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Review Article 
Disrupting P-glycoprotein function in clinical settings: 
what can we learn from the fundamental  
aspects of this transporter?

Francisco S Chung, Jayson S Santiago, Miguel Francisco M De Jesus, Camille V Trinidad, Melvin Floyd E See

Cellular Therapeutics Center, Makati Medical Center, Makati City, Philippines 1229

Received October 14, 2015; Accepted May 1, 2016; Epub August 1, 2016; Published August 15, 2016

Abstract: P-glycoprotein is one of the most well-studied drug transporters, significant for its role in cancer multiple 
drug resistance. However, using P-gp inhibitors with the aim of enhancing the therapeutic efficacy of anti-cancer 
drugs has led to disappointing outcomes. Furthermore, several lead compounds suggested by in vitro and pre-clin-
ical studies have shown variable pharmacokinetics and therapeutic efficacies when applied in the clinical setting. 
This review will highlight the need to revisit a sound approach to better design and apply P-gp inhibitors in light of 
safety and efficacy. Challenges confronting the issue hinge upon myriad studies that do not necessarily represent 
the heterogeneous target population of this therapeutic approach. The application of P-gp modulators has also 
been complicated by the promiscuous substrate-binding behaviour of P-gp, as well as toxicities related to its intrinsic 
presence in healthy tissue. This review capitalizes on information spanning genetics, energetics, and pharmacology, 
bringing to light some fundamental aspects that ought to be reconsidered in order to improve upon and design the 
next generation of P-gp inhibitors.
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Introduction

The ubiquitous nature of P-glycoprotein (P-gp) 
across mammalian species strongly suggests a 
critical role in survival by its ability to expel 
xenobiotics, toxic compounds, and metabolites 
[1]. In humans, P-gp is coded by the multiple 
drug resistance MDR1 gene, whose expression 
in different tissues indicates its essential func-
tion. P-gp belongs to the ATP-binding cassette 
(ABC) transporter family, which utilizes ATP 
hydrolysis to transport various substrates, anti-
cancer agents, and macromolecules such as 
peptides and lipids across the plasma mem-
brane [2]. Great interest in P-gp was sparked by 
its connection to multiple drug resistance 
(MDR) in human cancers. As shown in hemato-
logic malignancies and solid tumors, these 
transporters become overexpressed following 
chemotherapy, leading to therapeutic failure as 
a result of insufficient intracellular drug con-
centration and penetration.

Inhibiting ABC transporter activity is therefore a 
logical strategy to reverse the associated 

impact of P-gp overexpression in human malig-
nancies demonstrating MDR. Many in vitro 
studies paved the way for the development of 
various P-gp inhibitors [3]. In the clinic, howev-
er, several challenges have been encountered. 
First-generation inhibitors such as verapamil 
resulted in cardiotoxicity due to the high doses 
required to effectively block P-gp activity [4]. 
Other inhibitors were also not successful, even 
though major toxicities were not observed [5-9]. 
The next line of inhibitors was developed to 
improve drug potency and reduce toxicity asso-
ciated with inhibition of transporters in normal 
tissues. Despite these efforts, interactions 
between P-gp inhibitors and cytochrome P450 
have complicated the issue further with regards 
to altered pharmacokinetics of anti-cancer 
drugs. Third-generation inhibitors have aimed 
to address these critical issues, but still result-
ed in disappointing clinical trial outcomes 
(Table 1). 

Insights from previous empirical undertakings 
are crucial in redirecting our strategies. In par-
ticular, an integrated perspective utilizing infor-
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Table 1. Summary of clinical studies utilizing 3rd generation P-gp inhibitors

P-gp 
Inhibitor

Common 
Name

ATPase 
Activator Efflux Study Intervention Study Disease Study 

Subjects

Intervention Response 
(without inhibitor vs 

with inhibitor)

Survival Rates (without 
inhibitor vs with inhibitor) Conclusion Ref.

CBT-1 CBT-1 No ? Paclitaxel ± CBT-1 solid tumors 10 Not determined Not determined Warrants further studies [96]

PSC-883 Valspodar No Yes Valspodar Cytosine Arabi-
noside, Daunorubicin, & 
Etoposide ± Valspodar

acute myeloid 
leukemia (AML)

302 75% for both regimens 1.34 vs 1.09 years (median 
disease free survival)

No improved clinical 
outcomes

[97]

Carboplatin & Paclitaxel ± 
Valspodar

advanced ovarian 
or primary perito-

neal cancer

762 41.5% vs 33.6% (ORR) 13.5% vs 13.2% (TTP) No improvement [98]

Vincristine, Doxorubicin, 
& Dexamethasone ± 

Valspodar

recurring or 
refractory multiple 

myeloma

94 29% (PR) vs 44% 7 vs 4.9 months (median 
disease free survival)

No improvement [99]

Mitoxantrone, Etoposide, 
& Cytarabine ± Valspodar

aml & myelodys-
plastic syndrome

129 25% vs 17% (CR) 9.3 vs 10 months (median 
disease free survival)

No improvement [100]

