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Abstract: Enhancer of zeste homolog 2 (EZH2) has been emerged as novel anticancer target. Various EZH2 
small-molecule inhibitors have been developed in recent years. A major class of EZH2 inhibitors are S-adenosyl-L-
methionine (SAM)-competitive inhibitors, such as EPZ005687, EI1, GSK126, UNC1999 and GSK343. Autophagy, a 
physiological process of self-digestion, is involved in the turnover of proteins or intracellular organelles. It can serve 
as cytoprotective or cytotoxic function in cancer. Our previous study has found that UNC1999 and GSK343 are po-
tent autophagy inducers. In this study, the underlying molecular mechanisms were further investigated. Our results 
showed that UNC1999 and GSK343 transcriptionally upregulated autophagy of human colorectal cancer (CRC) 
cells through inducing LC3B gene expression. Besides, UNC1999/GSK343-induced autophagy was partially de-
pendent on ATG7 but independent to EZH2 inhibition. Microarray and PCR array analyses identified that UNC1999 
and GSK343 also induced endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UNC1999/
GSK343-induced ER stress/UPR contributed to the survival of cancer cells, which was opposite to UNC1999/
GSK343-induced autophagy that promoted cell death.
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Introduction

Autophagy is a process for the degradation of 
proteins and organelles through the lysosomal 
pathway. It acts as a temporary survival mecha-
nism in response to nutrient starvation through 
self-digestion to provide an alternative energy 
source [1]. Autophagy involves three stages 
including initiation (phagophore formation), 
elongation (autophagosome growth and clo-
sure) and maturation (autophagosome-lyso-
some fusion) [2, 3]. Various signaling pathways 
have been implicated in the regulation of 
autophagy. Autophagy is inhibited by mamma-
lian target of rapamycin (mTOR)-dependent sig-
naling and interruption of mTOR signaling by 
rapamycin is known to stimulate autophagy [4]. 
The biochemical mechanism by which mTOR 
inhibits autophagy is involved a protein com-
plex associated with the kinase ATG1 (ULK1) 
[5]. The PI3K pathway is important for autopha-

gy [6]. Class I and class III PI3K differently regu-
late autophagy. The class I PI3K is a negative 
regulator of autophagy. Activation of class I 
PI3K and AKT leads to the activation of mTOR 
and inhibits autophagy. By contrast, the class III 
PI3K promotes autophagy through interaction 
with Beclin 1 [7, 8]. The energy-sensing enzyme 
AMP-activated protein kinase (AMPK) plays a 
major role in the regulation of cellular lipid and 
protein metabolism [9]. Activation of AMPK is 
reported to induce autophagy through phos-
phorylation and activation of the tuberous scle-
rosis protein 1 (TSC1)/TSC2 complex that nega-
tively regulates mTOR complex [10]. In addition, 
the autophagy-initiating kinase ULK1 is recently 
reported to be phosphorylated and activated by 
AMPK [11].

Overexpression of enhancer of zeste homolog 2 
(EZH2), a histone H3 lysine 27 (H3K27)-specific 
methyltransferase, has been found in tumors to 
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inhibit the expression of tumor suppressor 
genes [12-14]. Inhibition of EZH2 to reactivate 
tumor suppressive genes is regarded as an 
attractive anticancer strategy [15, 16]. Several 
potent inhibitors of EZH2 have been developed 
in recent years [17]. S-adenosyl-L-methionine 
(SAM) is a universal methyl donor for catalytic 
reactions of histone methyltransferases. A 
major class of EZH2 inhibitors belong to SAM-
competitive inhibitors, such as EPZ005687, 
EI1, GSK126, GSK343 and UNC1999 [18-22]. 
Our recent study has demonstrated for the first 
time that EZH2 inhibitors, GSK343 and 
UNC1999, induce autophagy in an EZH2-
dependent manner, leading to cell death of 
cancer cells [23]. However, the underlying 
molecular mechanisms are still unclear. In this 
study, we demonstrated that EZH2 inhibitors 
transcriptionally induced autophagy in human 
colorectal cancer (CRC) cells through the upreg-
ulation of LC3B gene expression. In parallel, 
EZH2 inhibitor activated PERK/eIF2α arm of 
the UPR pathways that promoted cell survival. 
Therefore, inhibitor of ER stress enhanced 
EZH2 inhibitor-induced cytotoxicity.

