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DBG2OLC: Efficient Assembly 
of Large Genomes Using 
Long Erroneous Reads of the 
Third Generation Sequencing 
Technologies
Chengxi Ye1,2, Christopher M. Hill1, Shigang Wu3, Jue Ruan3 & Zhanshan (Sam) Ma2

The highly anticipated transition from next generation sequencing (NGS) to third generation 
sequencing (3GS) has been difficult primarily due to high error rates and excessive sequencing cost. 
The high error rates make the assembly of long erroneous reads of large genomes challenging because 
existing software solutions are often overwhelmed by error correction tasks. Here we report a hybrid 
assembly approach that simultaneously utilizes NGS and 3GS data to address both issues. We gain 
advantages from three general and basic design principles: (i) Compact representation of the long reads 
leads to efficient alignments. (ii) Base-level errors can be skipped; structural errors need to be detected 
and corrected. (iii) Structurally correct 3GS reads are assembled and polished. In our implementation, 
preassembled NGS contigs are used to derive the compact representation of the long reads, motivating 
an algorithmic conversion from a de Bruijn graph to an overlap graph, the two major assembly 
paradigms. Moreover, since NGS and 3GS data can compensate for each other, our hybrid assembly 
approach reduces both of their sequencing requirements. Experiments show that our software is able to 
assemble mammalian-sized genomes orders of magnitude more quickly than existing methods without 
consuming a lot of memory, while saving about half of the sequencing cost.

The Human Genome Project (HGP), which is perhaps the largest biomedical research project humans have ever 
undertaken, is responsible for greatly accelerating the advancement of DNA sequencing technologies1. Three 
generations of DNA sequencing technologies have been developed in the last three decades, and we are at the 
crossroads of the second and third generations of the sequencing technologies. Third generation sequencing 
(3GS) technology promises to significantly improve assembly quality and expand its applications in biomedical 
research and biotechnology development. However, lack of efficient and effective genome assembly algorithms 
has arguably been the biggest roadblock to the widespread adoption of 3GS technologies. 3GS long reads (aver-
aging up to 5–20 kb per run at this time) usually have high error rates: ~15% with PacBio sequencing2, and as 
high as ~40% with Oxford Nanopore sequencing3. These high error rates make the assembly of 3GS sequences 
seem disproportionally complex and expensive compared to the assembly of NGS sequences. As a comparison, 
the whole genome assembly of a human genome using 3GS data was first reported to have taken half a million 
CPU hours4 compared to ~24 hours with Illumina NGS sequencing data5. Consequently, in practice, many appli-
cations of 3GS technology have been limited to re-sequencing bacteria and other small genomes6. While software 
for 3GS assembly has made important improvements2,7–17, especially for high coverage data, the software is still 
quite slow and not ideally suited for modest coverage data. Another major issue is that the sequencing cost of 3GS 
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technology, while decreasing with time, is still at least an order of magnitude more expensive than the popular 
Illumina NGS sequencing at the time of this work.

While the evolution of genome assembly software solutions has been influenced by multiple factors, the most 
significant one has been the length of the sequences18. Although increasing sequence lengths may simplify the 
assembly graph6, the sequence length also has a critical impact on the computational complexities of genome 
assembly. Computational biologists have historically formulated the genome assembly problem as a graph 
traversal problem18–20, i.e., searching for a most likely genome sequence from the overlap graph of the sequence 
reads in the case of the first generation sequencing technology. The string graph and the best overlap graph are 
specific forms of the Overlap-Layout-Consensus (OLC) paradigm that are more efficient by simplifying the global 
overlap graph19,21,22. The read-based algorithms, aiming to chain the sequencing reads in the most effective way, 
are computationally expensive because pair-wise alignment of the sequences is required to construct the overlap 
graph. This issue was tolerable for the relatively low amount of sequences produced from the low-throughput 
first generation sequencing technologies, but quickly became overwhelming with the enormous amount of short 
reads produced by high-throughput NGS data. The strategy of chopping the sequencing reads into shorter and 
overlapping k-grams (so-termed k-mers) and building links between the k-mers, was developed in the de Bruijn 
graph (DBG) framework to simplify NGS assembly. Assembly results are extracted from the linear (unbranched) 
regions of the k-mer graph in this approach20.

