
1Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

www.nature.com/scientificreports

DBG2OLC: Efficient Assembly
of Large Genomes Using
Long Erroneous Reads of the
Third Generation Sequencing
Technologies
Chengxi Ye1,2, Christopher M. Hill1, Shigang Wu3, Jue Ruan3 & Zhanshan (Sam) Ma2

The highly anticipated transition from next generation sequencing (NGS) to third generation
sequencing (3GS) has been difficult primarily due to high error rates and excessive sequencing cost.
The high error rates make the assembly of long erroneous reads of large genomes challenging because
existing software solutions are often overwhelmed by error correction tasks. Here we report a hybrid
assembly approach that simultaneously utilizes NGS and 3GS data to address both issues. We gain
advantages from three general and basic design principles: (i) Compact representation of the long reads
leads to efficient alignments. (ii) Base-level errors can be skipped; structural errors need to be detected
and corrected. (iii) Structurally correct 3GS reads are assembled and polished. In our implementation,
preassembled NGS contigs are used to derive the compact representation of the long reads, motivating
an algorithmic conversion from a de Bruijn graph to an overlap graph, the two major assembly
paradigms. Moreover, since NGS and 3GS data can compensate for each other, our hybrid assembly
approach reduces both of their sequencing requirements. Experiments show that our software is able to
assemble mammalian-sized genomes orders of magnitude more quickly than existing methods without
consuming a lot of memory, while saving about half of the sequencing cost.

The Human Genome Project (HGP), which is perhaps the largest biomedical research project humans have ever
undertaken, is responsible for greatly accelerating the advancement of DNA sequencing technologies1. Three
generations of DNA sequencing technologies have been developed in the last three decades, and we are at the
crossroads of the second and third generations of the sequencing technologies. Third generation sequencing
(3GS) technology promises to significantly improve assembly quality and expand its applications in biomedical
research and biotechnology development. However, lack of efficient and effective genome assembly algorithms
has arguably been the biggest roadblock to the widespread adoption of 3GS technologies. 3GS long reads (aver-
aging up to 5–20 kb per run at this time) usually have high error rates: ~15% with PacBio sequencing2, and as
high as ~40% with Oxford Nanopore sequencing3. These high error rates make the assembly of 3GS sequences
seem disproportionally complex and expensive compared to the assembly of NGS sequences. As a comparison,
the whole genome assembly of a human genome using 3GS data was first reported to have taken half a million
CPU hours4 compared to ~24 hours with Illumina NGS sequencing data5. Consequently, in practice, many appli-
cations of 3GS technology have been limited to re-sequencing bacteria and other small genomes6. While software
for 3GS assembly has made important improvements2,7–17, especially for high coverage data, the software is still
quite slow and not ideally suited for modest coverage data. Another major issue is that the sequencing cost of 3GS

1Department of Computer Science, Institute for Advanced Computer Studies, University of Maryland, College Park,
MD 20742, USA. 2Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources
and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China. 3Agricultural
Genome Institute, Chinese Academy of Agricultural Sciences, No.7 Pengfei Road, Dapeng New District, Shenzhen,
Guangdong 518120, China. Correspondence and requests for materials should be addressed to C.Y. (email:
cxy@umd.edu) or S.M. (email: samma@uidaho.edu)

Received: 17 November 2015

Accepted: 20 July 2016

Published: 30 August 2016

OPEN

mailto:cxy@umd.edu
mailto:samma@uidaho.edu

www.nature.com/scientificreports/

2Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

technology, while decreasing with time, is still at least an order of magnitude more expensive than the popular
Illumina NGS sequencing at the time of this work.

While the evolution of genome assembly software solutions has been influenced by multiple factors, the most
significant one has been the length of the sequences18. Although increasing sequence lengths may simplify the
assembly graph6, the sequence length also has a critical impact on the computational complexities of genome
assembly. Computational biologists have historically formulated the genome assembly problem as a graph
traversal problem18–20, i.e., searching for a most likely genome sequence from the overlap graph of the sequence
reads in the case of the first generation sequencing technology. The string graph and the best overlap graph are
specific forms of the Overlap-Layout-Consensus (OLC) paradigm that are more efficient by simplifying the global
overlap graph19,21,22. The read-based algorithms, aiming to chain the sequencing reads in the most effective way,
are computationally expensive because pair-wise alignment of the sequences is required to construct the overlap
graph. This issue was tolerable for the relatively low amount of sequences produced from the low-throughput
first generation sequencing technologies, but quickly became overwhelming with the enormous amount of short
reads produced by high-throughput NGS data. The strategy of chopping the sequencing reads into shorter and
overlapping k-grams (so-termed k-mers) and building links between the k-mers, was developed in the de Bruijn
graph (DBG) framework to simplify NGS assembly. Assembly results are extracted from the linear (unbranched)
regions of the k-mer graph in this approach20.