Materials and methods

Materials

RPMI-1640 medium, L-glutamine, sodium pyru-
vate, and Antibiotic: Antimycotic Solution (peni-
cillin G, streptomycin and amphotericin B) were 
purchased from Life Technologies (Gaithers- 
burg, MD, USA). Fetal bovine serum (FBS) was 
purchased from GIBCO (Grand Island, NY, USA). 
EZH2, LC3B, ATG5, ULK1, GRP78, TRB3, 
GAPDH, Tubulin, and β-Actin antibodies were 
purchased from GeneTex (Hsinchu, Taiwan). 
ATG7 and eIF2α antibodies was purchased 
from Santa Cruz (Island, CA, USA). Phospho-
eIF2α (p-eIF2α) antibody was purchased from 
Cell Signaling Technology (Beverly, MA, USA). 
ATF4 antibody was purchased from ProteinTech 
Group (Chicago, IL, USA). Horseradish peroxi-
dase-labeled goat anti-rabbit and anti-mouse 
secondary antibodies were purchased from 
Jackson ImmunoResearch (West Grove, PA, 
USA). pCMV-EZH2 plasmid was purchased from 
Addgene (Cambridge, MA, USA). PolyJet™ In 
Vitro DNA Tranfection Reagent was purchased 
from SignaGen Laboratories (Ijamsville, MD, 
USA). siGENOME human EZH2 and ATG5 
SMARTpool siRNAs, siGENOME Non-Targeting 

human siRNA Pool, ON-TARGETplus human 
LC3B SMARTpool siRNA, ON-TARGETplus hu- 
man Non-Targeting siRNA Pool, and Dharma- 
FECT 4 siRNA Transfection Reagent were pur-
chased from Dharmacon (Lafayette, CO, USA). 
UNC1999 and 3-methyladenine (3-MA) were 
purchased from Cayman Chemical (Ann Arbor, 
MI, USA). GSK343 was purchased from 
BioVision (Mountain View, CA, USA). Bafilomycin 
A1 was purchased from LC Laboratories 
(Woburn, MA, USA). GSK2606414 was pur-
chased from ApexBio Technology (Houston, TX, 
USA). Dimethyl sulfoxide (DMSO) and 3-(4, 
5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 
bromide (MTT) were purchased from Sigma 
Chemical (St. Louis, MO, USA). Protease and 
phosphatase inhibitor cocktails were pur-
chased from Roche (Indianapolis, IN, USA). 
Other chemicals or reagents not specified were 
purchased from OneStar Biotechnology (New 
Taipei City, Taiwan).

Cell culture

Human colorectal cancer cells (HCT116, LoVo, 
HCT-15, and DLD-1) were kindly provided by 
Prof. Ya-Wen Cheng (Taipei Medical University, 
Taipei, Taiwan). ATG7-wildtype (ATG7-WT), ATG7-
knockout (ATG7-KO), ULK1-wildtype (ULK1-WT) 
and ULK1-dominant-negative mutant (ULK1-
DN) DLD-1 cells were purchased from Horizon 
Discovery (Cambridge, UK). These cells were 
cultured in RPMI-1640 medium supplemented 
with 10% FBS, 1 mM sodium pyruvate, 1% 
L-glutamine, 1% Antibiotic:Antimycotic Solution, 
and incubated at 37°C in a humidified incuba-
tor containing 5% CO2.

Cell viability assay

Cell viability was measured with an MTT assay. 
Cells were plated in 96-well plates and treated 
with drugs. After 72 h of incubation, 0.5 mg/mL 
of MTT was added to each well for an additional 
4 h. The blue MTT formazan precipitate was 
then dissolved in 200 μL of DMSO. The absor-
bance at 550 nm was measured on a multiwell 
plate reader.

Western blot analysis

Cells were lysed in an ice-cold buffer containing 
50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 
MgCl2, 2 mM EDTA, 1% NP-40, 10% glycerol, 1 
mM DTT, 1 × protease inhibitor cocktail and 1 × 
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phosphatase inhibitor cocktail at 4°C for 30 
min. Cell lysates were separated on a sodium 
dodecylsulfate (SDS)-polyacrylamide gel, and 
then transferred electrophoretically onto the 
Hybond-C Extra nitrocellulose membrane (GE 
Healthcare, Piscataway, NJ, USA). The mem-
brane was pre-hybridized in 20 mM Tris-HCl (pH 
7.5), 150 mM NaCl, 0.05% Tween-20 (TBST buf-
fer), and 5% skim milk for 1 h, and then trans-
ferred to a solution containing 1% bovine serum 
albumin (BSA)/TBST and a primary antibody 
and incubated overnight at 4°C. After washing 
with the TBST buffer, the membrane was sub-
merged in 1% BSA/TBST containing a horse-
radish peroxidase-conjugated secondary anti-
body for 1 h. The membrane was washed with 
TBST buffer, and then developed with an 
enhanced chemiluminescence (ECL) system 
(Perkin-Elmer, Boston, MA, USA) and exposed 
to x-ray film (Roche, Indianapolis, IN, USA).