MS-209 Dofequidar No ? Cyclophosphamide, Doxo-
rubicin, & Fluorouracil ± 

Dofequidar

advanced or recur-
rent breast cancer

221 42.6% vs 53.1%
(ORR)

241 vs 366 days (PFS) Well tolerated; effective 
for patients without prior 

therapy

[101]

DPPE Tesmilifene Yes ? Doxorubicin ± Tesmilifene metastatic or recur-
rent breast cancer

305 2% vs 3% (CR)
27% vs 26% (PR)
45% vs 44% (SD)

6.0 vs 5.9 months (median 
disease free survival)

No difference [102]

LY 335979 Zosuquidar No No Cytarabine, Daunorubicin 
± Zosuqidar

AML 433 43.4% vs 46.2% (CR) 2.0 vs 3.0 months (median 
disease free survival)

No improvement [103]

XR9576 Tariquidar Yes ? Docetaxel ± Tariquidar solid tumors 48 8% (PR) w/inhibitor Not determined No difference [16]
ORR (overall response rate); CR (complete response); PR (partial response); SD (stable disease); TPP (time to progression); PFS (progression-free survival); ? (unknown).
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mation about P-gp expression and activity in 
cancer cells, its connection to cellular energet-
ics, and its ability to respond to metabolic 
demands has not yet been explored in great 
detail. This review is an initial attempt to pro-
vide perspectives on the problem.

P-gp expression in the clinical setting

Based on recent clinical reports, the expres-
sion of ABC transporters plays a significant role 
in clinical drug resistance in certain hemato-
logical malignancies and solid tumors. A study 
by Burger and co-workers was conducted on 59 
primary breast tumor specimens of patients 
who received chemotherapy as first-line sys-
temic treatment for advanced disease. They 
noted an inverse relation of MDR1 expression 
and the efficacy of first-line chemotherapy: a 
high level of expression was noted to be a pre-
dictor of poor prognosis for patients with 
advanced disease [10]. A meta-analysis on 31 
breast cancer studies reported that the frac-
tion of breast tumors expressing the MDR1 
gene in all studies was approximately 41.2% 
[11]. Patients with tumors expressing MDR1 
were three times more likely to be refractory to 
chemotherapy than those who were tumor-
MDR1 negative. A similar observation was 
reported in a study of 62 osteosarcoma 
patients. Tumors that did not express P-gp had 
significantly better relapse-free rates (87% vs. 
0%) and improved survival rates of 5 to 14 
years (97% vs. 35%) [12]. 

Increased expression of P-gp following chemo-
therapy has been reported for both hematolog-
ic malignancies and solid tumors. For instance, 
an increase in P-gp expression from 15% to 
43% in fine needle aspiration breast tumor 
biopsies treated with conventional chemother-
apy was reported [13]. In an acute myelogenous 
leukemia (AML) study, P-gp expression was 
24% at diagnosis, which increased to 67% dur-
ing relapse [14]. In addition, a shorter duration 
of overall survival or disease-free survival in 
patients with AML was associated with elevat-
ed P-gp expression. Likewise, this trend is simi-
lar for multiple myeloma, wherein 6% of patients 
were reported to express P-gp at diagnosis, and 
more than 43% overexpress P-gp after treat-
ment [15]. 

It is possible that the MDR phenotype is due to: 
1) upregulation influenced by chemotherapy-
induced stress, which is supported by studies 

on the control of MDR1 expression (see Tran- 
scriptional regulation of P-glycoprotein); 2) cull-
ing of cells expressing P-gp below a certain 
clinically-relevant threshold. To establish a clin-
ically-relevant threshold on the protein, tran-
script, or copy number level is a significant chal-
lenge for patient profiling. The next sections will 
further examine how P-gp expression and activ-
ity can impact the next generation of P-gp 
inhibitors.

The role of P-gp activity in drug resistance 
development

Variable or altered drug pharmacokinetics as a 
result of P-gp activity has presented a signifi-
cant drawback in clinical studies on cancer 
patients. In this section, attention is focused on 
the application of 3rd-generation P-gp inhibitors 
and some difficulties encountered in such 
studies. 

Kelly and co-workers used tariquidar (XR9576) 
in combination with docetaxel for a phase 2 
trial of patients with lung, ovarian, or cervical 
cancer [16]. Non-hematologic grade 3/4 toxici-
ties were noted to be minimal (2-8% out of 48 
patients enrolled), with 4 partial responses.

One parameter used in the study to measure 
inhibition of P-gp activity by tariquidar was rho-
damine efflux from circulating CD56+ cells; 
however, this may not directly mirror P-gp 
behavior in the tumor cells of cancer patients. 
Also, rhodamine efflux as a marker of P-gp 
activity has certain disadvantages: 1) non-
specificity for P-gp, and 2) inter-individual varia-
tion when applied to circulating lymphocytes 
(unpublished data). 