The overlap graph model or the OLC-based software packages, such as Celera Assembler1, AMOS23 and 
ARACHNE24, originally used for assembling the first generation sequence data, were also adopted for the NGS 
assembly before DBG-based approaches became the de facto standard. Newer 3GS technologies, including 
single-molecule, real-time sequencing (SMRT) and Oxford Nanopore sequencing, produce much longer reads 
than NGS. The longer reads from 3GS technology make the OLC approaches, which were originally used in the 
first generation genome assembly, feasible again. Nevertheless, the high error rates of current 3GS technologies 
render the existing OLC-based assemblers developed for relatively accurate sequences unusable. Similarly, the 
error-prone long reads make the DBG full of branches and therefore unsuitable for 3GS assembly. Faced with 
these challenges, the developers of 3GS technology have resorted to using error correction techniques2,7,9,10,13,17 to 
create high quality long reads and reusing the algorithms originally developed for the first generation sequence 
assembly. However, error correction for these long reads require extensive computational resources, even for 
small microbial genomes. Moreover, the high sequencing depth (usually 50x–100x) required by existing 3GS 
genome assemblers increases sequencing cost significantly, especially for large genomes. These issues have put 
3GS technology at a severe disadvantage when competing against widely used NGS technology. In this article, we 
introduce algorithmic techniques that effectively resolve many of these issues. But first, we present a brief account 
of the existing genome assembly software technologies to put our contribution in proper context.

Researchers began with scaffolding approaches such as AHA16, PBJelly15 and SSPACE-LongRead11 to patch 
the gaps between high quality assembly regions, i.e., first build a scaffold by aligning reads to the contigs and then 
use reads that span multiple contigs as links to build a scaffold graph. In ALLPATHS-LG14 and Cerulean12, long 
reads are used to find the best path in the de Bruijn graph that bridges the gaps between large contigs. Although 
these software packages have indeed achieved important advances for 3GS genome assembly, resolving intricate 
ambiguities is inherently difficult and can lead to structural errors. Furthermore, the underlying graph search 
algorithms usually have exponential complexity with respect to the search depth and thus, scales poorly; highly 
repeating regions (such as long repeats of simple sequences) will lead to large search depths and are not resolv-
able. In addition, the more powerful read overlap graph structure (of the long reads) was not fully explored in 
all these approaches. Often these algorithms rely on heuristics such as contig lengths and require iterations12,14. 
To circumvent these important issues associated with the hybrid approach, a Hierarchical Genome-Assembly 
Process (HGAP)13 was developed using a non-hybrid strategy to assemble PacBio SMRT sequencing data, which 
does not use the NGS short reads. HGAP contains a consensus algorithm that creates long and highly accurate 
overlapping sequences by correcting errors on the longest reads using shorter reads from the same library. This 
correction approach was proposed earlier in the hybrid setting and is widely used in assembly pipelines2,9,10,17. 
Nonetheless, this non-hybrid, hierarchical assembly approach requires relatively high sequencing coverage 
(50x–100x) and substantial error correction time to obtain satisfactory results. It is noteworthy that most of the 
algorithms we reviewed here were originally designed for bacterial-sized genomes. Though recent advancements 
in aligning erroneous long reads6,25 have also shortened the computational time of 3GS assembly, running these 
programs on large genomes, especially mammalian-sized genomes, usually imposes a large computational burden 
(sometimes up to 105 or 106 CPU hours) more suited to large computational clusters and well beyond the capa-
bility of a typical workstation.