The overlap graph model or the OLC-based software packages, such as Celera Assembler1, AMOS23 and
ARACHNE24, originally used for assembling the first generation sequence data, were also adopted for the NGS
assembly before DBG-based approaches became the de facto standard. Newer 3GS technologies, including
single-molecule, real-time sequencing (SMRT) and Oxford Nanopore sequencing, produce much longer reads
than NGS. The longer reads from 3GS technology make the OLC approaches, which were originally used in the
first generation genome assembly, feasible again. Nevertheless, the high error rates of current 3GS technologies
render the existing OLC-based assemblers developed for relatively accurate sequences unusable. Similarly, the
error-prone long reads make the DBG full of branches and therefore unsuitable for 3GS assembly. Faced with
these challenges, the developers of 3GS technology have resorted to using error correction techniques2,7,9,10,13,17 to
create high quality long reads and reusing the algorithms originally developed for the first generation sequence
assembly. However, error correction for these long reads require extensive computational resources, even for
small microbial genomes. Moreover, the high sequencing depth (usually 50x–100x) required by existing 3GS
genome assemblers increases sequencing cost significantly, especially for large genomes. These issues have put
3GS technology at a severe disadvantage when competing against widely used NGS technology. In this article, we
introduce algorithmic techniques that effectively resolve many of these issues. But first, we present a brief account
of the existing genome assembly software technologies to put our contribution in proper context.

Researchers began with scaffolding approaches such as AHA16, PBJelly15 and SSPACE-LongRead11 to patch
the gaps between high quality assembly regions, i.e., first build a scaffold by aligning reads to the contigs and then
use reads that span multiple contigs as links to build a scaffold graph. In ALLPATHS-LG14 and Cerulean12, long
reads are used to find the best path in the de Bruijn graph that bridges the gaps between large contigs. Although
these software packages have indeed achieved important advances for 3GS genome assembly, resolving intricate
ambiguities is inherently difficult and can lead to structural errors. Furthermore, the underlying graph search
algorithms usually have exponential complexity with respect to the search depth and thus, scales poorly; highly
repeating regions (such as long repeats of simple sequences) will lead to large search depths and are not resolv-
able. In addition, the more powerful read overlap graph structure (of the long reads) was not fully explored in
all these approaches. Often these algorithms rely on heuristics such as contig lengths and require iterations12,14.
To circumvent these important issues associated with the hybrid approach, a Hierarchical Genome-Assembly
Process (HGAP)13 was developed using a non-hybrid strategy to assemble PacBio SMRT sequencing data, which
does not use the NGS short reads. HGAP contains a consensus algorithm that creates long and highly accurate
overlapping sequences by correcting errors on the longest reads using shorter reads from the same library. This
correction approach was proposed earlier in the hybrid setting and is widely used in assembly pipelines2,9,10,17.
Nonetheless, this non-hybrid, hierarchical assembly approach requires relatively high sequencing coverage
(50x–100x) and substantial error correction time to obtain satisfactory results. It is noteworthy that most of the
algorithms we reviewed here were originally designed for bacterial-sized genomes. Though recent advancements
in aligning erroneous long reads6,25 have also shortened the computational time of 3GS assembly, running these
programs on large genomes, especially mammalian-sized genomes, usually imposes a large computational burden
(sometimes up to 105 or 106 CPU hours) more suited to large computational clusters and well beyond the capa-
bility of a typical workstation.

In this study, we design algorithms to enable efficient assembly of large mammalian-sized genomes. We
observe that per-base error correction of each long erroneous reads and their pair-wise alignment takes a signifi-
cantly large portion of time in existing pipelines, but neither of these is necessary at an initial assembly stage. If all
sequencing reads are structurally correct (non-chimeic), one can produce a structurally correct draft genome and
improve the base-level accuracy in the final stage, as was originally done in the OLC approach. Taking advantage
of this observation, we develop a base-level correction-free assembly pipeline by directly analyzing and exploiting
overlap information in the long reads. Unlike previous approaches, we use the NGS assembly to lower the com-
putational burden of aligning 3GS sequences rather than just polishing 3GS data. This allows us to take advantage
of the cheap and easily accessible NGS reads, while avoiding the issues associated with existing hybrid approaches
mentioned previously. Meanwhile, since NGS and 3GS are independent of each other, the sequencing gaps in
one type of data may be covered by the data from the other. The utilization of NGS data also lowers the required
sequencing depth of 3GS, and the net result is reduced sequencing cost. Hence, we get the best of both worlds of
hybrid and non-hybrid assembly approaches. Specifically, we map the DBG contigs from NGS data to the 3GS
long reads to create anchors for the long reads. Each long read is (lossily) compressed into a list of NGS contig

www.nature.com/scientificreports/

3Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

identifiers. Because the compressed reads are often orders of magnitude shorter than the original reads, finding
candidate overlaps between them becomes a simple bookkeeping problem and the approximate alignments and
overlaps can be calculated cheaply with the help of the contig indentifiers. An overlap graph is constructed by
chaining the best overlapped-reads in the compressed domain. The linear unbranched regions of the overlap
graph are extracted and uncompressed to construct the draft assembly. Finally, we polish the draft assembly at the
base-level with a consensus module to finish the assembly. Overall, compared with the existing approaches, our
algorithm offers an efficient algorithmic solution for assembling large genomes with 3GS data in terms of compu-
tational resources (time and memory) and required sequencing coverage while also being robust to sequencing
errors. Furthermore, our pipeline utilizes the reads overlap information directly and provides an efficient solution
to the traditional read threading problem, which is valuable both theoretically and practically even for the NGS
assembly20,26.

