, Oxoid) impregnated with silver nanoparticles 
(20 µL) and standard antibiotic discs (kanamycin 30 mcg/
disc, ampicillin 25 mcg/disc and tetracycline 30 mcg/disc, 
Oxoid) were placed on to the surface of medium inoculated 
with tested bacteria. Similarly, the combined effects of each 
standard antibiotic and AgNPs were determined. Prior to 
study, the antibiotic discs were impregnated with a con-
centrated colloidal solution of silver nanoparticles (20 µL). 
The cell-free filtrate was used as a control. The plates were 
incubated at 37 °C for 24 h, and zones of bacterial growth 
inhibition were measured (in mm). The assay was per-
formed in triplicate.

Determination of MIC of antibiotics against tested bacteria

The minimum inhibitory concentration (MIC) is defined 
as the lowest concentration of chemicals that inhibits the 
growth of the organism. The MIC assays of antibiotics 
(ampicillin, kanamycin or tetracycline) were performed 
using Etest strips (BioMerieux) in the range of 0.016–
256  µg/mL against bacterial isolates. The study was per-
formed by diffusion method on Trypticase soy agar (TSA, 
Becton–Dickinson). The 100 µL of bacterial inoculum 
(1 ×  106  CFU/mL) was spread on to the surface of the 
medium with sterile spreader. Subsequently, Etest stripe 
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was placed onto the surface of inoculated agar medium 
and incubated for 24 h at 37 °C. Assay was performed in 
triplicate.

Determination of the MIC of AgNPs against tested bacteria

The MIC was determined by using 96-well culture plates. 
The synthesized AgNPs were screened for MIC by microti-
tre broth dilution method in triplicate. Trypticase soy broth 
was used as diluents for bacterial strains. The final concen-
tration of bacteria in each well was 1 × 106 CFU/mL. The 
different concentrations (from 10 to 100 µg/mL) of AgNPs 
were used. The positive and negative controls were main-
tained. The microtitre plates were read at 450 nm on mul-
timode reader (Biolog, USA) after incubation to determine 
the MIC values. Plates were incubated at 37 °C for 24 h.

Activity of AgNPs against bacteria in combination 
with antibiotics by dilution plate method

The MIC values of AgNPs from strain N. valliformis OT1 
and commercial antibiotic were used to estimate accu-
rate synergistic effect of AgNPs on antibiotic (kanamycin, 
ampicillin and tetracycline) activity. The assay was per-
formed using 96-well culture plates in triplicate. The final 
concentration of bacteria in each well was 1 ×  106 CFU/
mL. The Trypticase soy broth (TSB, Becton–Dickinson) 
was used as diluent for bacterial strains, antibiotics and 
AgNPs. The positive and negative controls were main-
tained. The microtitre plates were read at 450 nm on mul-
timode reader (Biolog, USA) after incubation to determine 
the bacterial growth inhibition (%). Plates were incubated 
at 37 °C for 24 h.

Cytotoxicity bioassay

Cell viability was evaluated by the MTT colorimetric 
technique using human HeLa cancer cell line, which was 
seeded in 96-well tissue culture plates. The monolayer cell 
culture was trypsinized, and the cell count was adjusted 
to 3 × 105 cells/mL using medium containing 10 % new-
born calf serum. To each well in microtitre plates, 100 µL 
of diluted cell suspension was added and incubated 24 h to 
form the cell monolayer. The supernatant was then flicked 
off, and 25 µL of AgNPs at final concentration 25, 50, 75 
and 100  µg/mL was added to the cells in microtitre plate 
and incubated at 37 °C in 5 % CO2 incubator for 48 h. The 
cells were periodically checked for granularity, shrinkage 
and swelling. The sample solution in wells was then flicked 
off, and 25 μL of MTT (3-(4, 5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide) dye was added to each well 
for reduction of MTT by metabolically active cells. The 
plates were gently shaken and incubated for 4 h at 37 °C in 

CO2 incubator. The supernatant was removed and replaced 
with 100 µL of DMSO for solubilization of the MTT crys-
tals. The absorbance was measured using a microplate 
reader (Biolog, USA) at a wavelength of 570  nm. First 
the percentage growth inhibition was calculated using fol-
lowing formula, % cell inhibition =  100 −  {(At − Ab)/
(AcAb)} × 100, where At = Absorbance value of test com-
pound, Ab = Absorbance value of blank, Ac = Absorbance 
value of control. Then, % of cell viability = 100 %—% of 
cell inhibition was calculated. The IC50 value was plotted 
by taking the concentration of AgNPs on X-axis versus per-
centage of cell viability on Y-axis.