In this study, we design algorithms to enable efficient assembly of large mammalian-sized genomes. We 
observe that per-base error correction of each long erroneous reads and their pair-wise alignment takes a signifi-
cantly large portion of time in existing pipelines, but neither of these is necessary at an initial assembly stage. If all 
sequencing reads are structurally correct (non-chimeic), one can produce a structurally correct draft genome and 
improve the base-level accuracy in the final stage, as was originally done in the OLC approach. Taking advantage 
of this observation, we develop a base-level correction-free assembly pipeline by directly analyzing and exploiting 
overlap information in the long reads. Unlike previous approaches, we use the NGS assembly to lower the com-
putational burden of aligning 3GS sequences rather than just polishing 3GS data. This allows us to take advantage 
of the cheap and easily accessible NGS reads, while avoiding the issues associated with existing hybrid approaches 
mentioned previously. Meanwhile, since NGS and 3GS are independent of each other, the sequencing gaps in 
one type of data may be covered by the data from the other. The utilization of NGS data also lowers the required 
sequencing depth of 3GS, and the net result is reduced sequencing cost. Hence, we get the best of both worlds of 
hybrid and non-hybrid assembly approaches. Specifically, we map the DBG contigs from NGS data to the 3GS 
long reads to create anchors for the long reads. Each long read is (lossily) compressed into a list of NGS contig 
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identifiers. Because the compressed reads are often orders of magnitude shorter than the original reads, finding 
candidate overlaps between them becomes a simple bookkeeping problem and the approximate alignments and 
overlaps can be calculated cheaply with the help of the contig indentifiers. An overlap graph is constructed by 
chaining the best overlapped-reads in the compressed domain. The linear unbranched regions of the overlap 
graph are extracted and uncompressed to construct the draft assembly. Finally, we polish the draft assembly at the 
base-level with a consensus module to finish the assembly. Overall, compared with the existing approaches, our 
algorithm offers an efficient algorithmic solution for assembling large genomes with 3GS data in terms of compu-
tational resources (time and memory) and required sequencing coverage while also being robust to sequencing 
errors. Furthermore, our pipeline utilizes the reads overlap information directly and provides an efficient solution 
to the traditional read threading problem, which is valuable both theoretically and practically even for the NGS 
assembly20,26.

Methods and Implementations
Our algorithm starts with linear unambiguous regions of a de Bruijn graph (DBG), and ends up with linear unam-
biguous regions in an overlap graph (used in the Overlap-Layout-Consensus framework). Due to this property, 
we dub our software DBG2OLC. The whole algorithm consists of the following five procedures, and we imple-
ment them as a pipeline in DBG2OLC. Each piece of the pipeline can be carried out efficiently.

(1) Construct a de Bruijn graph (DBG) and output contigs from highly accurate NGS short reads.
(2) Map the contigs to each long read to anchor the long reads. The long reads are compressed into a list of contig 

identifiers to reduce the cost of processing the long reads (Fig. 1A).
(3) Use multiple sequence alignment to clean the compressed reads, and remove reads with structural errors (or 

so-called chimeras) (Fig. 2).
(4) Construct a best overlap graph using the cleaned compressed long reads (Fig. 1B).
(5) Uncompress and chain together the long reads (Fig. 1C), and resort to a consensus algorithm to convert them 

into DNA sequences (Fig. 1D).

Details for procedure (2–5) are explained below. The explanation of procedure (1) can be found in our previ-
ous SparseAssembler for NGS technology5 and is omitted here.

Availability. The source code and a compiled version of DBG2OLC is available in the following site: https://
github.com/yechengxi/DBG2OLC.

Reads Compression
We use a simple k-mer index technique to index each DBG contig and map the pre-assembled NGS contigs back 
to the raw sequencing reads as anchors. The k-mers that appear in multiple contigs are excluded in our analysis to 

Figure 1. (A) Map de Bruijn graph contigs to the long reads. The long reads are in red, the de Bruijn graph 
contigs are in other colors. Each long read is converted into an ordered list of contigs, termed compressed reads. 
(B) Calculate overlaps between the compressed reads. The alignment is calculated using the anchors. Contained 
reads are removed and the reads are chained together in the best-overlap fashion. (C) Layout: construct the 
assembly backbone from the best overlaps. (D) Consensus: align all related reads to the backbone and calculate 
the most likely sequence as the consensus output.
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avoid ambiguity. Empirically for PacBio reads, we found that using k =  17 were adequate for all our experiments. 
For each 3GS long read, we report the matching contig identifiers as an ordered list. A contig identifier is reported 
if the number of uniquely matching k-mers in that contig is above a threshold, which is adaptively determined 
based on the contig length. We set this threshold in the range of (0.001~0.02)*Contig_Length. This easily tuneable 
threshold parameter allows the user to find a balance between sensitivity and specificity. With low coverage data-
sets, this parameter is set lower to achieve better sensitivity; otherwise it is set to higher to enforce better accuracy. 
In all our experiments, the contigs are generated with our previous SparseAssembler5.