Methods and Implementations
Our algorithm starts with linear unambiguous regions of a de Bruijn graph (DBG), and ends up with linear unam-
biguous regions in an overlap graph (used in the Overlap-Layout-Consensus framework). Due to this property,
we dub our software DBG2OLC. The whole algorithm consists of the following five procedures, and we imple-
ment them as a pipeline in DBG2OLC. Each piece of the pipeline can be carried out efficiently.

(1) Construct a de Bruijn graph (DBG) and output contigs from highly accurate NGS short reads.
(2) Map the contigs to each long read to anchor the long reads. The long reads are compressed into a list of contig

identifiers to reduce the cost of processing the long reads (Fig. 1A).
(3) Use multiple sequence alignment to clean the compressed reads, and remove reads with structural errors (or

so-called chimeras) (Fig. 2).
(4) Construct a best overlap graph using the cleaned compressed long reads (Fig. 1B).
(5) Uncompress and chain together the long reads (Fig. 1C), and resort to a consensus algorithm to convert them

into DNA sequences (Fig. 1D).

Details for procedure (2–5) are explained below. The explanation of procedure (1) can be found in our previ-
ous SparseAssembler for NGS technology5 and is omitted here.

Availability. The source code and a compiled version of DBG2OLC is available in the following site: https://
github.com/yechengxi/DBG2OLC.

Reads Compression
We use a simple k-mer index technique to index each DBG contig and map the pre-assembled NGS contigs back
to the raw sequencing reads as anchors. The k-mers that appear in multiple contigs are excluded in our analysis to

Figure 1. (A) Map de Bruijn graph contigs to the long reads. The long reads are in red, the de Bruijn graph
contigs are in other colors. Each long read is converted into an ordered list of contigs, termed compressed reads.
(B) Calculate overlaps between the compressed reads. The alignment is calculated using the anchors. Contained
reads are removed and the reads are chained together in the best-overlap fashion. (C) Layout: construct the
assembly backbone from the best overlaps. (D) Consensus: align all related reads to the backbone and calculate
the most likely sequence as the consensus output.

www.nature.com/scientificreports/

4Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

avoid ambiguity. Empirically for PacBio reads, we found that using k = 17 were adequate for all our experiments.
For each 3GS long read, we report the matching contig identifiers as an ordered list. A contig identifier is reported
if the number of uniquely matching k-mers in that contig is above a threshold, which is adaptively determined
based on the contig length. We set this threshold in the range of (0.001~0.02)*Contig_Length. This easily tuneable
threshold parameter allows the user to find a balance between sensitivity and specificity. With low coverage data-
sets, this parameter is set lower to achieve better sensitivity; otherwise it is set to higher to enforce better accuracy.
In all our experiments, the contigs are generated with our previous SparseAssembler5.

After this procedure, each read is converted into an ordered list of contig identifiers. An example of such a list
is {Contig_a, Contig_b}, where Contig_a and Contig_b are identifiers of two different contigs. We also record the
orientations of these contigs in the mapping. This compact representation is a lossy compression of the original
long reads. We term the converted reads as compressed reads in this work. A compressed read is considered to
be equivalent to its reverse complement, and the same compressed reads are then collapsed. Since a de Bruijn
graph can efficiently partition the genome into chunks of bases as contigs, this lossy compression leads to orders
of magnitude reduction in data size. Moreover, the compact representation can span through small regions with
low or even no NGS coverage; these important gap regions in NGS assembly can be covered by 3GS data. Likewise,
small 3GS sequencing gaps may be covered by NGS contigs. These sequencing gaps will be bridged in the final
stage. Similarity detection between these compressed reads becomes a simpler bookkeeping problem with the
identifiers and can be done quickly with low memory. To demonstrate the effectiveness of this strategy, we ran it
over five datasets including genomes of different sizes and different sequencing technologies (Table 1, resources
can be found in the Supplementary Materials). The compression usually leads to three factors of reduction in read
length with 3GS.

Ultra-fast Pair-wise Alignments
Most existing algorithms rely on sensitive algorithms27,28 to align reads to other reads or assemblies. In our
approach, since the compressed reads are usually much shorter than the original reads, alignments of these com-
pressed reads can be calculated far more efficiently. We adopt a simple bookkeeping strategy and use the contig
identifiers to build an inverted-index. Each identifier points to a set of compressed reads that contain this identi-
fier. This inverted-index helps us to quickly select the potentially overlapping reads based on shared contig iden-
tifiers. Alignments are calculated only with these candidate compressed reads. The alignment score is calculated
using the Smith-Waterman algorithm29; the contig identifiers that can be matched are positively scored while the
mismatched contig identifiers are penalized. Scores for match/mismatch are calculated based on the involved
contig lengths or the number of matching k-mers in the previous step. With the compressed reads, our algorithm
can finish pair-wise alignments in a small amount of time.