Imaging is a more direct way to examine P-gp 
activity. The group utilized single-photon emis-
sion computed tomography (SPECT) imaging, 
wherein the reduction in 99mTc-sestamibi clear-
ance from the liver was used as a marker for 
P-gp inhibition. One disadvantage of the tracer 
is that it is a known substrate of another trans-
porter, MRP [17]. Confounding factors such 
varying MRP activity and liver blood flow in can-
cer patients need to be considered as well. 
Hence, a wide variation of 6-250% 99mTc-sesta-
mibi accumulation in the liver, as a surrogate 
marker for P-gp activity, was obtained pre-treat-
ment of tariquidar [16]. 

Positron emission tomography (PET) is another 
imaging platform, which holds certain advan-
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tages over SPECT: spatial sensitivity resolution, 
superior quantitation, and the tracer 11C being 
easily incorporated into organic compounds 
such as drugs or P-gp inhibitors. PET, however, 
requires rapid specimen processing due to the 
tracer having a 20.4-minute half-life (11C). For 
example, 11C-verapamil may serve as the basis 
for clinical studies of 11C-labeled anti-cancer 
drugs or Pgp-inhibitors [17], particularly to 
accurately determine pharmacokinetic param-
eters and drug accessibility in vivo. The first 
study to measure P-gp activity and inhibition in 
the human brain using PET was done using 
11C-verapamil and cyclosporin-A (CsA) [18]. 
AUCbrain/AUCblood was found to be increased by 
about 88% during CsA treatment, demonstrat-
ing P-gp inhibition. This study was later extend-
ed to interrogate P-gp in the blood-placental 
barrier of non-human primates, the closest pre-
clinical model to humans [19, 20]. Pregnant 

Understandably, this is debatable at this point-
translation of optimal P-gp inhibition from pre-
clinical studies to cancer patients may lead to 
unexpected outcomes. Another important fac-
tor to consider in clinical trials is the variable 
P-gp phenotypic characteristics, which may 
impact the intratumoral accumulation of drugs 
such as doxorubicin [22-24]. 

Previous chemotherapy may induce variable 
expression and functionality of P-gp in the indi-
vidual. Thus, chemotherapy-naive patients wo- 
uld more accurately parallel pre-clinical mod-
els. P-gp-overexpressing cell lines or in vitro 
correlations on patient-derived tumor cultures 
may be a suitable system to validate various 
drug candidates for cancer patients who have 
undergone chemotherapy.

Other clinical studies have used dosing regi-
mens higher than the US FDA recommenda-

Figure 1. Expanded framework for the application of P-gp inhibitors in the 
clinical setting. There is an elevated energy demand in cancer cells, present-
ing novel opportunities for targeting metabolic pathways. The excellent cop-
ing mechanism of cancer cells given metabolic stress may be a contributor 
to drug resistance development, possibly in concert with P-gp regulation and 
its reliance on the overall energetic status of the cell. P-gp has also been as-
sociated with the suppression of the apoptotic signaling pathway, favoring 
cell survival over cell death. The outcome of cancer therapy may have strong 
correlations with MDR1 expression, P-gp activity, and cellular energetics, war-
ranting a more comprehensive foundation for pre-clinical studies and rational 
drug design. Thus, a better understanding of the profound roles of P-gp in 
cancer would be necessary to improve current treatment programs.

non-human primates under-
went 11C-verapamil PET sc- 
ans before and after CsA 
administration (12 or 24 mg/
kg/h) to measure placental 
P-gp activity and inhibition 
during mid-and late-gesta-
tional age. The change in 
AUCfetal liver/AUCmaternal plasma 
after CsA administration was 
used as a surrogate marker 
of placental P-gp activity; a 
significant increase in P-gp 
activity from mid-(+35%) to 
late gestation (+125%) was 
found. Further analysis re- 
ported considerations of 
blood flow changes during 
the different phases of preg-
nancy [21]. These PET stud-
ies may have an impact in 
pregnant women who are 
receiving drugs that are P-gp 
substrates or inhibitors, as 
well as demonstrate the 
applicability of this approach 
to determine more accurate 
pharmacokinetic parameters 
in vivo.

A recent report has suggest-
ed that the concentration of 
tariquidar used in the study 
of Kelly and co-workers may 
have been insufficient [30]. 
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tions. For example, a phase 1 trial of tariquidar 
in non-small cell lung cancer patients used a 
higher dose of vinorelbine, an anti-cancer 
agent, at 25 mg/m2 compared to a previous 
study that reported a dose of 22.5 mg/m2 as 
the maximum tolerated dose when co-adminis-
tered with tariquidar [25]. This is apparently 
contrary to the principle of P-gp inhibition as an 
intervention, wherein the ultimate goal is to 
reduce the doses of anti-cancer agents to 
achieve clinically-relevant results.

It is a significant challenge to attribute drug 
resistance to a single transporter protein like 
P-gp due to inter-individual differences in trans-
porters [26]. Based on several reports, it is 
clear that drug pharmacokinetics is highly vari-
able because of differential P-gp expression 
and activity.