Fluorescence microscopic analysis of autopha-
gic vacuoles

Formation of autophagic vacuoles was moni-
tored using a Cyto-ID Autophagy Detection Kit 
(Enzo Life Sciences, Farmingdale, NY, USA) fol-
lowing the manufacturer’s protocol. Briefly, 
cells were washed twice in phosphate-buffered 
saline (PBS) containing 5% FBS and then 
stained with Cyto-ID Detection Reagent and 
Hoechst 33342. After 30 min of incubation at 
37°C, cells were washed and examined by fluo-
rescence microscopy.

Transient transfection

For EZH2 overexpression, human EZH2-
overexpressing (pCMV-EZH2) and its control 
(pCMV) plasmids were transiently transfected 
into cells with PolyJet™ In Vitro DNA Tranfection 
Reagent according to the manufacturer’s 
instructions. For siRNA knockdown analysis, 
human EZH2, ATG5, LC3B and control siRNAs 
were transiently transfected into cells with 
DharmaFECT 4 siRNA Transfection Reagent 
according to the manufacturer’s instructions. 
Twenty-four hours after transfection, the 
transfection mixture was replaced with fresh 
complete medium and cells were used for fur-
ther experiments.

Microarray analysis and gene set enrichment 
analysis (GSEA)

Total RNA was extracted from HCT116 cells 
that were treated with 5 μM UNC1999 and 10 

μM GSK343 for 4 h by the GENEzol TriRNA Pure 
Kit (Geneaid Biotech; New Taipei City, Taiwan). 
Microarray analysis using Agilent SurePrint G3 
Human GE 8 × 60 K Microarray (Agilent Tech- 
nologies) was performed by Welgene Biotech 
Company (Taipei, Taiwan). The raw data were 
deposited in NCBI GEO database (GSE83633). 
Gene set enrichment analysis (GSEA) was per-
formed using GSEA v2.2.2 (http://www.
broadinstitute.org/gsea/) provided by the 
Broad Institute of MIT and Harvard (Cambridge, 
MA, USA) [24, 25]. Enrichment analysis of the 
50 cancer hallmarks from the Molecular 
Signatures Database (MSigDB) v5.1 was per-
formed with default parameter setting [25, 26].

Real-time quantitative PCR (qPCR)

Total RNA (1 μg) was reverse-transcribed for 30 
min at 42°C with the iScript cDNA Synthesis Kit 
according to the supplier’s standard protocol 
(Bio-Rad Laboratories; Richmond, CA, USA). 
qPCR was performed using the following condi-
tions: 10 min at 95°C and 45 cycles of 10 sec 
at 95°C and 30 sec at 60°C. The 2 × SYBR 
Green PCR Master Mix (Roche) and 200 nM of 
forward and reverse primers were used (human 
LC3B: forward 5’-AACGGGCTGTGTGAGAAA- 
AC-3’ and reverse 5’-AGTGAGGACTTTGGGTG- 
TGG-3’; human β-Actin: forward 5’-GTTGCTAT- 
CCAGGCTGTGCT-3’ and reverse 5’-AGGGCATA- 
CCCCTCGTAGAT-3’). Each assay was performed 
on a LightCycler Nano Real-Time PCR System 
(Roche) in triplicate, and the fold-changes in 
expression were derived using the comparative 
CT method calculated by LightCycler Nano 
Software v1.1 (Roche).

PCR array

Human Unfolded Protein Response Plus RT2 
Profiler PCR Array (Qiagen; Valencia, CA, USA) 
containing primers for 84 key genes of the UPR 
were used to examine the effects of EZH2 
inhibitors the according to the manufacturer’s 
protocol. Total RNA (0.5 μg) was reverse tran-
scribed by a RT2 First Strand Kit (Qiagen), prior 
to amplification using the RT2 Profiler PCR Array. 
PCR amplifications were performed on a 
StepOne Plus Real-Time PCR System thermocy-
cler (Life Technologies). The results were ana-
lyzed using a supplied online software. The 
comparative Ct method was used for relative 
transcript quantification against the average 
ΔCt derived from internal controls (β-Actin, β-2-
microglobulin, GAPDH, HPRT1, and RPLP0).
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Statistical analysis

Means and standard deviations of samples 
were calculated from the numerical data (at 
least 3 replica) generated in this study. Data 
were analyzed using Student’s t-test, and p val-
ues of < 0.05 were considered significant (*).