As discussed previously, state-of-the-art assembly pipelines usually resort to costly base-level error correction
algorithms to correct each individual read2,7,8,10,13, which they then feed into an existing assembler. However, an
important finding of this work is that per-base accuracy may not be a major roadblock for assembly contiguity.
Rather, the chimeras or structural sequencing errors are the major “hot spots” worth putting major effort into.
Without cleaning these chimeras, the overlap relations include many falsely generated reads and will lead to a

Figure 2. Reads correction by multiple sequence alignment. The left portion shows removing a false positive
anchoring contig (brown) that appears only once in the multiple alignment. The right portion shows detection
of a chimeric read by aligning it to multiple reads. A breakpoint is detected as all the reads can be aligned with
the left portion of the target read are not consistent with all the reads that can be aligned with the right portion
of the target read.

Datasets
Sequencing
Technology

Average
Raw Read

Length

NGS Contig
N50 (DBG
k-mer size)

Average
Compressed
Read Length

Compression
Ratio

S. cer w303 PacBio 4,734 31,233 (k = 51) 7 1:676

A. thaliana ler-0 PacBio 5,614 2,264 (k = 51) 8 1:702

H. sapiens PacBio 14,519 3,115 (k = 51) 11 1:1320

E.coli K12 Oxford Nanopore 6,597 3,303 (k = 21) 4 1:1649

E.coli K12 Illumina Miseq 150 3,303 (k = 21) 2 1:75

Table 1. The demonstration of the compression ratio on various datasets.

www.nature.com/scientificreports/

5Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

tangled overlap graph. To resolve this issue, we compute multiple sequence alignments (MSA) by aligning each
compressed read with all other candidate compressed reads. With MSA we can detect the chimeric reads and
the spurious contig identifiers in each read (Fig. 2). Both of these errors are cleaned up. The major side effect of
this correction is a slightly increased requirement of the 3GS data coverage so that each compressed read can be
confirmed by at least another one. The remaining minor errors (mostly false negatives) in the cleaned compressed
reads will be tolerated by the alignment algorithm. In our experiments, we noticed that this algorithm is accurate
enough to find high quality overlaps and can be used for constructing draft genomes as assembly backbones.

Read Overlap Graph
Compared with most hybrid approaches that used long reads to link together the short read contigs, our approach
takes the unorthodox way–we use the short read contigs to help link together the long reads. We construct a best
overlap graph21 using the above-described alignment algorithm with the compressed reads. In the best overlap
graph, each node represents a compressed read. For each node, the best overlapped nodes (one before and the
other after) are found based on the overlap score, and the links between these nodes are recorded. The overlap
graph is calculated in two rounds (Fig. 1B). In round 1, all the contained nodes (with respect to other nodes) are
filtered off. For example, {Contig_a, Contig_b} is removed if {Contig_a, Contig_b, Contig_c} is present. With
this strategy, alignments with repeating and contained nodes are avoided. In round 2, all suffix-prefix overlaps
among the remaining nodes are detected with the alignment algorithm. Nodes are chained one to another in
both directions and in the best overlapped fashion. Graph simplification is applied to remove tiny tips and merge
bubbles in the best overlap graph. Truly unresolvable repeats result in branches in the graph21 and will be kept as
the assembly breakpoints.

Note that constructing the overlap graph with the compressed reads offers us several major benefits. (1) Long
read information is sufficiently utilized. (2) The costly long read alignments are accelerated with the easily avail-
able NGS contigs. (3) The expensive graph search algorithms (with exponential complexity to the search depth)
often used for graph resolving in many existing genome assembly programs are no long needed in our software.

Consensus
It is noteworthy that only in this final stage that the compressed reads are converted back to the raw nucleotide
reads for polishing purpose. Linear unbranched regions of the best overlap graph encode the unambiguously
assembled sequences. Uncompressed long reads that lie in these regions are laid out in the best-overlapped fash-
ion and patched one after another (Fig. 1C). NGS contigs are included when there is a gap in the 3GS data. Reads
that are related to each backbone are collected based on the contig identifiers. A consensus module is finally called
to align these reads to each backbone and calculate the polished assembly (Fig. 1D). To polish the 3GS assembly
backbone, we use an efficient consensus module Sparc30. Sparc builds an efficient sparse k-mer graph structure5
using a collection of sequences from the same genomic region. The heaviest path approximates the most likely
genome sequence (consensus) and is found in a sparsity-induced reweighted graph.

Results
We conducted a comprehensive comparison on a small yeast genome (12 Mbp) dataset to provide a scope of the
performance of each software program we compared in this study. Since most other programs do not scale line-
arly with the data scale and require thousands of hours per-run on genomes larger than 100 Mbp, the readers are
encouraged to read through their original publications for the performance results of those programs.

As a side note, the advent of 3GS long reads has raised the bar to a higher level compared with previous
sequencing techniques: existing reference genomes usually contain a large number of structural errors and/or
variations that can surpass the number of assembly errors using the long reads. In most cases we select assemblies
by other assemblers with more coverage (~100x) as references. If high quality reference genome is available, thor-
ough evaluations of our algorithm show that DBG2OLC can provide high quality results with fewer structural
errors and comparable per-base accuracy. This has been recently demonstrated in the case study of D. melano-
gaster genome by Chakraborty et al.31 who compared our pre-released software with other premier programs for
3GS data. In this paper, we demonstrate results on some other well-studied species and use existing high coverage
assemblies as quality checks. On medium to large genomes, DBG2OLC can produce comparably good results
with one to two orders of magnitude less time and memory usages than most existing pipelines. A draft assembly
(without polishing) of a 3 Gbp H. sapiens can be finished in 3 CPU days with our pipeline, utilizing 30 × 3GS and
50x NGS data. This computational time is roughly comparable to many existing NGS assemblers. The time con-
sumption of each step running different genomes can be found in Table 2.