An interesting approach is to employ anti-can-
cer drugs that can simultaneously inhibit P-gp 
activity. This opens the possibility of increasing 
the potency of a co-administered chemothera-
peutic agent. One preliminary study demon-
strated that crizotinib, an anti-cancer drug that 
targets ALK and ROS1, also inhibits P-gp activ-
ity and consequently leads to intracellular 
accumulation of co-administered doxorubicin 
[27]. This may open a discussion on the merits 
of a dual- or even multiple-target therapy 
approach that includes P-gp inhibition as a 
mechanism. One hypothesis worth investigat-
ing is if the potency of crizotinib can also be 
attributed to an ability of the drug to “overwork” 
the ATPase domains of P-gp, creating an unsus-
tainable energy demand in cancer cells. 
“Druggability” of P-gp has been presented in 
the context of its ATPase activity [28], warrant-
ing investigation into the roles energetics and 
metabolism play in the therapeutic approach of 
P-gp inhibition.

The role of energetics in P-gp-mediated drug 
resistance

Cancer energy balance (or lack thereof) is 
multi-faceted, sometimes contentious in litera-
ture, and has not been given primacy in the dis-
cussion of P-gp-mediated drug resistance. 
Because P-gp is an ATP-driven efflux pump that 
is highly implicated in MDR cancers, forging a 
wider perspective that marries P-gp’s role in 
cancer biology with cancer metabolism and 
energetics becomes a significant clinical and 

scientific goal (Figure 1). Here we describe a 
short history of studies that lead to a rational 
foundation for probing such connections.

Early work by Broxterman and co-workers 
established a link between P-gp stimulation 
and ATP metabolism in P-gp-overexpressing 
tumor cells. They determined that different 
P-gp substrates induce differential energetic 
demands: for example, while verapamil starkly 
increased ATP production by glycolysis [29], 
cyclosporine A did not [30]. These findings 
would be highly significant in the exploration of 
mechanistic-energetic connections in subse-
quent studies. 

Work by Ambudkar and co-workers in 1997 
built on early attempts to determine the stoichi-
ometry of P-gp ATPase activity [31], quantifying 
activity in terms of vinblastine turnover rates in 
the presence or absence of verapamil. While 
limited by several assumptions and uncon-
trolled ATP levels in the living cells, a strong cor-
relation between drug resistance and pumping 
rate was suggested. Shapiro & Ling then deter-
mined the coupling ratio for transport activity 
(as moles of substrate transported/moles of 
ATP hydrolyzed) [32]. Their figures suggested 
that mechanistic coupling was negatively cor-
related with ATP concentration-that is, P-gp 
function is “sub-optimal” at ATP concentrations 
in the cell. They noted the possibility of this 
phenomenon as an additional form of control 
(on top of membrane composition and phos-
phorylation), although they also recognized the 
possibility of experimental conditions causing 
this behavior. Interestingly, while they deter-
mined a coupling ratio of 1 substrate/ATP at 
“optimal” and 0.57 at “sub-optimal” conditions, 
later studies and current mechanistic knowl-
edge support the “sub-optimal” ratio of 1 sub-
strate/2 ATP. It could be argued that these early 
studies supported a view of the cellular ener-
getic state as a key factor in P-gp activity, albeit 
not explicitly.

Hrycyna and co-workers applied the orthovana-
date (VO4

3-, Vi)-induced ADP trapping technique 
to P-gp in 1998, the first application of its kind 
on an ABC transporter [33]. In vanadate-ADP 
trapping, ATP and Vi are co-incubated with the 
protein of interest, one round of hydrolysis 
occurs, and Vi stabilizes (traps) what is believed 
to be the catalytic transition state of P-gp: P-gp-
MgADP-Vi. UV irradiation then cleaves the pro-
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tein at the 3rd residue of its Walker A nucleo-
tide-binding domain consensus sequences 
(GXXXXGKT/S). Expected cleavage products 
were found in treated P-gp; immunoblots of 
these demonstrated that the ATP hydrolysis 
sites cannot be used simultaneously and are 
functionally interdependent. Since then, many 
mechanistic studies have been performed 
using this system.

Sauna & Ambudkar then determined an addi-
tional role of ATP in the catalytic cycle [34]. In 
their proposed model, 2 ATPs are hydrolyzed 
per pump instead of 1: the first ATP is required 
to attain the transition state and effect trans-
port, while another is used to return to the sub-
strate-binding state. Using vanadate-ADP trap-
ping, they found that substrate binding (of a 
radioactive prazosin analogue) is reduced sig-
nificantly upon ATP hydrolysis (and not simply 
binding of the nucleotide). They also convinc-
ingly demonstrated that release of ADP+Pi is 
necessary for recovery of the substrate-binding 
characteristics, and that this phenomenon 
requires an additional round of ATP hydrolysis. 
The mechanistic model was thus updated to 
consist of discrete steps involving 2 ATP hydro-
lyses (similar to the phosphorylated CFTR chlo-
ride channel), although the exact timing of 
events (i.e. substrate/nucleotide binding and 
release) remained elusive. Their group then 
went on to demonstrate that the central transi-
tion state of the catalytic cycle, P-gp-MgADP-
Pi/Vi, could form through 1 of 2 pathways: via 
ATP hydrolysis within the protein (hydrolytic) or 
via direct insertion of ADP and Pi/Vi into the 
protein [35]. However, they noted two factors 
that cause P-gp to favor the hydrolytic (“for-
ward”) reaction: 1) the energy barrier for non-
hydrolytic trapping is intrinsically high (~2.5 
times higher than the hydrolytic pathway); and 
2) substrates known to stimulate catalytic 
activity under hydrolytic conditions (such as 
veramapil) instead severely hamper the non-
hydrolytic pathway. Their findings suggested a 
functional coupling of ATP hydrolysis with sub-
strate binding and transport, indicative of an 
underlying vectorial metabolism. This has con-
sequences for cancers that overexpress P-gp, 
warranting investigations into the energetic 
state of cancer cells and how their ATP supply is 
funneled to P-gp.

