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Abstract
Inshore coral reefs are experiencing the combined pressures of excess nutrient availability

associated with coastal activities and warming seawater temperatures. Both pressures are

known to have detrimental effects on the early life history stages of hard corals, but studies

of their combined effects on early demographic stages are lacking. We conducted a series

of experiments to test the combined effects of nutrient enrichment (three levels) and ele-

vated seawater temperature (up to five levels) on early life history stages of the inshore

coral Acropora tenuis, a common species in the Indo-Pacific and Red Sea. Gamete fertiliza-

tion, larval survivorship and larval settlement were all significantly reduced as temperature

increased, but only fertilization was further affected by simultaneous nutrient enrichment.

Combined high temperatures and nutrient enrichment affected fertilization in an additive

manner, whereas embryo abnormalities increased synergistically. Higher than normal tem-

peratures (32°C) increased coral juvenile growth rates 1.6-fold, but mortality also increased

by 50%. The co-occurrence of nutrient enrichment with high temperatures reduced juvenile

mortality to 36%, ameliorating temperature stress (antagonistic interaction). Overall, the

types of effect (additive vs synergistic or antagonistic) and their magnitude varied among

life stages. Gamete and embryo stages were more affected by temperature stress and, in

some cases, also by nutrient enrichment than juveniles. The data suggest that coastal run-

off events might exacerbate the impacts of warming temperatures on fertilization if these

events co-occur during corals spawning. The cumulative impacts of simultaneous exposure

to nutrient enrichment and elevated temperatures over all early life history stages increases

the likelihood for failure of larval supply and recruitment for this coral species. Our results

suggest that improving the water quality of river discharges into coastal areas might help to

enhance the thermal tolerances of early life history stages in this common coral species.
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Introduction
Coral reefs around the world are facing increasing pressures from coastal human activities and
climate change [1], with warming sea surface temperatures (SST) and nutrient enrichment
among their most harmful stressors [2]. The simultaneous and cumulative effects of elevated
SST and nutrient enrichment on demographic processes may lead to significant declines in
coral cover [3]. This highlights the importance of studying their joint effects, particularly on
the sensitive early life history stages that maintain and replenish coral populations, including
gamete fertilization, larval supply, settlement and juvenile survivorship [4].

Since the beginning of the 20th century SST has risen by a global average of ~1°C [5] and is
projected to increase by a further 2 to 3°C by the end of the century under a moderate Repre-
sentative Concentration Scenario of the Intergovernmental Panel on Climate Change (IPCC
RCP 4.5 scenario) [6]. Such increases in SST alone would endanger many coral species, which
typically live close to their upper thermal tolerance limit [7]. Additionally, coral reefs are
increasingly exposed to elevated nutrients associated with terrestrial runoff from expanding
agriculture and associated fertilizers and the loss of top soils [8]. Increases in the concentrations
of nutrients (organic and inorganic) in a water body, which can enhance the algal production,
turbidity, sedimentation of particulate matter and in severe cases can deplete oxygen concen-
trations is known as eutrophication [9, 10]. River runoff, resulting in the eutrophication of
nearshore tropical marine habitats has been reported to cause: reductions in coral biodiversity
[11], increases in macroalgae cover [12], proliferation of macro-bioeroding organisms (i.e.,
sponges, molluscs, polychaetes and sipunculans) that weaken the structural integrity of coral
reefs [13], increases in the frequency and severity of coral diseases [14], and changes in the
composition of biofilms that provide conditioned surfaces for larval settlement and metamor-
phosis of many sessile organisms [15–17].

Since European settlement in 1850, the development of Australia’s North Queensland
catchments adjacent to the Great Barrier Reef (GBR) has led to significant changes in the qual-
ity and quantity of water discharges into the GBR lagoon [18, 19]. Expansion of agricultural
and grazing activities, the clearing of vegetation leading to widespread soil erosion, and the
application of fertilizers has increased river discharges of dissolved and particulate organic and
inorganic nutrients and trace elements in the region [8, 18, 20, 21]. Inorganic nutrients from
anthropogenic sources generally only persist in the GBR lagoon for periods of days to weeks
[20], as they are rapidly taken up by microbial and planktonic communities. They are then
transformed into organic matter and undergo complex cycling between particulate and dis-
solved forms, organic and inorganic forms, and undergo repeated deposition-resuspension
cycling [22, 23]. Recent studies estimate that nutrient loads of rivers discharging into the GBR
lagoon have increased by a factor of 5.7 for nitrogen and 8.9 for phosphorus since European
settlement [18], leading to significant organic enrichment in inshore waters [24]. For the fore-
seeable future, coastal marine ecosystems are likely to face further increases in eutrophication
(inorganic and organic enrichment) as a consequence of nutrient inputs from river runoff [25],
as well as increases in SST due to climate change [6].