We compared our algorithm results with Celera Assembler (CA, version 8.3rc2), PacBioToCA (in CA8.3rc2)2,
ECTools9, MHAP (in CA8.3rc2)7, HGAP (in SMRT Analysis v2.3.0)13 and Falcon assembler (v0.3.0), which are
well recognized as the best-performed genome assemblers for 3GS technologies. Data from PacBio SMRT RS-II

Species
Long Read

Source
Short Read

Assembly (CPU hr)
Compression

(CPU hr)
Graph Construction

(CPU hr)
Consensus
(CPU hr)

S. cer w303 20x PacBio 0.1 0.03 0.005 2

A. thaliana ler-0 40x PacBio 1 0.6 0.2 18

H. sapians 30x PacBio 25 37 3 1600

E. coli K12 30x Nanopore 0.1 0.02 0.002 2

Table 2. Computation time of each procedure.

www.nature.com/scientificreports/

6Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

(the currently leading platform of 3GS technology) was used to perform the comparative experiments (50x
Illumina MiSeq reads were additionally used for PacBioToCA and DBG2OLC, the two hybrid methods). The
experiments are run on a server with eight Intel Xeon E7-8857 v2 CPUs (each has 12 cores) and 2 TB memory.
For all DBG2OLC experiments in this paper we used SparseAssembler (Ye et al.5) to preassemble 50x Illumina
short reads into contigs and then to compress the 3GS reads. Similarly, Celera Assembler was used to assemble
the same short reads into contigs for ECTools. Unassembled short reads were fed into PacBioToCA according to
its specification. At the time of this work, 50x Illumina reads cost less, and also can be obtained more easily, than
1 × 3GS reads. Celera Assembler could be run with uncorrected reads on small datasets, so we run it as a baseline.

It is noteworthy that in our current implementation, most of the computation time (~90%) is spent on the
consensus step, in which BLASR28 is called to align all raw reads to the assembly backbone. Since the alignments
are multi-threaded, the wall time can be reduced depending on the available threads. The consensus step is rel-
atively independent in genome assembly and is open to any future improvements and accelerations. The overall
computational time of the whole pipeline scales near linearly to the data size, which is a highly valuable prop-
erty to large-scale genome assembly problems. Using 10x–20x coverage of PacBio sequence data, we obtained
assembly N50s that are significantly (> 10x) better than Illumina data alone (Table 1). The datasets, commands,
and parameters can be found in the Supplementary Materials. We used QUAST 3.032 in its default setting to
evaluate the assembly results; these are reported as the NGA50, per-base identity rates and misassembly errors.
In analyzing 3GS assembly results, the NGA50 is a measure of the average length of high quality region before
reaching a poor quality region in the assembly. The identity rates were calculated by summarizing the single
base mismatches and insertion/deletion mismatches. Relocations, inversions, and translocations are regarded as
misassembly errors32. The alignment dot plots can be found in the Supplementary Materials. The nearly perfect
diagonal dot plots indicate that DBG2OLC can produce structurally correct assemblies from as low as 10x long
read data.

For the yeast dataset we picked an assembly from 454 data (NCBI Accession No.: GCA_000292815.1) and
another assembly generated using MHAP with high coverage data as references. DBG2OLC takes advantage of
different sequencing types and obtains the most contiguous results using 10x–40x data with comparable levels of
accuracy (Table 3). Some non-hybrid assemblers are not able to fully assemble the yeast genome with 10x–20x

Cov Assembler
Time

(h) NG50 Contigs
NGA50

(454)
Identity

(454)

Misass-
emblies

(454)
NGA50

(PacBio)
Identity
(PacBio)

Misass-
emblies
(PacBio) Longest Sum

10x MHAP* — — — — — — — — — — —

HGAP* 36.3 — 554 — 99.68% 105 — 99.77% 6 36,942 1,512,911

CA* 15.1 85,728 289 68,030 97.49% 134 81,451 97.46% 13 448,177 12,285,888

PacBioToCA 173.5 19,694 898 19,378 99.88% 112 18,689 99.90% 6 221,736 10,741,663

ECTools 24.5 120,126 169 98,965 99.76% 324 109,640 99.73% 29 525,820 11,785,741

Falcon* 1.3 — 675 — 99.23% 116 — 99.28% 4 36,616 4,137,485

DBG2OLC 1.7 475,890 67 168,612 99.70% 408 355,269 99.81% 46 1,174,277 11,899,604

20x MHAP* 17.1 241,394 87 155,221 99.70% 508 241,260 99.75% 22 490,764 12,123,145