By 2007, crystallographic information on nucle-
otide-binding domains (NBDs) of P-gp and other 

ABCs, combined with mechanistic and site-
directed mutation studies, clarified much about 
the catalytic cycle and structure-function rela-
tionships of P-gp NBDs [36]. It is now known 
that the general structure of P-gp comprises 2 
transmembrane/drug-binding domains (TMDs), 
each with 6 transmembrane helices that form a 
promiscuous (and poorly-conserved) drug-bind-
ing pocket, and 2 nucleotide-binding domains 
(NBDs), each with a very distinct (and well-con-
served) structure. The prevailing model de- 
scribes ATP-mediated NBD dimerization and 
formation of an ATP “sandwich”. The alternating 
catalysis suggested by earlier studies is ratio-
nalized as alternating occlusion and hydrolysis 
of bound ATP molecules by the NBD dimer. Fine 
details about the ATP hydrolysis step for restart-
ing the pump are still not certain. However, the 
level of mechanistic clarity by this point, togeth-
er with the well-documented coupling of drug 
transport to ATP hydrolysis, point to a connec-
tion between the energy economy of the cell 
and P-gp activity/control.

By designing a novel assay based on extracel-
lular acidification rates (ECARs), Landwojtowicz 
and co-workers resolved a disputed issue in lit-
erature about pH-mediation by P-gp [37]. 
Highly-sensitive microphysiometer measure-
ments allowed them to determine a ratio of ~2 
H+/verapamil transported (independent of oth- 
er regulatory proton pumps), which they sug-
gested could correlate with the established 
value of 2 ATP/catalytic cycle and thus P-gp 
activity. They proposed three possible means 
by which proton transport could be caused by 
P-gp: 1) direct transport; 2) co-transport by 
exogenous substrates; and 3) co-transport by 
endogenous substrates. TMD residue analysis 
would clarify the first possibility, while structur-
al analysis of known substrates would clarify 
the second. Co-transport by endogenous sub-
strates is a feasible means to shuttle H+, as 
P-gp has been shown to possess flippase activ-
ity for a broad spectrum of endogenous lipids: 
phospholipids such as phosphatidylcholine, 
phosphatidylethanolamine, phosphatidylseri- 
ne, sphingomyelin, etc. [38] as well as glyco-
sphingolipids [39]. This flippase activity has 
additional significance: 1) it has been used to 
rationalize the strange observation of constitu-
tive ATPase activity (basal ATP “burning”) in the 
absence of drugs/substrates of P-gp; and 2) it 
also suggests membrane composition as a 
controlling factor for P-gp activity, which had 



Disrupting P-gp in clinical settings

1589	 Am J Cancer Res 2016;6(8):1583-1598

been suggested at in prior years. This apparent 
“proton pumping” by P-gp (whether through the 
above mechanisms or coupled with a trans-
porter such as the lactate transporter), com-
bined with the knowledge that many human 
tumors overexpress P-gp and that extracellular 
acidification is linked to cancer drug resistance 
and metastatic invasion [40], hints to an 
expanded role of P-gp in cancer biology and 
invasion in vivo. Studies evaluating putative 
P-gp inhibitors for cancer therapy that make 
use of this information are warranted.

A 2004 study by Gatlik-Landwojtowicz and co-
workers utilized the ECAR method to measure 
P-gp activation and inhibition in the presence of 
metabolic stressors. Notably, they explicitly 
worked under the framework that extracellular 
acidification, which correlates strongly with 
P-gp activity, could be indicative of the overall 
metabolic state of the cell [41]. They addressed 
two significant concerns: 1) the connection 
between cellular energetic state (reflected in 
ATP concentration) and P-gp activity; and 2) the 
connection of metabolic state (starvation, etc.) 
to substrate/drug activity. This second point in 
particular has far-reaching implications in the 
clinical application of P-gp inhibitors, and 
deserves to be explored in pre-clinical models. 
The group observed that verapamil could still 
stimulate P-gp even under conditions of meta-
bolic stress (pyruvate perfusion, reduction of 
glucose supply, or complete removal of carbon 
sources). They interpreted this carbonless stim-
ulation of P-gp as upregulation of glycolysis to 
meet the energy demand by P-gp activation, 
even without exogenous carbon sources. Per- 
haps, more detailed pathway analysis could 
elucidate whether lipolysis or even amino acid 
catabolism could also contribute to alleviate 
P-gp-mediated spikes in energy demand; negli-
gible contributions from beta-oxidation [42] or 
amino acid catabolism would support glycolysis 
and the Warburg effect [43] as pathways of 
choice. Studies on this phenomenon occurring 
in P-gp-overexpressing cancer cells would cor-
roborate the early reports on P-gp activity and 
ATP demand.