Statistical analysis

To determine whether there are any significant differ-
ences among the activities of AgNPs, antibiotics and the 
combination of AgNPs and antibiotics, we applied ‘one-
way ANOVA’ for the relative variability within above 
parameters.

Results

Molecular identification and phylogenetic analysis of N. 
valliformis OT1 strain

Nearly complete 16S rRNA gene sequence of N. val‑
liformis OT1 strain (1430 nt; GenBank accession number: 
KU523974) was determined. Based on the EzTaxon-e anal-
ysis, N. valliformis OT1 strain was affiliated to the genus 
Nocardiopsis, being most closely related to N. valliformis 
DSM-45023T (99.4 %), N. exhalans ES10.1T (99.4 %) and 
N. metallicus KBS6T (99.4  %) and showed 8, 9 and 8 nt 
differences per 1430, 1428 and 1430 locations, respec-
tively. 16S rRNA gene sequence similarities between N. 
valliformis strain OT1 and other type strains of the genus 
Nocardiopsis were lower than 98.8  %. The phylogenetic 
trees based on 16S rRNA gene sequences showed that N. 
valliformis strain OT1 formed a distinct branch with N. val‑
liformis DSM-45023T, N. exhalans ES10.1T and N. metal‑
licus KBS6T, which was supported by a bootstrap value of 
42 % in the neighbour-joining tree (Fig. 1) and also recov-
ered with the maximum-likelihood and maximum-parsi-
mony algorithms.

Characterization of AgNPs

In the present study, silver nanoparticles (AgNPs) were 
synthesized by cell filtrate of actinobacterial N. valliformis 
OT1 strain which turned from colourless to dark brown 
after treatment with 1 mM AgNO3 (Fig. 2). Moreover, the 
biosynthesized Ag-nanoparticles were characterized by 
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UV–Vis spectroscopy, which showed sharp narrow peak 
with a maximum absorbance at 423 nm (Fig. 3). The 25 mg 
of AgNPs was obtained from 100  mL of cell-free filtrate 
treated with 1 mM AgNO3.

The zeta potential of silver NPs synthesized from N. 
valliformis OT1 strain was found to be −17.1  mV which 
exhibited the stability of synthesized nanoparticles (Fig. 4).

The FTIR spectroscopy in the range 4000–400  cm−1 
revealed the varied peaks, which corresponded to different 
functional groups and indicated the presence of stabilizing 

Fig. 1   Neighbour-joining tree based on nearly complete 16S rRNA 
gene sequences (1430 nt) showing relationships between the isolate 
N. valliformis and the type strains Nocardiopsis species. Asterisks 
indicate branches that were also found using the maximum-likeli-
hood and maximum-parsimony tree-making algorithms. Numbers at 

the nodes are percentage bootstrap values based on 1000 re-sampled 
datasets. T type strain. Bar 0.005 substitutions per nucleotide posi-
tion. The root position of the tree was determined using Streptomono‑
spora nanhaiensis 12A09T as outgroup

Fig. 2   Visual detection of silver nanoparticles synthesized from 
Nocardiopsis valliformis OT1 strain control (a) and experimental (b)

Fig. 3   UV–Vis spectrum of silver nanoparticles synthesized from 
Nocardiopsis valliformis OT1 strain control (a) and experimental (b)

Fig. 4   Zeta potential graph of silver nanoparticles synthesized from 
OT1 strain (−17.1 mV) at pH 7
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protein molecules on the surface of Ag-nanoparticles. In 
the present study, the Ag-nanoparticles synthesized from N. 
valliformis OT1 strain revealed absorbance peaks at 3437, 
1639, 1405, 1384 and 1352 cm−1 (Fig. 5).

The NTAs showed mean size of Ag-nanoparticles syn-
thesized from isolate N. valliformis OT1 of 62 (±51) nm 
(Fig.  6). The concentration of synthesized AgNPs was 
found to be 0.24 × 108 particles/mL.

The TEM analysis of Ag-nanoparticles from N. val‑
liformis OT1 strain showed the presence of spherical and 

polydispersed nanoparticles in the size range of 5–50  nm 
(Fig.  7). The biosynthesized Ag-nanoparticles were also 
found as aggregates at some places.