Results

Characterization of autophagy induced by the 
EZH2 inhibitors in human colorectal cancer 
cells

Our previous study shows that SAM-competi- 
tive EZH2 inhibitors, GSK343 and UNC1999 
(Figure 1A), induce autophagy in cancer cells 
[23]. The involved molecular mechanisms were 
further investigated in this study. First, we con-
firmed that GSK343 and UNC1999 induced 

autophagy in human colorectal cancer (CRC) 
cells. LoVo, HCT-15, and DLD-1 cells were treat-
ed with various doses of UNC1999 for 24 h, 
and autophagy was evaluated by the accumula-
tion of LC3-II. As shown in Figure 1B, UNC1999 
induced LC3-II accumulation in these cells. 
Because impaired autophagosome-lysosome 
fusion can result in LC3-II accumulation, 
autophagic flux was analyzed by treating bafilo-
mycin A1, a vacuolar-type H+-ATPase inhibitor 
that blocks autophagosome-lysosome fusion 
[27]. As shown in Figure 1C, UNC1999 induced 
more accumulation of LC3-II in the presence of 
bafilomycin A1, suggesting that the increase of 
LC3-II by UNC1999 was not due to the block-
ade of autophagic degradation. Furthermore, 
the formation of autophagic vacuoles was mon-
itored using Cyto-ID Autophagic Detection Kit. 
UNC1999 increased the Cyto-ID fluorescence 

Figure 1. UNC1999 induced autophagy in human CRC cells in an EZH2-independent manner. A. The chemical struc-
tures of GSK343 and UNC1999. B. LoVo, HCT-15 and DLD-1 cells were treated with indicated doses of UNC1999 
for 24 h. The protein expressions were analyzed by Western blots. C. LoVo, HCT-15 and DLD-1 cells were treated with 
2.5 μM UNC1999 for 24 h in the absence or presence of 20 nM bafilomycin A1 (post-treatment for 4 h). The protein 
expressions were analyzed by Western blots. D. DLD-1 cells were treated with 2.5 μM UNC1999 for 24 h, and then 
stained with Cyto-ID Autophagy Detection Kit. The Cyto-ID fluorescence was observed by fluorescent microscopy. E. 
HCT116 and DLD-1 cells were treated with indicated doses of GSK343 for 24 h. The protein expressions were ana-
lyzed by Western blots. F. LoVo, HCT-15 and DLD-1 cells were transiently transfected with an EZH2-overexpressing 
(pCMV-EZH2) or a control (pCMV) plasmid for 48 h, and then treated with 2.5 μM UNC1999 for 24 h. The protein 
expressions were analyzed by Western blots. G. DLD-1 cells were transiently transfected with EZH2 siRNA for 72 h. 
The protein expressions were analyzed by Western blots.
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in DLD-1 cells (Figure 1D). Similarly, GSK343 
also induced LC3-II accumulation in HCT116 
and DLD-1 cells (Figure 1E). Therefore, EZH2 

inhibitors can induce autophagy in human CRC 
cells. To investigate whether EZH2 inhibition 
was responsible for the effect of UNC1999 on 

Figure 2. UNC1999 induced partially ATG7-dependent autophagy. A. LoVo, HCT-15 and DLD-1 cells were pretreated 
with 2 and 5 mM 3-MA for 1 h, and then exposed to 2.5 μM UNC1999 for 24 h. The protein expressions were ana-
lyzed by Western blots. B. HCT116 and DLD-1 cells were pretreated with 5 mM 3-MA for 1 h, and then exposed to 
5 μM GSK343 for 24 h. The protein expressions were analyzed by Western blots. C. DLD-1 cells were transfected 
with ATG5 siRNA for 48 h, and then exposed to 2.5 μM UNC1999 for 24 h. The protein expressions were analyzed 
by Western blots. *nonspecific band. D and E. ATG7-KO and ULK1-DN DLD-1, as well as their control wildtype (WT) 
cells were treated with indicated doses of UNC1999 for 24 h. The protein expressions were analyzed by Western 
blots. F. ATG7-WT and ATG7-KO cells were treated with 5 μM UNC1999 for 24 h in the absence or presence of 20 
nM bafilomycin A1 (post-treatment for 4 h). The protein expressions were analyzed by Western blots. G. ATG7-WT 
and ATG7-KO cells were treated with indicated doses of UNC1999 for 72 h. The cell viability was analyzed by an MTT 
assay. *P < 0.05 indicates significant differences between ATG7-WT and ATG7-KO cells.
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inducing autophagy, LoVo, HCT-15 and DLD-1 
cells were transfected with EZH2-overexpre- 
ssing plasmids, and then treated with UNC1999 
for 24 h. As shown in Figure 1F, UNC1999-
induced LC3-II accumulation was not rescued 
by EZH2 overexpression. In addition, knock-
down of EZH2 by siRNA was not sufficient to 
induce LC3-II accumulation in DLD-1 cells 
(Figure 1G). Therefore, UNC1999 induces au- 
tophagy of human CRC cells in an EZH2-
independent manner.