Thus, in order to consider a connection between 
the metabolic state of cancer cells with P-gp 
activity and regulation (and thus MDR), one is 
forced to confront mechanistic considerations. 
This becomes imperative given that multiple 
ATP hydrolyses are required in the catalytic 

pathway and P-gp-mediated transport is asso-
ciated with proton shuttling. Tracing energetic 
pathways affected by P-gp inhibition and stimu-
lation would provide a broader perspective on 
the clinical problem of overcoming the problem 
of P-gp-mediated MDR. 

Clinical applications in cancer are complicated 
further by the possibility of energetic contribu-
tions from the tumor microenvironment. For 
example: in solid tumors, cancer persistence 
and growth are mediated by hypoxia effects 
and tumor-associated fibroblasts (the reverse 
Warburg effect) [43]. In ovarian cancers, asso-
ciated adipocytes promote tumor growth via 
donation of fatty acids for beta-oxidation [44]; 
similar associations with adipocytes have been 
documented for prostate cancer [45]. Still other 
possibilities exist, such as altered gluconeo-
genesis or novel pathways. These consider-
ations present a significant hurdle in the clini-
cal application of P-gp inhibitors, and warrant 
more appropriate basic research and pre-clini-
cal studies in the investigation of P-gp as a 
therapeutic target.

Genetic polymorphisms of P-glycoprotein

Determining differences between normal and 
cancer-expressed P-gp on the genetic, epigen-
etic, or transcriptomic levels may yield new 
insights into developing a holistic approach to 
targeting P-gp for MDR cancers.

Due to P-gp being a primary hallmark of the 
MDR phenotype in cancer, there have been 
numerous studies about its genetic polymor-
phisms. There are currently over 20 polymor-
phisms documented for the MDR1 gene. At 
least 9 of these mutations alter the amino acid 
sequence of the P-gp such as: A61G SNP locat-
ed near the N-terminus of P-gp, which causes 
an Asn to Asp substitution; and the G1199A 
mutation located in the cytoplasmic loop close 
to the first ATP binding domain, which causes a 
Ser to Asn substitution [46]. Many polymor-
phisms do not seem to have an effect on P-gp 
activity, and therefore do not significantly alter 
the susceptibility of the cell to cytotoxic drugs. 

The best-studied polymorphism is the silent 
C3435T polymorphism at exon 26, first 
described by Hoffmeyer and co-workers. It was 
associated with P-gp expression in intestinal 
epithelial tissue [47]: people with the C/C geno-
type have a substantially higher MDR expres-
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sion level in the small intestine, approximately 
twice of those with the T/T genotype. This trend 
was corroborated by a later study using periph-
eral blood mononuclear cells [48]. However, a 
study by Nakamura and co-workers found non-
significantly increased MDR1 levels in Japanese 
with the T/T genotype compared to the C/C and 
C/T [49]. Further investigations into ethnic vari-
ability determined the allelic frequency of the C 
allele to be 73-84% in the African lineage, com-
pared to 34-59% in European or Asian lineages 
[50]. This could signify a need for drug design 
tailored to different ethnicities based on sus-
ceptibility or resistance conferred by significant 
polymorphisms. 

The C3435T polymorphism also affects drug 
disposition. C3435T was found to be linked to 
plasma concentrations of digoxin, phenytoin, 
and fexofenadine [47, 49-51]. Similar signifi-
cant trends have yet to be established for other 
drugs.

It should also be noted that the G2677T poly-
morphism and C1236T polymorphism have 
been linked to the C3435T polymorphism [46]. 
This may signify that haplotypes, rather than 
individual polymorphisms, may be more rele-
vant clinically. 

Expression of P-glycoprotein

Currently, clinical studies are focused on small 
molecule inhibitors delivered extracellularly in 
order to inhibit the activity of P-gp. An alterna-
tive approach would be to control the expres-
sion of P-gp at the transcriptional level. 

Since P-gp is strongly linked with the MDR phe-
notype, it would be expected that MDR1 mRNA 
transcripts and P-gp protein levels are abun-
dant in MDR cancer cells. However, this is not 
exactly the case. In a study by Roy and co-work-
ers, the levels of MDR1 mRNA transcripts and 
P-gp protein level were determined in non-small 
cell lung cancer. Surface P-gp was observed in 
26/30 (86.7%) samples, interestingly, only 17% 
exhibited the presence of MDR1 transcripts 
[52]. 