After this procedure, each read is converted into an ordered list of contig identifiers. An example of such a list 
is {Contig_a, Contig_b}, where Contig_a and Contig_b are identifiers of two different contigs. We also record the 
orientations of these contigs in the mapping. This compact representation is a lossy compression of the original 
long reads. We term the converted reads as compressed reads in this work. A compressed read is considered to 
be equivalent to its reverse complement, and the same compressed reads are then collapsed. Since a de Bruijn 
graph can efficiently partition the genome into chunks of bases as contigs, this lossy compression leads to orders 
of magnitude reduction in data size. Moreover, the compact representation can span through small regions with 
low or even no NGS coverage; these important gap regions in NGS assembly can be covered by 3GS data. Likewise, 
small 3GS sequencing gaps may be covered by NGS contigs. These sequencing gaps will be bridged in the final 
stage. Similarity detection between these compressed reads becomes a simpler bookkeeping problem with the 
identifiers and can be done quickly with low memory. To demonstrate the effectiveness of this strategy, we ran it 
over five datasets including genomes of different sizes and different sequencing technologies (Table 1, resources 
can be found in the Supplementary Materials). The compression usually leads to three factors of reduction in read 
length with 3GS.

Ultra-fast Pair-wise Alignments
Most existing algorithms rely on sensitive algorithms27,28 to align reads to other reads or assemblies. In our 
approach, since the compressed reads are usually much shorter than the original reads, alignments of these com-
pressed reads can be calculated far more efficiently. We adopt a simple bookkeeping strategy and use the contig 
identifiers to build an inverted-index. Each identifier points to a set of compressed reads that contain this identi-
fier. This inverted-index helps us to quickly select the potentially overlapping reads based on shared contig iden-
tifiers. Alignments are calculated only with these candidate compressed reads. The alignment score is calculated 
using the Smith-Waterman algorithm29; the contig identifiers that can be matched are positively scored while the 
mismatched contig identifiers are penalized. Scores for match/mismatch are calculated based on the involved 
contig lengths or the number of matching k-mers in the previous step. With the compressed reads, our algorithm 
can finish pair-wise alignments in a small amount of time.

As discussed previously, state-of-the-art assembly pipelines usually resort to costly base-level error correction 
algorithms to correct each individual read2,7,8,10,13, which they then feed into an existing assembler. However, an 
important finding of this work is that per-base accuracy may not be a major roadblock for assembly contiguity. 
Rather, the chimeras or structural sequencing errors are the major “hot spots” worth putting major effort into. 
Without cleaning these chimeras, the overlap relations include many falsely generated reads and will lead to a 

Figure 2. Reads correction by multiple sequence alignment. The left portion shows removing a false positive 
anchoring contig (brown) that appears only once in the multiple alignment. The right portion shows detection 
of a chimeric read by aligning it to multiple reads. A breakpoint is detected as all the reads can be aligned with 
the left portion of the target read are not consistent with all the reads that can be aligned with the right portion 
of the target read.

Datasets
Sequencing 
Technology

Average 
Raw Read 

Length

NGS Contig 
N50 (DBG 
k-mer size)

Average 
Compressed 
Read Length

Compression 
Ratio

S. cer w303 PacBio 4,734 31,233 (k =  51) 7 1:676

A. thaliana ler-0 PacBio 5,614 2,264 (k =  51) 8 1:702

H. sapiens PacBio 14,519 3,115 (k =  51) 11 1:1320

E.coli K12 Oxford Nanopore 6,597 3,303 (k =  21) 4 1:1649

E.coli K12 Illumina Miseq 150 3,303 (k =  21) 2 1:75

Table 1.  The demonstration of the compression ratio on various datasets.
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tangled overlap graph. To resolve this issue, we compute multiple sequence alignments (MSA) by aligning each 
compressed read with all other candidate compressed reads. With MSA we can detect the chimeric reads and 
the spurious contig identifiers in each read (Fig. 2). Both of these errors are cleaned up. The major side effect of 
this correction is a slightly increased requirement of the 3GS data coverage so that each compressed read can be 
confirmed by at least another one. The remaining minor errors (mostly false negatives) in the cleaned compressed 
reads will be tolerated by the alignment algorithm. In our experiments, we noticed that this algorithm is accurate 
enough to find high quality overlaps and can be used for constructing draft genomes as assembly backbones.