Reproduction and early life history stages of marine organisms can be particularly vulnera-
ble to environmental stress [26]. Most scleractinian corals are broadcast spawners, simulta-
neously releasing buoyant eggs and sperm into the water column for external fertilization [27,
28]. Spawning and larval development of the majority of coral species on the GBR takes place
in early summer (October to December)[29] can coincide with nutrient discharges typically
driven by major river flood events during the summer monsoonal wet season (October to
April)[30]. Co-occurrence of heat stress and floods with broadcast spawning would place the
sensitive early life history stages of hard corals (gametes, embryos, larvae and recruits) at risk.

Life-Stage Specific Effects of Environmental Stressors on Corals

PLOS ONE | DOI:10.1371/journal.pone.0161616 August 30, 2016 2 / 23

Adriana Humanes also expresses gratitude for
financial support from AIMS@JCU and to the
Australian Research Council for support through
AusAID.

Competing Interests: The authors have declared
that no competing interests exist.



Despite the perception that early life history stages of corals are more sensitive to environmen-
tal change and pollution than adult stages [12], few studies have empirically addressed their
susceptibility to the co-occurrence of multiple pressures [31–35].

Several studies on tropical coral species of the Caribbean and the Indo-Pacific have demon-
strated detrimental impacts of nutrient enrichment [12, 36, 37] or elevated seawater tempera-
tures [38–42] on coral reproduction, growth, health and survivorship. Moreover,
eutrophication renders adult corals more susceptible to thermal bleaching, as nutrient enrich-
ment enhances the abundance of algal symbionts [43], increasing the ratio of symbiont to host
cells, which can increase the vulnerability of this symbiotic partnership to disruption associated
with high sea temperatures [36, 44, 45]. While evidence is mounting that interactions between
elevated SST and nutrient enrichment might have important deleterious effects at the popula-
tion level [46–48], no studies have investigated the combined effects of these stressors on the
early life history stages and processes of corals (from gamete fertilization to coral juveniles).

An improved understanding of how present and future combinations of stressors are likely to
affect early life history stages of hard corals is needed to adequately assess and develop manage-
ment policies for coral reef ecosystems [49]. Here we describe a series of experiments that tested
the effects of elevated temperature and nutrient enrichment (mimicking eutrophication) on the
fertilization success of coral gametes, development and settlement of coral larvae, and the growth,
photophysiology and survivorship of 4-month-old coral juveniles. The study was conducted with
the common inshore coral species Acropora tenuis, and aimed to: 1) understand the combined
effects of elevated temperature and nutrient enrichment when they co-occur; 2) identify the most
sensitive early life history stages to elevated temperatures and nutrient enrichment, and 3) pro-
vide a minimum estimate of their combined effects on population replenishment.

Materials and Methods

Obtaining coral gametes and juveniles
Gravid colonies (> 20 cm diameter) of the broadcast spawning coral Acropora tenuis (Dana,
1846), an abundant species on shallow inshore coral reefs of the GBR, were collected fromMag-
netic Island (19° 06’S, 146° 51’E) at ~6 m depth on the 5th of November 2014 under the permit
G12/35236.1 issued by the Great Barrier Reef Marine Park Authority. Colonies were transferred to
outdoor flow-through temperature-controlled aquaria at the National Sea Simulator at the Austra-
lian Institute of Marine Science (AIMS), where seawater temperatures were set to ambient reef tem-
peratures on the day of collection (27°C). Following spawning, 5 days after full moon (at ~19:30)
egg-sperm bundles were gently scooped from the surface of the water, and eggs were separated
from sperm using a 100 μmmesh filter and gently washed five times in 0.2 μm filtered sea water
(FSW), as described in Negri and Heyward [50]. Concentrated sperm water was diluted to achieve
a working stock mixture of ~1 x 107 spermml-1 to optimise fertilization success [51]. A subsample
of gametes was used for the fertilization experiment (Experiment 1), and the remaining gametes
were mixed and fertilized [50]. Bulk larval cultures were reared for the larval settlement and juve-
nile experiments (2 and 3) in 500 l flow-through tanks using 1 μm-filtered seawater at 27°C.