In vitro activity of biogenic AgNPs against tested 
bacteria

The silver nanoparticles synthesized from N. valli‑
formis were screened for its antibacterial activity against 
Escherichia coli (ATCC8739), Staphylococcus aureus 

Fig. 5   FTIR analysis of silver 
nanoparticles synthesized from 
OT1 strain. Control (a) and 
experimental (b)
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(ATCC6338), Klebsiella pneumoniae (ATCC700603), 
Pseudomonas aeruginosa (ATCC10145) and Bacillus sub‑
tilis (PCM2021).

In the preliminary studies using disc diffusion method 
the Ag-nanoparticles showed maximum antibacterial activ-
ity against B. subtilis (13.66  mm), followed by S. aureus 
(12.16  mm), P. aeruginosa (11  mm), K. pneumoniae 
(10.16  mm) and E. coli (9.66  mm) (Table  1). The syner-
gistic effect of silver NPs with antibiotics was also studied 

against above bacteria. The results of synergistic effects of 
the different antibiotics combined with synthesized AgNPs 
are shown in Table  1. Generally, the synergistic effect of 
AgNPs in combination with antibiotics was found to be 
with all tested antibiotics (with exception of AgNPs and 
ampicillin against Pseudomonas aeruginosa). The most 
interesting observations were noticed against K. pneumo‑
niae and P. aeruginosa, which were resistant to antibiotics 
alone (ampicillin and kanamycin, respectively), but sensi-
tive when antibiotics were combined with synthesized Ag-
nanoparticles (Table 1).

The minimum inhibitory concentration (MIC) of bio-
synthesized Ag-nanoparticles was screened against all the 
tested bacteria. The MIC values of silver NPs were found 
to be in the range of 30–80 µg/mL (Table 2).

The results of synergistic effect of AgNPs with antibi-
otics using plate dilution method are presented in Table 2. 
The maximum synergistic effect was observed for ampi-
cillin and kanamycin when combined with AgNPs against 
Pseudomonas aeruginosa (41.92 and 35.8 %, respectively, 
higher bacterial growth inhibition than AgNPs used indi-
vidually). Significant enhancement of bacterial growth 
inhibition was observed in the presence of AgNPs and kan-
amycin against Pseudomonas aeruginosa (>8 %).

Cytotoxicity bioassay

The in vitro cytotoxic activity of bioreduced AgNPs from 
N. valliformis OT1 strain was screened against cancer 
HeLa cell line. Encouragingly, AgNPs having concentra-
tions of 25, 50, 75 and 100  µg/mL showed 19.87, 30.72, 
45.18 and 52.40 % inhibition against cancer HeLa cell line, 
respectively (Fig. 8).

Discussion

Since Yang et al. [41] have reported new species of N. valli‑
formis from alkaline lake of China, it is a first report on iso-
lation of alkaliphilic actinobacterium Nocardiopsis valli‑
formis OT1 strain from Lonar crater of Central India and its 
application in synthesis of AgNPs and antibacterial activity 
against bacterial pathogens [41].

The synthesis of AgNPs was studied after the treatment 
of cell-free filtrate with silver nitrate solution. The reduc-
tion of Ag ions into AgNPs is indicated by the change in 
colour from colourless to dark brown and the absorbance 
property of AgNPs at about 420  nm of wavelength. The 
presence of specific peak is due to the surface plasmon res-
onance property of noble metal nanoparticles [14, 16, 53].

The zeta potential is a measure of the electrostatic 
potential on the surface of the nanoparticles and is related 
to the electrophoretic mobility and stability of colloidal 

Fig. 6   NTA of silver nanoparticles synthesized from Nocardiopsis 
valliformis OT1 strain

Fig. 7   Transmission electron micrograph and selected area diffrac-
tion pattern of silver nanoparticles synthesized from Nocardiopsis 
valliformis OT1 strain
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suspension of nanoparticles [54]. It has been reported that 
the particles with higher negative or positive zeta potential 
value possess a force to repel each other and do not form 
aggregates. Unlike these with low zeta potential value, 
which has no force to avoid particles coming together, par-
ticles form a bigger particle as aggregation [55]. Our find-
ings are similar to results by Gaikwad et al. [56] and Rai 
et  al. [55] who reported zeta potential value range from 
−5.31 to −15.8 mV of mycogenic AgNPs.