HGAP* 31.1 8,578 1,210 6,908 99.85% 307 7,619 99.90% 20 86,998 8,624,090

CA* 42.4 371,115 165 201,649 98.83% 284 329,930 98.82% 21 680,599 13,052,212

PacBioToCA 400.9 66,974 395 65,171 99.87% 157 65,171 99.91% 7 628,280 11,487,222

ECTools 34.2 176,663 172 109,931 99.77% 565 150,351 99.74% 46 624,112 12,887,799

Falcon* 3.5 110,083 180 93,385 99.38% 345 110,438 99.42% 15 281,041 10,583,868

DBG2OLC 2.6 597,541 47 172,455 99.71% 440 576,287 99.88% 37 1,085,773 12,476,994

40x MHAP* 36.6 614,363 65 243,012 99.91% 598 589,044 99.94% 24 1,090,578 12,356,826

HGAP* 36.2 211,631 93 198,387 99.94% 528 348,754 99.99% 30 796,762 12,387,287

CA* 115.2 365,912 114 160,867 99.66% 358 377,360 99.60% 11 769,189 15,171,228

PacBioToCA 621.7 96,817 371 96,476 99.87% 178 94,480 99.91% 6 742,046 11,700,172

ECTools 55.8 255,956 271 166,945 99.79% 891 214,377 99.76% 64 714,196 14,481,947

Falcon* 11.2 614,509 58 247,745 99.72% 336 555,886 99.74% 10 1,069,920 12,116,235

DBG2OLC 4.2 672,955 28 238,683 99.87% 431 544,679 99.90% 36 1,086,380 12,149,997

80x MHAP* 13.5 751,122 43 248,079 99.91% 526 745,563 99.95% 10 1,537,433 12,350,704

HGAP* 46.5 818,775 33 248,655 99.95% 534 678,552 99.99% 23 1,545,906 12,621,393

CA* 236.0 430,552 75 201,397 99.80% 319 397,774 99.74% 12 984,295 16,571,250

PacBioToCA 274.3 64,967 364 63,651 99.88% 45 62,268 99.91% 10 233,799 11,651,218

ECTools 100.9 247,871 382 154,348 99.79% 1,470 164,839 99.76% 101 881,635 15,925,328

Falcon* 34.7 810,136 99 247,480 99.81% 437 810,134 99.82% 24 1,537,463 12,681,860

DBG2OLC 8.1 678,365 29 204065 99.92% 426 574,476 99.95% 35 1,089,897 12,209,592

Table 3. Assembly performance comparison on the S. cerevisiae genome (genome size: 12 M bp).
*Assemblers that use only 3GS data.

www.nature.com/scientificreports/

7Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

PacBio data. It is also worth mentioning a caveat in many current hybrid error correction approaches. These pipe-
lines use NGS contigs to correct the 3GS reads, which seem to have improved the accuracy of each individual 3GS
read. However, the errors in NGS contigs may have corrupted the originally correct 3GS reads and lead to con-
sensus errors in the final assembly. For example, we notice the identity rates of the ECTools assembly are higher
when aligned to the 454 reference, contrary to all other pipelines. With high enough coverage (and significantly
increased sequencing cost), the 3GS self-correction based assembly methods produce better assembly results.
Since our pipeline has a major advantage in low coverage data and efficiency, it is expected to scale well to large
genomes where low coverage data and computational time becomes major concerns.

We tested DBG2OLC on other medium to large genomes from PacBio sequencers (Table 4). On the
A. thaliana genome (120 Mbp), the computations with DBG2OLC finish in one hour, with an additional hour
spent constructing the initial NGS contigs. The consensus module takes another 10–20 CPU hours to get the
final assembly. The peak memory usage is 6 GB. In comparison, existing pipelines can take over one thousand
CPU hours with problems of this scale. On a large 54x human (H. sapiens) dataset, DBG2OLC is able to produce
an assembly with high contiguity starting from 10x PacBio data (NG50 433 kbp) and DBG contigs generated
from 50x Illumina reads (Table S1 in Supplementary Materials). To produce a better assembly, the longest 30x of
the reads in this dataset (mean length 14.5 kbp) are selected (Table S2 in Supplementary Materials). DBG2OLC
occupies 70 GB memory to store the 17-mer index, and takes 37 CPU hours to compress and align the 30x longest
PacBio reads. The pair-wise alignment takes only 3 hours and takes less than 6 hours on the full 54x dataset. The
final consensus takes roughly 2000 CPU hours. In an initial report by PacBio scientists, the overlapping process
took 405,000 CPU hours4. Our final assembly quality (N50 = 6 Mbp) is comparable to the state-of-the-art results
obtained using orders of magnitude more resources. When evaluating this assembly, QUAST 3.0 can take weeks
to finish the full evaluation even on our best workstation. We therefore only align our assembly to the longest
500 Mbp assembly generated by the Pacific Biosciences, and report the NGA50 and identity rate in this portion.

DBG2OLC was also tested on an Oxford Nanopore MinION sequencing dataset (Table 4). According to initial
studies, this type of data has higher (up to ~40%) error rates3 compared to PacBio SMRT sequencing. However,
we find DBG2OLC still successfully assembled the E. coli into one single contig. The polished assembly has an
error rate of 0.23%. The dot plot of the alignment of the assembly to the reference can be found in Fig. 13 of the
Supplementary Materials.