Experimental setups
Three experiments were conducted to investigate the combined effects of nutrient enrichment
(organic and inorganic nutrient enrichment) and elevated seawater temperatures on early life
history stages and processes (from gamete fertilization to 4-month-old juveniles) of A. tenuis.
Experiments were designed to mimic the impact of nutrient enrichment as a consequence of
river plumes and terrestrial runoff events, which wash nutrients and trace elements onto
inshore reefs, where they are taken up by plankton communities and converted into organic
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matter. Experimental concentrations of nutrients were chosen to lie within the range of those
measured on inshore GBR reefs [18, 52, 53]. Temperature treatments corresponded to
increases of +2 to +5°C above ambient temperatures recorded during coral spawning periods
on reefs of the GBR [54]. Experiments were conducted to test the effects of nutrient enrichment
(three levels) together with temperature (up to five levels) on: 1) gamete fertilization, embryo
development and larval settlement (Experiment 1, Fig 1), 2) settlement of 5-day-old larvae
when no preceding stages were exposed to treatment conditions (Experiment 2, Fig 1) and 3)
the photophysiology, growth, and survivorship of 4-month-old coral juveniles when no preced-
ing stages were exposed to treatment conditions (Experiment 3, Fig 1). The small size of
recently settled coral recruits (~1 mm) makes it difficult to measure physiological variables,
and they were therefore allowed to grow for four months before commencing this experiment.

Preparation of nutrient enrichment and temperature treatments. For Experiments 1 and
2, nutrient enrichment treatments were prepared by adding inorganic and organic nutrients
derived from inshore organic matter and plankton to FSW. Inshore nutrients and plankton were
collected with a plankton net (mesh size 100 μm) over the reefs of Orpheus Island (18° 36’S, 146°
29’E). On the inshore of the GBR, suspended particulate matter mostly consists of decayed detritus
resuspended from the seafloor, and zooplankton [55]. The bulk material caught with the net was
sieved to remove large fragments (> 26 μm), homogenized with a blender and frozen until use.
Two replicate glass Schott bottles (each 2 l) were used to incubate the nutrient enriched seawater
for each treatment for 48 h at 200-μmol photons m-2 s-1 light intensity (12 h:12 h diurnal cycle) at
the target temperatures [27, 29, 30, 31 and 32°C, S1 Table]. Incubations were conducted to allow

Fig 1. Experiments performed with early life history stages of Acropora tenuis exposed to different treatments of temperature and
nutrient enrichment. Black bars indicate the stages involved in each experiment.

doi:10.1371/journal.pone.0161616.g001
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the microbial communities to take up the bioavailable fraction of the inorganic nutrients and trans-
form it into organic nutrients [56], a process that is accelerated as temperatures increase [57]. Pre-
vious studies have successfully applied this method for studying the effects of nutrient enrichment
on corals [24, 58], with incubations of 48 h being required for the microbial community to develop
[59–61]. Nutrient enrichment treatments were performed using decaying natural plankton in
order to maintain a realistic stoichiometric composition of nutrients and trace elements. Based on
the total organic carbon (OC) present in the collected nutrient-plankton mixture, three nutrient
enrichment treatments were prepared by adding the required volume of the mixture to FSW, at a
nominal concentration of +0, +0.3, or +0.6 mg OC l-1 FSW. Such organic carbon enrichment levels
are environmentally relevant for river-influenced inshore reefs in the GBR ([53], Table 1).

In Experiment 3, nutrient enriched treatments were prepared and incubated in 4 l polyeth-
ylene tanks with gentle aeration. Tanks were placed in temperature-controlled water baths (six
tanks per water bath, at temperatures: 27, 30 and 32°C, S1 Table) and illuminated as in Experi-
ment 2. Coral juveniles were kept in 18 gently aerated experimental tanks (4 l) in water baths
(at temperatures: 27, 30 and 32°C), but under 60 μmol photons m-2 s-1 light. Seawater in the
experimental tanks was replaced every two days with seawater that had been enriched with
nutrients and incubated over the previous 48 h.