Read Overlap Graph
Compared with most hybrid approaches that used long reads to link together the short read contigs, our approach 
takes the unorthodox way–we use the short read contigs to help link together the long reads. We construct a best 
overlap graph21 using the above-described alignment algorithm with the compressed reads. In the best overlap 
graph, each node represents a compressed read. For each node, the best overlapped nodes (one before and the 
other after) are found based on the overlap score, and the links between these nodes are recorded. The overlap 
graph is calculated in two rounds (Fig. 1B). In round 1, all the contained nodes (with respect to other nodes) are 
filtered off. For example, {Contig_a, Contig_b} is removed if {Contig_a, Contig_b, Contig_c} is present. With 
this strategy, alignments with repeating and contained nodes are avoided. In round 2, all suffix-prefix overlaps 
among the remaining nodes are detected with the alignment algorithm. Nodes are chained one to another in 
both directions and in the best overlapped fashion. Graph simplification is applied to remove tiny tips and merge 
bubbles in the best overlap graph. Truly unresolvable repeats result in branches in the graph21 and will be kept as 
the assembly breakpoints.

Note that constructing the overlap graph with the compressed reads offers us several major benefits. (1) Long 
read information is sufficiently utilized. (2) The costly long read alignments are accelerated with the easily avail-
able NGS contigs. (3) The expensive graph search algorithms (with exponential complexity to the search depth) 
often used for graph resolving in many existing genome assembly programs are no long needed in our software.

Consensus
It is noteworthy that only in this final stage that the compressed reads are converted back to the raw nucleotide 
reads for polishing purpose. Linear unbranched regions of the best overlap graph encode the unambiguously 
assembled sequences. Uncompressed long reads that lie in these regions are laid out in the best-overlapped fash-
ion and patched one after another (Fig. 1C). NGS contigs are included when there is a gap in the 3GS data. Reads 
that are related to each backbone are collected based on the contig identifiers. A consensus module is finally called 
to align these reads to each backbone and calculate the polished assembly (Fig. 1D). To polish the 3GS assembly 
backbone, we use an efficient consensus module Sparc30. Sparc builds an efficient sparse k-mer graph structure5 
using a collection of sequences from the same genomic region. The heaviest path approximates the most likely 
genome sequence (consensus) and is found in a sparsity-induced reweighted graph.

Results
We conducted a comprehensive comparison on a small yeast genome (12 Mbp) dataset to provide a scope of the 
performance of each software program we compared in this study. Since most other programs do not scale line-
arly with the data scale and require thousands of hours per-run on genomes larger than 100 Mbp, the readers are 
encouraged to read through their original publications for the performance results of those programs.

As a side note, the advent of 3GS long reads has raised the bar to a higher level compared with previous 
sequencing techniques: existing reference genomes usually contain a large number of structural errors and/or 
variations that can surpass the number of assembly errors using the long reads. In most cases we select assemblies 
by other assemblers with more coverage (~100x) as references. If high quality reference genome is available, thor-
ough evaluations of our algorithm show that DBG2OLC can provide high quality results with fewer structural 
errors and comparable per-base accuracy. This has been recently demonstrated in the case study of D. melano-
gaster genome by Chakraborty et al.31 who compared our pre-released software with other premier programs for 
3GS data. In this paper, we demonstrate results on some other well-studied species and use existing high coverage 
assemblies as quality checks. On medium to large genomes, DBG2OLC can produce comparably good results 
with one to two orders of magnitude less time and memory usages than most existing pipelines. A draft assembly 
(without polishing) of a 3 Gbp H. sapiens can be finished in 3 CPU days with our pipeline, utilizing 30 ×  3GS and 
50x NGS data. This computational time is roughly comparable to many existing NGS assemblers. The time con-
sumption of each step running different genomes can be found in Table 2.