EZH2 inhibitor-induced autophagy is partially 
dependent on ATG7

To investigate how EZH2 inhibitors induced 
autophagy in human CRC cells, a class III PI3K 

inhibitor, 3-methyladenine (3-MA), was used. 
Surprisingly, 3-MA enhanced UNC1999- and 
GSK343-induced LC3-II accumulation (Figure 
2A and 2B). To confirm the effect of 3-MA, an 
siRNA against ATG5 was transfected into DLD-1 
cells. Consistently, inhibition of ATG5 expres-
sion potentiated UNC1999-induced LC3-II acc- 
umulation (Figure 2C). Furthermore, ULK1-do- 
minant-negative mutant (ULK1-DN) and ATG7-
knockout (ATG7-KO) DLD-1 cells were used. As 
shown in Figure 2D and 2E, UNC1999 could 
still induce LC3-II accumulation in ULK1-DN 
and ATG7-KO DLD-1 cells. However, we noticed 
that UNC1999-induced LC3-II accumulation 
was partially inhibited in ATG7-KO cells (Figure 
2E). To confirm this results, cells were treated 

Figure 3. EZH2 inhibitors transcriptionally induced autophagy. A. HCT116 and DLD-1 cells were treated with 2 μg/
mL antinomycin or 5 μg/mL cycloheximide for 1 h, and then exposed to 2.5 μM UNC1999 or 5 μM GSK343 for 
additional 24 h. The protein expressions were analyzed by Western blots. B. HCT116 cells were treated with 5 μM 
UNC1999 or 10 μM GSK343 for 6 or 18 h. The LC3B mRNA expression was analyzed by qPCR. *P<0.05 indicates 
significant differences between drug-treated and control cells. C. HCT116 cells were transiently transfected with 
EZH2 siRNA for 48 h, and then treated with 5 μM UNC1999 for 24 h. The protein expressions were analyzed 
by Western blots. C. HCT116 cells were transiently transfected with EZH2 siRNA for 24 h, and then treated with 
indicated doses of UNC1999 for 72 h. The cell viability was analyzed by an MTT assay. *P<0.05 indicates significant 
differences between si-NC- and si-LC3B-transfected cells.
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with UNC1999 with or without bafilomycin A. As 
shown in Figure 2F, the level of LC3-II was 
attenuated in ATG7-KO cells compared to ATG7-
WT cells. Therefore, these results suggest that 
EZH2 inhibitors induce autophagy in human 
CRC cells, which was partially dependent on 
ATG7.

EZH2 inhibitor-induced autophagy is associ-
ated with the upregulation of LC3B gene tran-
scription

In addition to the cytosolic events that can reg-
ulate autophagy, accumulating evidences sug-
gest the existence of transcriptional control of 
autophagy [28]. To investigate whether tran-
scription and translation were involved in 
UNC1999-induced autophagy, a transcription 
inhibitor, antinomycin D, and a protein synthe-
sis inhibitor, cycloheximide, were used. As 
shown in Figure 3A, UNC1999- and GSK343-
induced LC3-II accumulation was inhibited by 
these two drugs, indicating that induction of 
gene expression and de novo protein synthesis 
are required for UNC1999- and GSK343-
induced autophagy. Because treatment of 
3-MA and ATG5 siRNA, as well as ATG7- and 
ULK1-deficiency did not inhibit EZH2 inhibitor-
induced autophagy, we proposed that EZH2 
inhibitors may directly induce the transcription 
of LC3B to trigger autophagy. Indeed, UNC1999 
and GSK343 transiently increased the mRNA 
level of LC3B gene in HCT116 cells (Figure 3B). 
To investigate the role of autophagy in the anti-
cancer activity of EZH2 inhibitors, endogenous 
LC3B expression was knocked down by trans-
fecting siRNA (Figure 3C), and then cell viability 
was examined by MTT assay. As shown in 
Figure 3D, knockdown of LC3B gene rescued 
cell growth inhibition by UNC1999. Therefore, 
UNC1999 induced autophagy through tran-
scriptional upregulation of LC3B gene. In addi-
tion, the partial ATG7-dependency of UNC1999-

induced autophagy (Figure 2E and 2F) may be 
due to that ATG7 is responsible for the LC3 lipi-
dation [29].