To characterize water quality of the different nutrient enrichment treatments, concentra-
tions of total organic carbon, dissolved organic carbon, particulate organic carbon, total dis-
solved phosphorus, dissolved organic nitrogen, total particulate nitrogen, ammonium,
phosphate, nitrate, and nitrite, were measured at the end of the incubation in duplicate subsam-
ples from all Schott Bottle replicates in Experiments 1 and 2, and on a weekly basis after incu-
bation in all replicates in Experiment 3. In this way, water quality parameters of the different
treatments were always measured after the incubations, at the start of each experiment. Water
quality samples were taken following standard protocols as described in detail in Schaffelke
et al. [53] and analysed by the Analytical Services laboratory at AIMS.

The addition of nutrients to FSW increased the concentrations of all water quality variables
measured in each of the three Experiments (Table 1). Nutrient concentrations varied after the
incubation between experiments, therefore nutrient enrichment treatments were designated as
‘low’, ‘medium’ and ‘high’ nutrient enrichment, corresponding to the addition of +0, +0.3, and
+0.6 mg OC l-1 FSW. In all experiments the treatment with ‘low’ nutrient enrichment and at
temperature = 27°C was considered as the control.

Elevated temperature and nutrient enrichment effects on gamete
fertilization, embryo development and larval settlement (Experiment 1)
Fertilization experiments (Experiment 1a, Fig 1, Table 2) were conducted in six-well polysty-
rene tissue culture plates (NuncTM, Denmark), with each treatment having six replicate wells.
A total of 15 treatments were established, with three levels of nutrient enrichment (+0, +0.3,
+0.6 mg OC l-1 FSW) and five levels of temperature (27, 29, 30, 31 and 32°C). Plates were
maintained in temperature incubators (S1 Table) 60 min before the start of each experiment
and throughout the duration of the experiment. Duplicate plates (n = 12 wells) containing 6 ml
of the nutrient enriched seawater, combined with either ~170 eggs or 1 ml stock sperm mix-
ture, were prepared for each treatment in order to pre-expose gametes separately for 30 min
before combining them to initiate fertilization. The final sperm concentration was 5x104 sperm
ml-1, being slightly suboptimal for maximum fertilization [51], thereby increasing the sensitiv-
ity of the assay [62, 63]. When the third cleavage was observed (after ~2.5 h), 2 ml of buffered
zinc formalin fixative (Z-fix preservative, Anatech Limited) were added to terminate embryo
development and preserve embryo integrity.
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Early embryo development (Experiment 1b, Fig 1, Table 2) was assessed using a stereomi-
croscope, and fertilization success (proportion of eggs fertilized) and embryo quality (propor-
tion of normal versus abnormal embryos developing from the fertilized gametes) were
recorded. Coral embryos were considered normal if they underwent radial holoblastic cleavage,
with regular cleavage patterns until the eight-cell stage, which generally occurred within 3–8 h

Table 1. Water quality parameters for the different temperatures and nutrient enrichment (low in white, medium in light grey and high in dark grey)
at the start of each experiment. Values shown are means and standard deviations. Number of replicates: 2 per water quality factor and treatment for Exper-
iments 1 and 2, 18 per treatment for Experiment 3 at 27°C, and 6 per treatment for Experiment 3 at 30 and 32°C temperature. Ranges from seawater values
from the inshore of the Great Barrier Reef are added for comparison [53].

Experiment Temperature
(°C)

Nutrients DOC (μM) TOC (μM) NH4 (μM) NO2+NO3 (μM) NO2 (μM) TDN (μM) TN (μM) PO4 (μM) TDP (μM) O2

(mg l-1)

Schaffelke
et al 2012 [53]

42.8–195.7 3.9–70.5 0–0.8 2.3–11.5 0.5–2.8 0.02–0.6 0–1.01

1a, b 27 Low 84.1±0.1 8.5±3.6 0.5±0.1 0.5±0.1 0.2±0.1 8.8±0.5 0.9±0.1 0.1±0.1 0.2±0.1 8.0±0.2

Medium 92.5±4.0 8.7±1.8 4.4±0.1 1.3±0.1 0.8±0.1 15.7±1.6 1.2±0.1 0.4±0.1 0.5±0.1 7.8±0.1

High 99.2±4.8 8.7±3.4 8.9±0.1 1.4±0.1 0.8±0.1 23.0±0.1 1.5±0.1 0.7±0.1 0.7±0.1 7.7±0.1