We compared our algorithm results with Celera Assembler (CA, version 8.3rc2), PacBioToCA (in CA8.3rc2)2, 
ECTools9, MHAP (in CA8.3rc2)7, HGAP (in SMRT Analysis v2.3.0)13 and Falcon assembler (v0.3.0), which are 
well recognized as the best-performed genome assemblers for 3GS technologies. Data from PacBio SMRT RS-II 

Species
Long Read 

Source
Short Read 

Assembly (CPU hr)
Compression 

(CPU hr)
Graph Construction 

(CPU hr)
Consensus 
(CPU hr)

S. cer w303 20x PacBio 0.1 0.03 0.005 2

A. thaliana ler-0 40x PacBio 1 0.6 0.2 18

H. sapians 30x PacBio 25 37 3 1600

E. coli K12 30x Nanopore 0.1 0.02 0.002 2

Table 2.  Computation time of each procedure.
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(the currently leading platform of 3GS technology) was used to perform the comparative experiments (50x 
Illumina MiSeq reads were additionally used for PacBioToCA and DBG2OLC, the two hybrid methods). The 
experiments are run on a server with eight Intel Xeon E7-8857 v2 CPUs (each has 12 cores) and 2 TB memory. 
For all DBG2OLC experiments in this paper we used SparseAssembler (Ye et al.5) to preassemble 50x Illumina 
short reads into contigs and then to compress the 3GS reads. Similarly, Celera Assembler was used to assemble 
the same short reads into contigs for ECTools. Unassembled short reads were fed into PacBioToCA according to 
its specification. At the time of this work, 50x Illumina reads cost less, and also can be obtained more easily, than 
1 ×  3GS reads. Celera Assembler could be run with uncorrected reads on small datasets, so we run it as a baseline.

It is noteworthy that in our current implementation, most of the computation time (~90%) is spent on the 
consensus step, in which BLASR28 is called to align all raw reads to the assembly backbone. Since the alignments 
are multi-threaded, the wall time can be reduced depending on the available threads. The consensus step is rel-
atively independent in genome assembly and is open to any future improvements and accelerations. The overall 
computational time of the whole pipeline scales near linearly to the data size, which is a highly valuable prop-
erty to large-scale genome assembly problems. Using 10x–20x coverage of PacBio sequence data, we obtained 
assembly N50s that are significantly (> 10x) better than Illumina data alone (Table 1). The datasets, commands, 
and parameters can be found in the Supplementary Materials. We used QUAST 3.032 in its default setting to 
evaluate the assembly results; these are reported as the NGA50, per-base identity rates and misassembly errors. 
In analyzing 3GS assembly results, the NGA50 is a measure of the average length of high quality region before 
reaching a poor quality region in the assembly. The identity rates were calculated by summarizing the single 
base mismatches and insertion/deletion mismatches. Relocations, inversions, and translocations are regarded as 
misassembly errors32. The alignment dot plots can be found in the Supplementary Materials. The nearly perfect 
diagonal dot plots indicate that DBG2OLC can produce structurally correct assemblies from as low as 10x long 
read data.

For the yeast dataset we picked an assembly from 454 data (NCBI Accession No.: GCA_000292815.1) and 
another assembly generated using MHAP with high coverage data as references. DBG2OLC takes advantage of 
different sequencing types and obtains the most contiguous results using 10x–40x data with comparable levels of 
accuracy (Table 3). Some non-hybrid assemblers are not able to fully assemble the yeast genome with 10x–20x 

Cov Assembler
Time 

(h) NG50 Contigs
NGA50 

(454)
Identity 

(454)

Misass-
emblies 

(454)
NGA50 

(PacBio)
Identity 
(PacBio)

Misass-
emblies 
(PacBio) Longest Sum

10x MHAP* — — — — — — — — — — —

HGAP* 36.3 — 554 — 99.68% 105 — 99.77% 6 36,942 1,512,911

CA* 15.1 85,728 289 68,030 97.49% 134 81,451 97.46% 13 448,177 12,285,888

PacBioToCA 173.5 19,694 898 19,378 99.88% 112 18,689 99.90% 6 221,736 10,741,663

ECTools 24.5 120,126 169 98,965 99.76% 324 109,640 99.73% 29 525,820 11,785,741

Falcon* 1.3 — 675 — 99.23% 116 — 99.28% 4 36,616 4,137,485

DBG2OLC 1.7 475,890 67 168,612 99.70% 408 355,269 99.81% 46 1,174,277 11,899,604

20x MHAP* 17.1 241,394 87 155,221 99.70% 508 241,260 99.75% 22 490,764 12,123,145