Compared with the state-of-the-art assemblers for 3GS technologies, our proposed method produces assem-
blies with high contiguity using lower sequencing coverage and memory, and is orders of magnitude faster on
large genomes. Its combination of different data types leads to both computation and cost efficiency. These advan-
tages are gained from three general and basic design principles: (i) Compact representation of the long reads leads
to efficient alignments. (ii) Base-level errors can be skipped, but structural errors need to be detected and cleaned.
(iii) Structurally correct 3GS reads are assembled and polished. DBG2OLC is a specific and simple realization
of these principles. Interestingly, this implementation builds a nice connection between the two major assembly
frameworks, and even though DBG2OLC is majorly developed for 3GS data, this strategy of compression and
converting a de Bruijn graph to an overlap graph is general and can be used for popular NGS data. A preliminary
showcase on a purely NGS dataset can be found in the Supplementary Materials. The strategy of compressing
long reads and performing the most computationally expensive tasks in the compressed domain strikes a balance
between the DBG and OLC frameworks.

Summary and Discussion
In summary, we have built and validated a new de novo assembly pipeline that significantly reduces the com-
putational and sequencing requirements of 3GS assembly. We demonstrate that the erroneous long reads can
be directly assembled and can lead to significantly improved assembly without base-level error correction.
This strategy, first publicly demonstrated in our pre-released pipeline in 2014, has paved the road for several
subsequent development attempts on efficient utilization of 3GS data and promises even more efficient 3GS
assemblers. Another major finding in developing DBG2OLC is that 3GS technologies generate chimeric reads,
and the problem seems to be severer with the PacBio platform. These structural errors lead to tangles in the
assembly graph and greatly hamper the assembly contiguity. The most straightforward way to clean up the
chimeric reads resorts to multiple sequence alignment, as implemented in DBG2OLC, which leads to a slightly
increased coverage requirement. This limitation will serve as the starting point for future development. We
conjecture that near perfect assemblies can be reached with even lower coverage if the chimeras/structural
errors can be removed.

Genome Size Coverage NG50 Contigs NGA50 Identity Misassemblies Longest Sum

A. thaliana 120 Mbp 10x PacBio 405,464 881 258,924 99.77% 704 1,549,329 119 Mb

20x PacBio 2,431,755 306 926,138 99.90% 117 6,015,430 120 Mb

40x PacBio 3,601,597 243 1,605,981 99.93% 131 15,473,059 129 Mb

H. sapiens 3.0 Gbp 10x PacBio 432,739 16,689 347,104 99.56% — 3,507,306 2.97 G

20x PacBio 1,886,756 9,757 1,416,766 99.82% — 14,597,500 3.13 Gb

30x longest
PacBio 6,085,133 13,095 4,124,714 99.85% — 23,825,526 3.21 Gb

E. coli 4.6 Mbp 30x Nanopore 4,680,635 1 1,850,974 99.77% 1 4,680,635 4.7 Mb

Table 4. DBG2OLC assembly performance comparison on various genomes.

www.nature.com/scientificreports/

8Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

References
1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351, doi: 10.1126/science.1058040 (2001).
2. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature biotechnology 30,

693–700, doi: 10.1038/nbt.2280 (2012).
3. Laver, T. et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification

3, 1–8 (2015).
4. Pacific Biosciences of California, I. Data Release: ~54x Long-Read Coverage for PacBio-only De Novo Human Genome Assembly,

http://www.pacb.com/blog/data-release-54x-long-read-coverage-for (Published: 2014, Date of access: 17/03/2016).
5. Ye, C., Ma, Z. S., Cannon, C. H., Pop, M. & Yu, D. W. Exploiting sparseness in de novo genome assembly. BMC Bioinformatics 13

Suppl 6, S1, doi: 10.1186/1471-2105-13-S6-S1 (2012).
6. Koren, S. & Phillippy, A. M. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.

Current Opinion in Microbiology 23, 110–120, doi: 10.1016/j.mib.2014.11.014 (2015).
7. Berlin, K. et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nature biotechnology 33,

623–630 (2015).
8. Salmela, L. & Rivals, E. LoRDEC: accurate and efficient long read error correction. Bioinformatics doi: 10.1093/bioinformatics/

btu538 (2014).
9. Lee, H. et al. Error correction and assembly complexity of single molecule sequencing reads. BioRxiv. 006395, doi: 10.1101/006395

(2014).
10. Hackl, T., Hedrich, R., Schultz, J. & Forster, F. proovread: large-scale high-accuracy PacBio correction through iterative short read

consensus. Bioinformatics doi: 10.1093/bioinformatics/btu392 (2014).
11. Boetzer, M. & Pirovano, W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC

Bioinformatics 15, 211, doi: 10.1186/1471-2105-15-211 (2014).
12. Deshpande, V., Fung, E. K., Pham, S. & Bafna, V. In Algorithms in Bioinformatics Vol. 8126 Lecture Notes in Computer Science (eds

Aaron Darling & Jens Stoye) Ch. 27, 349–363 (Springer Berlin Heidelberg, 2013).
13. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature methods 10,