29 Low 86.3±2.6 5.0±3.4 0.8±0.4 0.7±0.1 0.2±0.1 9.3±0.2 0.8±0.3 0.1±0.1 0.2±0.1 7.9±0.1

Medium 91.2±0.2 7.7±2.7 4.4±0.1 1.3±0.1 0.7±0.1 15.9±0.8 1.5±0.3 0.4±0.1 0.5±0.1 7.6±0.1

High 92.9±5.3 9.6±6.1 9.2±0.1 1.4±0.1 0.8±0.1 22.4±1.6 1.8±0.4 0.6±0.1 0.7±0.1 7.8±0.3

30 Low 91.5±0.1 2.3±1.2 0.7±0.1 0.8±0.1 0.2±0.1 10.2±0.6 0.8±0.1 0.1±0.1 0.3±0.1 7.8±0.1

Medium 92.5±1.6 5.3±1.2 4.6±0.1 1.2±0.1 0.5±0.1 15.4±0.7 1.5±0.3 0.4±0.1 0.6±0.1 7.7±0.1

High 89.1±6.3 8.0±1.7 9.4±0.1 1±0.1 0.4±0.1 22.0±1.3 1.6±0.4 0.7±0.1 0.8±0.1 7.6±0.1

31 Low 84.8±3.5 3.9±2.4 0.7±0.1 0.6±0.1 0.1±0.1 9.8±1.0 0.9±0.5 0.1±0.1 0.3±0.1 7.6±0.1

Medium 90.0±3.2 5.2±1.3 4.7±0.2 1±0.1 0.4±0.1 15.7±0.6 1.3±0.3 0.4±0.1 0.5±0.1 7.7±0.1

High 93.8±6.8 8.3±2.8 9.6±0.3 1.1±0.1 0.4±0.1 21.9±0.5 1.9±0.5 0.7±0.1 0.9±0.1 7.6±0.1

32 Low 90.7±2.5 4.3±3.1 0.7±0.1 0.8±0.1 0.1±0.1 10±0 1.1±1.1 0.2±0.1 0.3±0.1 7.7±0.1

Medium 90.8±2.9 5.0±0.2 4.6±0.3 1.1±0.1 0.4±0.1 14.9±0.3 1.4±0.1 0.4±0.1 0.5±0.1 7.6±0.1

High 95.7±1.8 8.2±2.7 9.7±0.2 1.0±0.1 0.3±0.1 22.2±1.0 1.7±0.4 0.5±0.1 0.9±0.1 7.5±0.1

1c, d, 2 27 Low 76.8±2.8 8.3±2.0 0.8±0.1 0.6±0.1 0.3±0.1 10.7±0.9 1.7±0.1 0.1±0.1 0.3±0.1 8.2±0.1

Medium 85.9±2.4 19.7±3.5 4.5±0.2 0.6±0.1 0.3±0.1 16±0.5 5.0±0.7 0.3±0.1 0.5±0.1 7.7±0.1

High 87.5±7.6 23.2±1.3 6.1±0.3 0.6±0.1 0.3±0.1 18.2±1.3 6.2±0.4 0.4±0.1 0.6±0.1 7.6±0.1

29 Low 102.9±25.4 6.8±0.6 0.8±0.1 0.6±0.1 0.3±0.1 11.7±0.7 1.6±0.3 0.2±0.1 0.4±0.1 7.9±0.1

Medium 111.9±32.7 25.7±1.7 5.0±0.1 0.6±0.1 0.3±0.1 17.2±0.3 4.3±0.1 0.3±0.1 0.5±0.2 7.7±0.1

High 120.2±39.8 34.8±6.0 7.5±0.1 0.7±0.1 0.4±0.1 20.2±0.6 6.3±0.5 0.5±0.1 0.6±0.1 7.6±0.1

30 Low 82.9±0.2 11.3±0.9 0.9±0.1 0.6±0.1 0.3±0.1 11.4±0 1.7±0.1 0.2±0.1 0.4±0.1 7.7±0.1

Medium 83.1±4.1 21.3±6.4 4.8±0.3 0.6±0.1 0.2±0.1 16.4±1.9 5.4±1.5 0.4±0.1 0.5±0.1 7.6±0.1

High 87.6±3.8 21.6±3.5 7.9±0.2 0.6±0.1 0.3±0.1 20.0±0.5 5.3±1.2 0.5±0.1 0.7±0.1 7.5±0.1