HGAP* 31.1 8,578 1,210 6,908 99.85% 307 7,619 99.90% 20 86,998 8,624,090

CA* 42.4 371,115 165 201,649 98.83% 284 329,930 98.82% 21 680,599 13,052,212

PacBioToCA 400.9 66,974 395 65,171 99.87% 157 65,171 99.91% 7 628,280 11,487,222

ECTools 34.2 176,663 172 109,931 99.77% 565 150,351 99.74% 46 624,112 12,887,799

Falcon* 3.5 110,083 180 93,385 99.38% 345 110,438 99.42% 15 281,041 10,583,868

DBG2OLC 2.6 597,541 47 172,455 99.71% 440 576,287 99.88% 37 1,085,773 12,476,994

40x MHAP* 36.6 614,363 65 243,012 99.91% 598 589,044 99.94% 24 1,090,578 12,356,826

HGAP* 36.2 211,631 93 198,387 99.94% 528 348,754 99.99% 30 796,762 12,387,287

CA* 115.2 365,912 114 160,867 99.66% 358 377,360 99.60% 11 769,189 15,171,228

PacBioToCA 621.7 96,817 371 96,476 99.87% 178 94,480 99.91% 6 742,046 11,700,172

ECTools 55.8 255,956 271 166,945 99.79% 891 214,377 99.76% 64 714,196 14,481,947

Falcon* 11.2 614,509 58 247,745 99.72% 336 555,886 99.74% 10 1,069,920 12,116,235

DBG2OLC 4.2 672,955 28 238,683 99.87% 431 544,679 99.90% 36 1,086,380 12,149,997

80x MHAP* 13.5 751,122 43 248,079 99.91% 526 745,563 99.95% 10 1,537,433 12,350,704

HGAP* 46.5 818,775 33 248,655 99.95% 534 678,552 99.99% 23 1,545,906 12,621,393

CA* 236.0 430,552 75 201,397 99.80% 319 397,774 99.74% 12 984,295 16,571,250

PacBioToCA 274.3 64,967 364 63,651 99.88% 45 62,268 99.91% 10 233,799 11,651,218

ECTools 100.9 247,871 382 154,348 99.79% 1,470 164,839 99.76% 101 881,635 15,925,328

Falcon* 34.7 810,136 99 247,480 99.81% 437 810,134 99.82% 24 1,537,463 12,681,860

DBG2OLC 8.1 678,365 29 204065 99.92% 426 574,476 99.95% 35 1,089,897 12,209,592

Table 3. Assembly performance comparison on the S. cerevisiae genome (genome size: 12 M bp). 
*Assemblers that use only 3GS data.
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PacBio data. It is also worth mentioning a caveat in many current hybrid error correction approaches. These pipe-
lines use NGS contigs to correct the 3GS reads, which seem to have improved the accuracy of each individual 3GS 
read. However, the errors in NGS contigs may have corrupted the originally correct 3GS reads and lead to con-
sensus errors in the final assembly. For example, we notice the identity rates of the ECTools assembly are higher 
when aligned to the 454 reference, contrary to all other pipelines. With high enough coverage (and significantly 
increased sequencing cost), the 3GS self-correction based assembly methods produce better assembly results. 
Since our pipeline has a major advantage in low coverage data and efficiency, it is expected to scale well to large 
genomes where low coverage data and computational time becomes major concerns.

We tested DBG2OLC on other medium to large genomes from PacBio sequencers (Table 4). On the  
A. thaliana genome (120 Mbp), the computations with DBG2OLC finish in one hour, with an additional hour 
spent constructing the initial NGS contigs. The consensus module takes another 10–20 CPU hours to get the 
final assembly. The peak memory usage is 6 GB. In comparison, existing pipelines can take over one thousand 
CPU hours with problems of this scale. On a large 54x human (H. sapiens) dataset, DBG2OLC is able to produce 
an assembly with high contiguity starting from 10x PacBio data (NG50 433 kbp) and DBG contigs generated 
from 50x Illumina reads (Table S1 in Supplementary Materials). To produce a better assembly, the longest 30x of 
the reads in this dataset (mean length 14.5 kbp) are selected (Table S2 in Supplementary Materials). DBG2OLC 
occupies 70 GB memory to store the 17-mer index, and takes 37 CPU hours to compress and align the 30x longest 
PacBio reads. The pair-wise alignment takes only 3 hours and takes less than 6 hours on the full 54x dataset. The 
final consensus takes roughly 2000 CPU hours. In an initial report by PacBio scientists, the overlapping process 
took 405,000 CPU hours4. Our final assembly quality (N50 =  6 Mbp) is comparable to the state-of-the-art results 
obtained using orders of magnitude more resources. When evaluating this assembly, QUAST 3.0 can take weeks 
to finish the full evaluation even on our best workstation. We therefore only align our assembly to the longest 
500 Mbp assembly generated by the Pacific Biosciences, and report the NGA50 and identity rate in this portion.