Microarray analysis reveals that EZH2 inhibi-
tors upregulate genes associated with an un-
folded protein response

To further identify the biological pathways 
affected by UNC1999 and GSK343, microarray 
analyses were performed and analyzed by the 
Gene Set Enrichment Analysis (GSEA) software 
using hallmark gene sets [24-26]. The results 
indicated 4 out of 50 gene sets are upregulated 
in response to UNC1999 and GSK343 (Table 
1). The top-ranking pathways with statistical 
significance (p value < 0.05%) included unfold-
ed protein responses (UPR) and cholesterol 
biosynthesis (Figure 4A and Table 1). Activation 
of UPR drew our attention because UPR is 
known to connect ER stress to autophagy [30]. 
ER stress/UPR consists of three major arms 
(PERK/eIF2α, IRE1/XBP1, and ATF6). Each UPR 
pathway induces different target genes. ATF6 
binds to ER-stress response elements (ERSEs) 
and induces transcription of several genes, 
including GRP78, CHOP and XBP1. XBP1 binds 
to UPR elements (UPREs) and activates many 
genes that are crucial for secretory function. 
One of these gene products, p58IPK, inhibits 
PERK activity. PERK-mediated phosphorylation 
of eIF2α suppresses global translation except 
the ATF4 mRNA. ATF4 can upregulate the third 
set of UPR target genes, one of which is CHOP 
that can induce apoptosis in cells with irrecov-
erable levels of ER stress [31]. The alterations 
of ER stress/UPR-related genes by UNC1999 
and GSK343 were visualized by the Ingenuity 
Pathway Analysis (IPA). The results indicated 
that UNC1999 predominantly upregulated 
genes associated with PERK/eIF2α pathways 
(Figure 4B). However, GSK343 induced the 
expression of genes related to the three arms 

Table 1. The Gene Set Enrichment Analysis (GSEA) for pathways enriched in both UNC1999- and 
GSK343-treated HCT116 cells

Pathways
Number of 
Genes in  
Pathway

Number of Pathway Genes  
Differentially Expressed  

(% of Total)
p value

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 81 18 (22%) 0.000
HALLMARK_CHOLESTEROL_HOMEOSTASIS 61 13 (21%) 0.000
HALLMARK_MTORC1_SIGNALING 148 27 (18%) 0.500
HALLMARK_PI3K_AKT_MTOR_SIGNALING 72 7 (10%) 0.125
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Figure 4. Microarray anal- 
ysis revealed the inducti- 
on of ER stress/UPR by  
EZH2 inhibitors. A. HCT- 
116 cells were treated 
with 5 μM UNC1999 or  
and then microarray anal- 
ysis was performed. UNC- 
1999/GSK343-regula- 
ted genes were analyzed 
by GSEA. The enrichme- 
nt plots of “HALLMARK_ 
UNFOLDED_PROTEIN_RE-
SPONSE” and “HALLMA- 
RK_CHOLESTEROL_HO-
MEOSTASIS” were shown. 
B. The alterations of ge- 
nes associated with UPR 
in UNC1999-treated HCT- 
116 cells were analyzed 
and visualized by IPA. 
The red and green colors 
indicate the upregulation 
and downregulation by 
UNC1999, respectively.
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of UPR (Figure 5). Therefore, EZH2 inhibitors 
may induce autophagy through the activation 
of UPR pathways.

EZH2 inhibitors activate the PERK/eIF2α arm 
of the unfolded protein response pathways

To confirm the result of microarray analysis, the 
Human Unfolded Protein Response Plus PCR 
Array analysis was performed. As shown in 
Figure 6A, the common genes induced by 
UNC1999 and GSK343 were ATF4 and DDIT3 
(CHOP/GADD153) genes at 6 h, and TRB3 gene 
at 6 and 18 h. Induction of ATF4 and CHOP rep-

resents the downstream of PERK/eIF2α arm of 
UPR [32]. TRB3, a mammalian homolog of 
Drosophila tribbles, functions as a negative 
modulator of AKT/mTOR [33]. TRB3 is induced 
by ATF4/CHOP pathway and is involved in 
CHOP-dependent cell death during ER stress 
[34]. It has been reported that ATF4 and CHOP 
directly bind and regulate LC3B gene promoter 
to promote autophagy [35]. Our result indicated 
that the transient induction of ATF4 and DDIT3/
CHOP gene expression was correlated with the 
upregulation of LC3B genes (Figure 3B). There- 
fore, we proposed that EZH2 inhibitors can acti-
vate autophagy through PERK/eIF2α signaling 