To understand the contribution of biomolecules 
responsible for the reduction of the Ag+ ions into Ag-
nanoparticles and the presence of capping agents over 
the bioreduced AgNPs responsible for stabilization of 
AgNPs, the FTIR spectroscopy was performed. The 
absorbance band at 3437 cm−1 can attribute to the vibra-
tions of amino groups (N–H) related to the presence of 
peptides [7, 16, 57]. However, the peak at 1639  cm−1 
may be because of carboxylic group (C=O) stretching. 
Similarly, the absorbance at 1405 cm−1 can be assigned 
to C–H asym. deformation vibration [20]. In addition, the 
peak at 1384 cm−1 is associated with CH3 sym. bending 
and at 1352 cm−1 is resemblance to the C–H deformation 
vibration [58]. From the above results, it is assumed that 
capping agent as proteins binds to silver NPs. Gole et al. 
[59] reported that proteins are responsible for binding to 
silver nanoparticles by the electrostatic attraction of neg-
atively charged carboxylate groups present in the protein 
secreted by fungus. Consequently, the AgNPs become 
stable by proteins [59].

The average size of biosynthesized Ag-nanoparticles was 
measured by nanoparticle tracking analysis (NTA). NTA of 
AgNPs is based on light scattering and Brownian motion 
properties in order to obtain the good sizing accuracy and 
relatively narrow distributions from monodispersed sam-
ples [60]. The similar size of silver nanoparticles (68.1 nm) 
was found by Chauhan et al. [61] who studied Ag-nanopar-
ticles synthesized from Streptomyces sp.

The TEM analysis showed that the actinobacterial strain 
N. valliformis OT1 was capable of synthesizing small-sized 
AgNPs. The present observations were found to be similar 
to other previous reports [20, 62, 63] who found spherical 
AgNPs with some aggregations. The synthesis of small-
sized (5–40 nm) and spherical silver nanoparticles was also 
reported by Sukanya et al. [64] who studied actinomycete 
culture of Streptomyces sp. II isolated from heavy metal-
polluted and non-polluted areas in India. The difference in 
size of AgNPs analysed by TEM and NTA is due to the fact 
that TEM analyses reveal exact size and image of the metal 
nanoparticles as the beam of electrons used. It transmits 
electrons through an ultrathin specimen, which interacts 
with the sample, whereas in the NTA hydrodynamic radius 
is calculated, which is always larger. Therefore, the size 
measurement results using NTA are bigger when compared 
to TEM.

The mechanisms of antibacterial effect of silver nanopar-
ticles are still unclear. The most widely known mechanism 
of AgNPs is the inhibition of the enzymatic function of 
some proteins by binding to the thiol groups of l-cysteine 
[65]. It is claimed that AgNPs promote the permeability of 
the bacterial membrane and disrupt the membrane integrity 
[20, 22, 66] which are also thought to be responsible for 
the antibacterial effect. Some studies showed that silver 
can bind to DNA, which increases the decomposability of 
genome DNA [67]. Silver NPs may also inactivate the res-
piratory chain and be cause of hydroxyl radicals’ formation 
[65].

Depending on the size of AgNPs, its large surface area 
comes in contact with bacterial cell [2, 7, 68]. The smaller 
the size of silver nanoparticles, the larger the surface area 
to volume ratio, and hence obviously the bactericidal activ-
ity of silver nanoparticles is affected by the size of nanopar-
ticles. Panacek et  al. [68] studied the bactericidal activity 
based on the size of nanoparticles (27, 37, 46 and 52 nm) 
and observed that nanoparticles having 25  nm showed 

Table 1   Antibacterial activity of AgNPs synthesized from Nocardiopsis valliformis strain OT1 and its synergistic effect with antibiotics (ø of 
disc 5 mm)

Inhibition zones in diameter (mm)

Mean value is significantly different at p ≤ 0.05

Values expressed in mean ± SD

A, antibiotic; AgNPs, silver nanoparticles; NI, no inhibition

Bacteria AgNPs Kanamycin Ampicillin Tetracycline

A A + AgNPs A A + AgNPs A A + AgNPs

Escherichia coli ATCC8739 9.66 ± 0.57 14.66 ± 1.15 15.33 ± 0.57 16 ± 0.57 21.66 ± 0.57 19.33 ± 0.76 22.33 ± 0.57

Klebsiella pneumoniae ATCC700603 10.16 ± 1.04 NI 10.33 ± 0.57 NI 6 ± 0 11.83 ± 0.28 13.83 ± 0.28

Pseudomonas aeruginosa ATCC10145 11 ± 1 NI 10 ± 0 11.83 ± 0.28 9.83 ± 0.28 11.16 ± 0.76 16.16 ± 1.04

Staphylococcus aureus ATCC6338 12.16 ± 1.25 15.83 ± 0.28 16.83 ± 0.28 33.33 ± 1.52 40.5 ± 0.5 26.5 ± 0.5 28.83 ± 1.04

Bacillus subtilis PCM2021 13.66 ± 0.57 17.22 ± 0.26 19.5 ± 0.5 16.33 ± 1.04 18.25 ± .05 30.33 ± 0.57 32.5 ± 0.5
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highest antibacterial activity. The antibacterial activity of 
silver nanoparticles also depends upon its shape [69].