563–569, doi: 10.1038/nmeth.2474 (2013).
14. Ribeiro, F. J. et al. Finished bacterial genomes from shotgun sequence data. Genome research 22, 2270–2277, doi: 10.1101/

gr.141515.112 (2012).
15. English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PloS one 7,

e47768, doi: 10.1371/journal.pone.0047768 (2012).
16. Bashir, A. et al. A hybrid approach for the automated finishing of bacterial genomes. Nature biotechnology 30, 701–707, doi: 10.1038/

nbt.2288 (2012).
17. Au, K. F., Underwood, J. G., Lee, L. & Wong, W. H. Improving PacBio long read accuracy by short read alignment. PloS one 7,

e46679, doi: 10.1371/journal.pone.0046679 (2012).
18. Nagarajan, N. & Pop, M. Sequence assembly demystified. Nature reviews. Genetics 14, 157–167, doi: 10.1038/nrg3367 (2013).
19. Myers, E. W. The fragment assembly string graph. Bioinformatics 21 Suppl 2, ii79–85, doi: 10.1093/bioinformatics/bti1114 (2005).
20. Pevzner, P. A., Tang, H. & Waterman, M. S. An Eulerian path approach to DNA fragment assembly. Proceedings of the National

Academy of Sciences 98, 9748–9753, doi: 10.1073/pnas.171285098 (2001).
21. Miller, J. R. et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24, 2818–2824, doi: 10.1093/

bioinformatics/btn548 (2008).
22. Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using compressed data structures. Genome research 22,

549–556, doi: 10.1101/gr.126953.111 (2012).
23. Treangen, T. J., Sommer, D. D., Angly, F. E., Koren, S. & Pop, M. Next generation sequence assembly with AMOS. Current Protocols

in Bioinformatics, doi: 10.1002/0471250953.bi1108s33 (2011).
24. Batzoglou, S. et al. ARACHNE: a whole-genome shotgun assembler. Genome research 12, 177–189, doi: 10.1101/gr.208902 (2002).
25. Myers, G. Efficient local alignment discovery amongst noisy long reads. Algorithms in Bioinformatics 52–67, doi: 10.1007/978-3-662-

44753-6 (2014).
26. Chaisson, M. J., Brinza, D. & Pevzner, P. A. De novo fragment assembly with short mate-paired reads: Does the read length matter?

Genome research 19, 336–346, doi: 10.1101/gr.079053.108 (2009).
27. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biology 5, R12 (2004).
28. Chaisson, M. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement

(BLASR): application and theory. BMC Bioinformatics 13, 238 (2012).
29. Smith, T. F. & Waterman, M. S. Identification of Common Molecular Subsequences. J Mol Biol 147, 195–197, doi: 10.1016/0022-

2836(81)90087-5 (1981).
30. Ye, C. & Ma, Z. S. Sparc: a sparsity-based consensus algorithm for long erroneous sequencing reads. PeerJ 4, e2016 (2016).
31. Chakraborty, M., Baldwin-Brown, J. G., Long, A. D. & Emerson, J. J. A practical guide to de novo genome assembly using long reads.

bioRxiv. 029306 (2015).
32. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29,

1072–1075, doi: 10.1093/bioinformatics/btt086 (2013).

Acknowledgements
We appreciate Prof. Mihai Pop, Prof. James Yorke, Dr. Aleksey Zimin and their groups at the University of
Maryland for supports and helpful discussions. We thank Dr. Sergey Koren and Daniel Liang for helping us to
improve our manuscript. This research received funding from the following sources: National Science Foundation
of China (Grants No. 61175071, 71473243), the Exceptional Scientists Program and Top Oversea Scholars
Program of Yunnan Province, and Yunling Industrial Innovation Grant.

Author Contributions
C.Y. and Z.M. conceived and designed the study; C.Y. and C.M.H. wrote and tested the software; C.Y. and Z.M.
wrote the paper; C.M.H. and J.R. participated in performance evaluation and discussion; S.W. helped in running
test cases.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

http://www.pacb.com/blog/data-release-54x-long-read-coverage-for
http://www.nature.com/srep

www.nature.com/scientificreports/

9Scientific RepoRts | 6:31900 | DOI: 10.1038/srep31900

How to cite this article: Ye, C. et al. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous
Reads of the Third Generation Sequencing Technologies. Sci. Rep. 6, 31900; doi: 10.1038/srep31900 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies
	Methods and Implementations
	Availability.
	Reads Compression
	Ultra-fast Pair-wise Alignments
	Read Overlap Graph
	Consensus
	Results
	Summary and Discussion
	Acknowledgements
	Author Contributions
	Figure 1.  (A) Map de Bruijn graph contigs to the long reads.
	Figure 2.  Reads correction by multiple sequence alignment.
	Table 1.  The demonstration of the compression ratio on various datasets.
	Table 2.  Computation time of each procedure.
	Table 3.  Assembly performance comparison on the S.
	Table 4.  DBG2OLC assembly performance comparison on various genomes.

 application/pdf

 DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies

 srep , (2016). doi:10.1038/srep31900

 Chengxi Ye
 Christopher M. Hill
 Shigang Wu
 Jue Ruan
 Zhanshan (Sam) Ma

 doi:10.1038/srep31900

 Nature Publishing Group

 © 2016 Nature Publishing Group

 © 2016 Macmillan Publishers Limited
 10.1038/srep31900
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep31900

 doi:10.1038/srep31900

 srep , (2016). doi:10.1038/srep31900

 True