Figure 5. Alteration of ER stress/UPR-related 
genes by GSK343. The alterations of genes asso-
ciated with UPR in GSK343-treated HCT116 cells 
were analyzed and visualized by IPA. The red and 
green colors indicate the upregulation and down-
regulation by GSK343, respectively.
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Figure 6. PCR array analysis identified the activation of the PERK/eIF2α arm by EZH2 inhibitors. A. HCT116 cells 
were treated with 5 μM UNC1999 or 10 μM GSK343 for 6 and 18 h, and the ER stress/UPR-associated genes 
were analyzed by the Human Unfolded Protein Response Plus PCR Array. The scatter plot compared normalized 
expression of every gene on the array between control and test samples. The central line indicates unchanged 
gene expression. The fold regulation cut-off (boundary) was set to “2-fold”. The red circles indicated that genes 
were up-regulated and the green circles indicated that genes were down-regulated. The genes (red square) with 
relatively higher average threshold cycle (>30) were not considered significant. The names of significant genes were 
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axis. Indeed, UNC1999 induced the phosphory-
lation of eIF2α, as well as the expression of 
ATF4 (Figure 6B). In addition, the expression of 
GRP78, a central regulator for ER stress [36], 
was also induced by UNC1999 (Figure 6B). 
Therefore, UNC1999 indeed induces ER stress 
and UPR in human CRC cells. To investigate the 
role of ER stress in UNC1999-induced autoph-
agy, a PERK inhibitor, GSK2606414, was used. 
As shown in Figure 6C, phosphorylation of 
eIF2α by UNC1999 was attenuated by GSK- 
2606414. However, GSK2606414 did not alter 
UNC1999-induced LC3-II accumulation. There- 
fore, UNC1999 induced autophagy in an ER 
stress-independent manner.

Inhibition of ER stress enhances UNC1999-
induced cell death

To investigate the role of ER stress/UPR in the 
anticancer activity of EZH2 inhibitors in CRC 
cells, HCT116 cells were treated with GSK- 
2606414, and then exposed to UNC1999 for 
48 h. The cell viability was examined by a MTT 
assay. As shown in Figure 7A, synergistic inhibi-
tion of cell viability by GSK2606414 and 
UNC1999 was found. The inhibition of ER 
stress by GSK2606414 was ascertained by 
reduction of the eIF2α phosphorylation (Figure 
7B). To confirm the enhancement of UNC1999-
inducedcell death by GSK2606414, cell apop-
tosis was examined by the cleavage of poly 
(ADP-ribose) polymerase (PARP). Indeed, UNC- 
1999-induced PARP cleavage was augmented 
in the presence of GSK2606414. In addition, 
UNC1999-induced autophagy (LC3-II accumu-
lation) was not altered by GSK2606414 (Fig- 
ure 7B). Therefore, ER stress/UPR plays a cyto-
protective role in the anticancer activity of 
UNC1999.

Discussion

Recently, non-canonical autophagy has been 
characterized [37-41]. Unlike canonical autoph-
agy, the formation of the double-membraned 
autophagosome does not require the hierarchi-
cal intervention of all of the ATG proteins [39]. 
For example, non-canonical autophagy can 
occur in the Beclin 1/VPS34-, ATG5/ATG7- and 

ULK1/ULK2-independent manners [37, 40, 
41]. Even so, non-canonical autophagy path-
ways and structures have the same function as 
canonical autophagy in sequestering some of 
the cytoplasm and compartmentalizing patho-
gens. In addition, material sequestered by non-
canonical autophagy is ultimately degraded in 
the lysosomal compartment [42]. However, no 
specific markers are able to distinguish bet- 
ween the non-canonical and canonical autoph-
agic pathways. In our study, EZH2 inhibitor 
induced 3-MA-insenstitive, as well as ATG5- 
and ULK1-indpendent autophagy despite the 
partial dependency of ATG7, suggesting that 
EZH2 inhibitors may also induce non-canonical 
autophagy. Further investigation is required to 
clarify the underlying molecular pathways.