In addition to interrogating the expression lev-
els of MDR1 in cancer cells with the MDR phe-
notype, it would also be prudent to consider 
downstream pathways of MDR1 in order to 
understand the consequences of altering its 
expression. MDR1 gene expression is activated 

when cells are exposed to environmental (par-
ticularly chemical) stress, as is expected for 
cancer cells faced with a drug challenge. To 
determine the effect of an increase in MDR1 
expression on other pathways, one study deter-
mined the expression profile of U-2 OS osteo-
sarcoma cells after transfecting and overex-
pressing the MDR1 gene [53]. Several cellular 
pathways were affected, including: drug influx/
efflux, metabolic enzymes, cell adhesion, apop-
totic signalling, senescence, tumor suppres-
sion, and immune receptor signaling. Therefore, 
MDR1 also plays a role in the apoptosis signal-
ling pathway (and many others) in addition to its 
well-examined drug efflux activity. This shows 
that MDR1 may be contributing to the MDR 
phenotype of cancer cells in more ways than 
clinical studies have elucidated. 

Transcriptional regulation of P-glycoprotein

Transcription of P-gp is not a straightforward 
process, as it is affected by many factors: vari-
ous response elements, variability of transcrip-
tion factors, accessibility of the MDR1 gene, 
chromatin structure, and associated protein 
complexes [54]. By understanding the molecu-
lar mechanisms of MDR1 transcription, it may 
be possible to regulate the expression and/or 
activity of P-gp. 

To ensure that there is a rapid emergence of 
the MDR phenotype in cells undergoing chemi-
cal stress, MDR1 has a redundant network of 
regulators from different signalling pathways 
that can trigger upregulation (reviewed in detail 
in [55]). Thus, targeting these pathways may 
present novel cancer therapies. Some exam-
ples are discussed below.

Inhibitors of the MAPK pathway significantly 
reduce the survival of P-gp-expressing MDR 
cancer cells [56-58]; the MAPK protein c-Jun 
NH2-terminal kinase (JNK) has also been asso-
ciated with the development of MDR and is 
present in P-gp-associated MDR variants of 
cervical cancer [59-63]. p38 MAPK down-
stream signalling, which is implicated in apop-
tosis and cellular response to drug treatment, 
has been associated in the MDR phenotype of 
murine leukemia cell lines L1210/VCR and 
SB203580 [64-66]. 

The roles of cAMP and cAMP-dependent pro-
tein kinase A (PKA) in P-gp-induced MDR are 
also well studied. Various extracellular signals 
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that stimulate PKA-related proteins result in 
activation of MDR1 [67, 68]. The related PI3K 
signalling pathway is upstream of Rac activa-
tion, which is associated with the induction of 
MDR1 expression and may contribute to the 
evolution of drug resistance in liver cancer [69].

Nuclear factor κB (NF-κB) is a transcription fac-
tor that binds to the MDR1 promoter (-167 to 
-158 bp) [70]. Because expression of MDR1 
appears to be NF-κB-dependent, inhibiting 
NF-κB may harbour therapeutic potential. 
However, its role seems to be modulatory, as it 
both represses and activates MDR1 transcrip-
tion. It activates MDR1 transcription in 
response to acute stress, but represses it to 
promote apoptosis upon chronic stress 
[71-73]. 

A study involving the transcription factor E2F-1 
found that downregulation of this factor could 
lead to reversal of MDR in gastric cancer, both 
in vitro and in vivo. Silencing E2F-1 via shRNA 
led to cell cycle arrest, apoptosis, and increased 
susceptibility to doxorubicin, cisplatin, and fluo-
rouracil in the SGC7901/DDP cell line. E2F-1 
downregulation was also recorded to decrease 
MDR1 as well as other genes associated with 
MDR such as MRP, Bcl-2/Bax, c-Myc, Skp2, 
Survivin, and Cyclin D1 [74]. The mechanism of 
E2F-1-mediated regulation of MDR1 may be 
through its promoter sequence, despite not 
having direct interaction. A study by Andorfer 
and Rotheneder found that E2F-1 and a down-
stream protein, EAPP, can both independently 
stimulate the MDR1 promoter [75]. Its strong 
link to MDR1 makes E2F-1 a prime candidate 
for a drug target against MDR.

Another transcription factor that affects MDR is 
RhoGD12. Studies have shown that the MDR 
phenotype in ovarian, gastroenterologic, and 
breast cancer could be induced by RhoGD12 
activation [76-81]. Chemoresistant fibrosarco-
ma cells and paclitaxel-resistant ovarian can-
cers were shown to have upregulated RhoGD12 
as well [82, 83]. It was also reported that 
RhoGDI2 confers resistance against multiple 
drugs (cisplatin, etoposide, and staurosporin) in 
gastric cancer cells [77]; upregulation in the 
gastric cancer cell line MKN-45 led to an 
increase in transcription of MDR1, synthesis of 
P-gp, and P-gp activity. RhoGD12 thus appears 
to be a potent regulator of MDR1 [84, 85], and 
may present a potential target for MDR 
cancers. 

A novel compound called RY10-4, discovered 
by Xue and co-workers in 2013, has been 
shown to restore drug susceptibility in MCF-7/
ADR breast cancer cells by inhibiting cell 
growth, inducing apoptosis, downregulating 
MDR1 expression, and reducing intracellular 
ATP level [86]. This is a prime example of a mul-
tiple-target approach to MDR cancers via simul-
taneous effects on P-gp activity and energet-
ics, similar to crizotinib discussed earlier.