31 Low 82.3±2.9 7.2±1.6 0.7±0.0 0.6±0.1 0.1±0.1 9.8±1.0 0.9±0.1 0.1±0.1 0.3±0.1 7.7±0.1

Medium 86.4±5.9 17.9±1.7 5.1±0.1 0.5±0.1 0.2±0.1 16.8±0.3 3.8±0.3 0.4±0.1 0.4±0.1 7.7±0.1

High 87.4±5.4 25.6±1.2 8.1±0.8 0.6±0.1 0.3±0.1 21.1±0.2 5.7±0 0.6±0.1 0.8±0.1 7.6±0.1

32 Low 101.9±16.2 7.7±NA 0.9±0.1 0.6±0.1 0.3±0.1 11.0±0.3 1±NA 0.2±0.1 0.2±0.1 7.6±0.1

Medium 102.7±23.3 20.3±2.2 5.0±0.0 0.6±0.1 0.2±0.1 16.6±0.1 3.9±0.1 0.4±0.1 0.5±0.1 7.6±0.1

High 154.9±95.6 27.2±NA 8.7±0.8 0.6±0.1 0.3±0.1 22.5±2.2 6.3±NA 0.6±0.1 0.7±0.1 7.5±0.1

3 27 Low 152.1±25.5 45.2±28.5 4.3±9.3 0.2±0.1 0.1±0.1 32.1±39.2 7.1±4.3 0.1±0.1 0.2±0.1 8.0±0.2

Medium 167.2±68.3 64.7±34.0 7.3±10.4 0.2±0.1 0.1±0.1 35.9±24.7 11.6±7.3 0.3±0.4 0.5±0.6 7.8±0.1

High 173.9±36.6 74.6±51.8 15±23.3 0.3±0.4 0.1±0.1 44.8±41.8 14.5±12 0.7±0.9 0.9±1.1 7.6±0.2

30 Low 160.3±50.1 35.7±30.5 0.6±0.4 0.1±0.1 0.1±0.1 14.5±2.8 5.6±3.5 0.1±0.1 0.2±0.1 7.7±0.1

Medium 161.5±23.2 42.7±32.4 0.9±0.8 0.1±0.1 0.1±0.1 18.4±8.1 7.0±5.4 0.1±0.1 0.2±0.1 7.7±0.1

High 187.3±31.8 50.8±23.5 1.2±1.6 0.1±0.1 0.1±0.1 39.5±38.8 7.6±3.3 0.1±0.1 0.2±0.1 7.6±0.1

32 Low 159.3±37.7 44.5±24.0 1.7±2.1 0.1±0.1 0.1±0.1 22.5±8.8 8.0±4.0 0.1±0.1 0.2±0.1 7.6±0.1

Medium 171±31.7 53±35.2 5.3±9.1 0.1±0.1 0.1±0.1 56.1±37.3 9.4±7.8 0.1±0.1 0.2±0.1 7.7±0.3

High 178.3±39.4 63±37.4 6.4±7.8 0.2±0.1 0.1±0.1 80±76.4 10.3±8 0.1±0.1 0.3±0.1 7.6±0.1

doi:10.1371/journal.pone.0161616.t001
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[64]; abnormal embryos deviated from this division pattern, resulting in asymmetrical develop-
ment and/or fragmentation.

Embryos (2.5 h old) that were developing normally in the same 15 treatments were selected to
test larval survivorship (Experiment 1c, Fig 1, Table 2). For each temperature-nutrient combina-
tion, 20 embryos were incubated at 60 μmol photons m-2 s-1 in 50 ml polypropylene jars contain-
ing 40 ml of treatment seawater (as above, n = 6 jars per treatment). Water changes with new
enriched seawater were performed 48, 72, and 96 h after fertilization. Larval survivorship was
assessed on day 5, when larvae show active swimming movements, display settlement behaviour
by testing the substratum for settlement cues, and become competent to settle [27]. Larvae were
counted and transferred to six-well plates with 10 ml of treatment seawater (n = 6 replicate wells
per treatment; 1–10 larvae per well depending on larval survivorship). To induce larval settlement,
2 mm2 chips of live Porolithon onkodes, a crustose coralline algae (CCA), were added to each well
[65]. Chips were prepared using bone cutters 1 h before adding larvae to the wells, and were
obtained from a single 10 cm2 fragment of CCA that had been maintained in a 400 l flow-through
tank at 27°C with low light intensity (60-μmol photons m-2 s-1 over a 12:12 diurnal cycle). Special
care was taken during the maintenance of CCA fragments (i.e. algae removed with a toothbrush
when necessary), and their ability to induce settlement was tested 18 h before using them in the
experiment by offering chips of the same fragment to larvae fertilized and reared under control
conditions (n = 6 replicate wells, 10 larvae per well, settlement success = 98%). After 24 h, the
number of metamorphosed larvae in each well was recorded (Experiment 1d, Fig 1).