Despite the fact that the execution of autopha-
gy includes a unique set of cytoplasmic events, 
nuclear events, in particular transcriptional pro-
grams, have emerged as an important regula-
tor of this process [28, 43]. Particularly, recent 
studies have suggested the existence of epi-
genetic mechanism for autophagy. For exam-
ple, the methyltransferase G9a, that catalyzes 
the dimethylation of histone H3 lysine 9 (H3K9-
me2), directly represses genes known to par-
ticipate in the autophagic process [44]. In addi-
tion, induction of autophagy is coupled with the 
reduction of histone H4 lysine 16 acetylation 
(H4K16-ac) through downregulation of the his-
tone acetyltransferase hMOF (also called KAT8 
or MYST1). H4K16 deacetylation is associated 
predominantly with the downregulation of 
autophagy-related genes, and antagonizing 
H4K16-ac downregulation upon autophagy 
induction results in the promotion of cell death 
[45]. Most recently, EZH2 has been shown to 
inhibit autophagy through epigenetically repre- 
ssing the negative regulators of mTOR [46]. 
However, this study is controversial to our 
results showing that knockdown of EZH2 by 
siRNA was not sufficient to induce autophagy 
and overexpression of EZH2 cannot block EZH2 
inhibitor-induced autophagy. In addition, our 
previous study demonstrated that 3-deazane-
planocin A (DZNep), an indirect EZH2 inhibitor 
through depleting EZH2 [16], fails to induce 
autophagy [23]. It is likely that cell type or con-

shown in diagrams. B. HCT116 cells were treated with indicated doses of UNC1999 for 6 h. The protein expressions 
were analyzed by Western blots. C. HCT116 cells were treated with indicated doses of UNC1999 with or without 
GSK2606414 for 6 h. The protein expressions were analyzed by Western blots.
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text specificity for EZH2-dependent regulation 
of autophagy may exist.

In addition to a basic role in the turnover of pro-
teins and organelles, autophagy is observed 

[53]. Our study showed that induction of ER 
stress/UPR belonged to an immediate response 
to EZH2 inhibitors, which play a protective role 
from cancer cell death. Besides, microarray 
and hallmark gene set analyses found that, in 

Figure 7. Inhibition of ER stress enhanced UNC1999-induced cell death. (A 
and B) HCT116 cells were treated with indicated doses of UNC1999 with or 
without 10 μM GSK2606414 for 48 h. The cell viability was analyzed by an 
MTT assay (A). The protein expressions were analyzed by Western blots (B). 
*P < 0.05 indicates significant differences between GSK2606414-treated 
and control cells. (C) A working model for the action mechanism of EZH2 
inhibitors.

under pathological conditions 
including myopathy, neuronal 
degeneration, infectious dis-
ease, and cancer [47, 48]. 
Previous studies have report-
ed that either blockage of 
autophagy or induction of au- 
tophagy could lead to tumor 
growth. The impact of autoph-
agy appears to vary with in- 
trinsic properties of the tumor 
[49]. Accumulating evidences 
indicate that autophagy facili-
tates the resistance of cancer 
cells to chemotherapy and 
radiation [50]. On the other 
hand, total destruction of the 
cells by autophagy is served 
as type II programmed cell 
death [51]. Autophagic cell 
death has been reported to 
be activated in cancer cells in 
response to various antican-
cer therapies. Therefore, inv- 
estigating the role of autopha-
gy in cancer therapy and then 
modulating the activity of 
autophagy will improve the 
efficacy of cancer therapy, 
which relies on more under-
standing the mechanism of 
autophagy. In this notion, our 
previous and current studies 
showed that UNC1999 and 
GSK343 induced autophagic 
cell death [23]. Therefore, en- 
hancement of autophagy by 
small molecules, such as 
rapamycin, might enhance 
the anticancer activity of 
UNC1999 and GSK343.

ER stress/UPR could result in 
both adaptive and apoptotic 
outputs and is associated 
with a wide range of diseases 
including cancers [52]. Gen- 
erally, the ability of cells to 
respond to ER stress is criti-
cal for cell survival. However, 
chronic or unresolved ER str- 
ess can lead to apoptosis 
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addition to UPR, EZH2 inhibitors may also acti-
vate mTOR, PI3K/AKT survival signaling path-
ways despite of no statistical significance.

Taken together, we proposed a working model 
(Figure 7C) to describe the action mechanism 
of EZH2 inhibitors (UNC1999 and GSK343). 
EZH2 inhibitors exhibit anti-CRC activity through 
inducing autophagic cell death. EZH2 inhibitors 
induce autophagy via transcriptionally upregu-
lated the expression of LC3 gene. In contrast, 
EZH2 inhibitors also trigger ER stress to acti-
vate PERK/eIF2α pathway, which plays a pro-
tective role in cancer cells. Thus, combination 
therapy of ER stress and EZH2 inhibitors may 
have synergistic anti-CRC activity.
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