DBG2OLC was also tested on an Oxford Nanopore MinION sequencing dataset (Table 4). According to initial 
studies, this type of data has higher (up to ~40%) error rates3 compared to PacBio SMRT sequencing. However, 
we find DBG2OLC still successfully assembled the E. coli into one single contig. The polished assembly has an 
error rate of 0.23%. The dot plot of the alignment of the assembly to the reference can be found in Fig. 13 of the 
Supplementary Materials.

Compared with the state-of-the-art assemblers for 3GS technologies, our proposed method produces assem-
blies with high contiguity using lower sequencing coverage and memory, and is orders of magnitude faster on 
large genomes. Its combination of different data types leads to both computation and cost efficiency. These advan-
tages are gained from three general and basic design principles: (i) Compact representation of the long reads leads 
to efficient alignments. (ii) Base-level errors can be skipped, but structural errors need to be detected and cleaned. 
(iii) Structurally correct 3GS reads are assembled and polished. DBG2OLC is a specific and simple realization 
of these principles. Interestingly, this implementation builds a nice connection between the two major assembly 
frameworks, and even though DBG2OLC is majorly developed for 3GS data, this strategy of compression and 
converting a de Bruijn graph to an overlap graph is general and can be used for popular NGS data. A preliminary 
showcase on a purely NGS dataset can be found in the Supplementary Materials. The strategy of compressing 
long reads and performing the most computationally expensive tasks in the compressed domain strikes a balance 
between the DBG and OLC frameworks.

Summary and Discussion
In summary, we have built and validated a new de novo assembly pipeline that significantly reduces the com-
putational and sequencing requirements of 3GS assembly. We demonstrate that the erroneous long reads can 
be directly assembled and can lead to significantly improved assembly without base-level error correction. 
This strategy, first publicly demonstrated in our pre-released pipeline in 2014, has paved the road for several 
subsequent development attempts on efficient utilization of 3GS data and promises even more efficient 3GS 
assemblers. Another major finding in developing DBG2OLC is that 3GS technologies generate chimeric reads, 
and the problem seems to be severer with the PacBio platform. These structural errors lead to tangles in the 
assembly graph and greatly hamper the assembly contiguity. The most straightforward way to clean up the 
chimeric reads resorts to multiple sequence alignment, as implemented in DBG2OLC, which leads to a slightly 
increased coverage requirement. This limitation will serve as the starting point for future development. We 
conjecture that near perfect assemblies can be reached with even lower coverage if the chimeras/structural 
errors can be removed.

Genome Size Coverage NG50 Contigs NGA50 Identity Misassemblies Longest Sum

A. thaliana 120 Mbp 10x PacBio 405,464 881 258,924 99.77% 704 1,549,329 119 Mb

20x PacBio 2,431,755 306 926,138 99.90% 117 6,015,430 120 Mb

40x PacBio 3,601,597 243 1,605,981 99.93% 131 15,473,059 129 Mb

H. sapiens 3.0 Gbp 10x PacBio 432,739 16,689 347,104 99.56% — 3,507,306 2.97 G

20x PacBio 1,886,756 9,757 1,416,766 99.82% — 14,597,500 3.13 Gb

30x longest 
PacBio 6,085,133 13,095 4,124,714 99.85% — 23,825,526 3.21 Gb

E. coli 4.6 Mbp 30x Nanopore 4,680,635 1 1,850,974 99.77% 1 4,680,635 4.7 Mb

Table 4.  DBG2OLC assembly performance comparison on various genomes.
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