RNA interference

RNA interference (RNAi) presents a promising 
approach to address P-gp at the post-transcrip-
tional level, particularly in patients whose 
mRNA transcript levels concord well with 
observed drug resistance. The use of siRNAs 
stimulates the RNA-induced silencing complex 
(RISC), which degrades target mRNA transcripts 
[87]. The advantages of RNAi include reduced 
toxicity against non-target tissues and a higher 
degree of specificity.

Clinical trials for RNAi to target MDR1 have not 
yet materialized; most studies utilizing RNAi are 
currently conducted on cancer cell lines or ani-
mal models (reviewed in [88]). Some examples 
of pre-clinical approaches are discussed below.

Two RNAi-delivery systems have shown prom-
ise for reversing the MDR phenotype in cancer 
cell lines. MDR1 siRNA-loaded dextran nano- 
particles efficiently suppressed P-gp expres-
sion on two MDR osteosarcoma cell lines 
(KHOSR2 and U-2OSR2). Furthermore, combi-
nation treatment with doxorubicin determined 
a 100-fold reduction in the IC50 of doxorubicin 
(10 to 0.1 uM for KHOSR2, 6 to 0.06 uM for 
U-2OSR2) [89]. This particular delivery system 
for anti-MDR1 RNAi was successful in restoring 
susceptibility of osteosarcoma cells to doxoru-
bicin through P-gp inhibition. Another study uti-
lizing cationic liposomes coated with PEGylated 
hyaluronic acid (PEG-HA-NP) for the delivery of 
anti-P-gp siRNA provided comparable cellular 
uptake and P-gp downregulation efficacy (85% 
knockdown) in MCF-7/ADR cells compared with 
Lipofectamine RNAiMAX (90%) and naked NP 
(78% knockdown). When applied to mouse 
models, PEG-HA-NP had the highest intratumor 
accumulation, cellular uptake, and P-gp-sile- 
ncing capability (34% P-gp downregulation) 
[90]. These preliminary findings suggest that 
PEG-HA-NP is a promising vehicle that may be 
considered for future clinical testing.
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The use of short hairpin RNA interference (shR-
NAi) has been tested in multiple models. For 
example, two shRNAi constructs targeted 
against human MDR1 inhibited expression of 
P-gp by >90%, correlated with increased sensi-
tivity of MDR1-transfected cells toward vincris-
tine, paclitaxel, and doxorubicin. These results 
were corroborated in tumor implants and a 
mammalian liver [91]. This is yet another inter-
esting approach to P-gp control.

Certain roadblocks to the RNAi approach in 
clinical studies include the difficulty of delivery 
and reduction of downregulation in collateral 
tissues [92-95]. There are at least 22 RNAi-
based drugs against other genes that are cur-
rently being tested in clinical trials (mostly in 
phase 1, some phase 2 underway), but there is 
currently none for MDR1. The data from these 
trials will be critical in paving the way for yet 
another generation of P-gp inhibitors. Thus, it 
remains to be seen which platform for exerting 

control over P-gp expression and activity, par-
ticularly in concert with the other possible 
mechanisms discussed earlier, will achieve 
widespread clinical application.

Perspective

After several decades of studying P-gp, there 
are still many questions left unanswered 
regarding the clinical application of P-gp inhibi-
tors. If we are to deliver a high-value therapeu-
tic approach, we must consider efficient pene-
tration into tumor tissue, specificity, retention 
time, and potent induction of cell death (Figure 
2). As we embrace a more rational approach to 
drug design, investigators should also consider 
P-gp genetics, expression, metabolism/ener-
getics, pharmacokinetics, interactions with 
other drugs, and the cellular (tumor) microenvi-
ronment. This review has presented insights 
that, taken together, emphasize the need for an 
expanded approach to overcome the problem 

Figure 2. Graphical representation of various interactions of P-gp with the cancer cell. (1) The anti-cancer drug 
(substrate, S) is initially present extracellularly, and must enter the plasma membrane to exert its therapeutic activ-
ity (2). Here, it is subject to transport and partitioning at the lipid bilayer. At the inner leaflet (3), it encounters the 
transmembrane domain of P-gp and is effluxed (4) with concomitant hydrolysis of ATP. A P-gp inhibitor (Inh), upon 
binding to P-gp (5), may trigger changes in ATP demand (6). An associated effect of P-gp stimulation is extracellular 
acidification (7), although the precise mechanism of this symport-like activity is still unknown. Acidification of the 
extracellular compartment may alter the chemistry of the inhibitor or drug substrate, changing their distribution 
patterns across the extracellular and intracellular compartments, as well as within the lipid bilayer. This event may 
further support drug resistance development. The substrate and inhibitor may also activate transcription factors 
(TF) that modulate P-gp expression (8). The broken lines represent speculative relationships. 
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of P-glycoprotein-mediated multiple drug resis-
tance in cancers.
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