Synergistic effect of antibiotics and silver nanoparticles 
to Gram-positive and Gram-negative bacteria provided help-
ful insight into the development of new antimicrobial agents 
with the enhancement of the antibacterial mechanism against 
pathogenic microorganisms. Such a mechanism was observed 
against almost all the tested bacterial pathogens after using 
disc diffusion method. However, the highest synergistic effect 
was observed for K. pneumoniae and P. aeruginosa when 
biosynthesized AgNPs from N. valliformis OT1 strain were 
combined with antibiotics. The bacteria were resistant to anti-
biotics alone (ampicillin and kanamycin, respectively). How-
ever, the application of biosynthesized AgNPs together with 
antibiotic enhanced the activity of ampicillin and kanamycin 
leading to inhibition of bacterial growth.

After using the dilution plate method the enhancement 
of growth inhibition of tested bacteria was variable when 
combination of AgNPs and antibiotics was used. The sig-
nificant synergistic effect of AgNPs in combination with 
ampicillin or kanamycin was noticed against Klebsiella 
pneumoniae (41.92 and 35.8 %, respectively). The 8.09 % 
enhancement of growth inhibition was observed in the pres-
ence of AgNPs and ampicillin against Pseudomonas aer‑
uginosa. These findings support results of preliminary stud-
ies which have been carried out by disc diffusion method. 
Shahverdi et  al. [70] who studied the combined effect of 
AgNPs and antibiotics found increase in antibacterial activ-
ity of antibiotics against bacterial cells. They claimed that 
synergism was caused by binding reaction between antibi-
otic molecules which showed hydroxyl and amino groups 
that may easily react with AgNPs. Similarly, our findings 
support results of Li et al. [71] who reported the synergis-
tic antibacterial effects of antibiotic (amoxicillin) and silver 
nanoparticles.

The results of minimal inhibitory concentration con-
firmed that silver nanoparticles biosynthesized from N. 
valliformis OT1 strain were active against tested bacteria. 
Singh et al. [72] when studied MIC of AgNPs synthesised 
from Acinetobacter calcoaceticus reported activity of 
AgNPs against human pathogenic bacteria in much higher 
concentration range of 150–600 μg/mL as compared to our 
findings.

Cell culture-based assays are used as a pre-screening 
tool to understand the biological effects of nanoparticles. 
To detect the viability of cells, the method of Mosmann 
using the MTT colorimetric assay was performed. This 
assay is for measuring the activity of enzymes that reduce 
MTT or close dyes (XTT, MTS) to formazan, giving purple 
colour. The main application allows assessing the viability 
(cell counting) and the proliferation of cells (cell culture 
assay). It can be used to determine cytotoxicity of potential 
agent and toxic material, since those agents would stimu-
late or inhibit cell viability and growth [73].

The in  vitro cytotoxic activity of silver nanoparticles 
was determined by MTT assay against cancer HeLa cells. 
We observed that the synthesized AgNPs inhibited the 
cell growth of cancer HeLa cell line. The biosynthesized 
AgNPs induced cytotoxicity in HeLa cell line in lower con-
centration (IC50 at 100 µg/mL of AgNPs) when compared 
to results by Manivasagan et al. [20] who reported the IC50 
of HeLa cell line at concentration of 200 µg/mL of biosyn-
thesized AgNPs from Nocardiopsis sp. MBRC-1.

N. valliformis strain OT1 was found to be simple, easy 
and eco-friendly system for the biological synthesis of 
AgNPs. The FTIR analysis showed the presence of pro-
tein as capping agent, which is responsible for stability 
of nanoparticles. The AgNPs were found to be small in 
size which may influence on its higher antibacterial activ-
ity [74]. Encouragingly, biosynthesized Ag-nanoparticles 
demonstrated remarkable antibacterial activity against 
bacterial pathogens as compared to commercially avail-
able antibiotics. On the basis of obtained results it seems 
that the combination of antibiotics with AgNPs against 
Gram-positive and Gram-negative bacteria offers a valu-
able contribution to nanomedicine. Similarly, the biogenic 
AgNPs demonstrated considerable cytotoxic effect on 
cancer HeLa cell line. Moreover, it can be suggested that 
the extreme habitats such as alkaline Lonar crater are still 
unexplored source of microorganisms which may produce 
bioactive compounds.
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