Elevated temperature and nutrient enrichment effects on the settlement
of 5-day-old larvae (no preceding stages exposed to treatment
conditions; Experiment 2)
The settlement of 5-day-old larvae that had not previously been exposed to elevated tempera-
tures or nutrients (i.e. raised under control conditions) were used to assess the effects of nutri-
ent enrichment (+0, +0.3, +0.6 mg OC l-1 FSW) and temperature (27, 29, 30, 31 and 32°C) on
the process of larval settlement (Experiment 2, Fig 1, Table 2). Six-well plates were maintained
in temperature incubators for 60 min before the start of each experiment to reach treatment
temperatures (S1 Table) and during the experiment. Ten larvae were added to each well of two
six-well polystyrene tissue culture plates (NuncTM, Denmark), for each of the three nutrient-

Table 2. Experimental conditions used in each experiment performed at different temperatures and nutrient enrichment.

Experiment Nutrient
enrichment

Temperature
(°C)

Treatment
volume (ml)

Replicates Exposure
time

Stage
exposed

Number of
individuals per

replicate

Variable measured

1a Low, medium,
high

27, 29, 30, 31,
32

12 6 2.5 hours Gametes ~170 eggs % Fertilization

1b Low, medium,
high

27, 29, 30, 31,
32

12 6 2.5 hours Gametes % Abnormalities

1c Low, medium,
high

27, 29, 30, 31,
32

40 6 5 days Larvae 20 larvae % Larvae survivorship

1d Low, medium,
high

27, 29, 30, 31,
32

10 6 6 days Larvae 10 larvae % Larvae settlement

2 Low, medium,
high

27, 29, 30, 31,
32

10 12 1 day Larvae 10 larvae % Larvae settlement

3 Low, medium,
high

27, 30, 32 4000 2 59 days Juveniles 19 juveniles Growth, production of new
polyps, final weight Fv/Fm,
survivorship

doi:10.1371/journal.pone.0161616.t002

Life-Stage Specific Effects of Environmental Stressors on Corals

PLOS ONE | DOI:10.1371/journal.pone.0161616 August 30, 2016 7 / 23



enriched seawater treatments (n = 12 wells/treatment; seawater enriched as per Experiment 1).
CCA chips (as above) were added to each well and settlement success was assessed after 24 h.

Elevated temperature and nutrient enrichment effects on the physiology
and survivorship of 4-month-old coral juveniles (Experiment 3)
Four-month-old juveniles of A. tenuis (1–11 polyps) individually settled on manufactured
aragonite substrata (~2 cm in diameter) commonly used by aquarists (Oceans Wonders
LLC), were exposed to three levels of both nutrient enrichment (+0, +0.3, +0.6 mg OC l-1

FSW) and temperatures (27, 30 and 32°C, Fig 1, Table 2). Prior to the experiment and during
all their preceding life stages, juveniles were kept at 27°C and ambient nutrient conditions.
Two replicate tanks (each 4 l) were set up for each of the nine treatments, and 19 juveniles
were added to each of the 18 tanks. The juveniles were exposed to the three nutrient enrich-
ment treatments at 27°C for 20 days before starting the temperature stress. For the heat
stress, external sensor-controlled heat exchange units were used to warm the water in four
water baths (two used for the incubation of the nutrient enrichment FSW, and two for the
experimental tanks, S1 Table). Temperature was ramped up from 27 to 30 or 32°C over a
2-day period. Water temperature was measured daily in all tanks, and temperature loggers
were used in each experimental water bath housing the tanks. Once established, juveniles
were kept under treatment conditions for a further 37 days, by which time half of the juve-
niles in the highest temperature treatment (32°C) had died and measurable differences had
been detected among treatments for most of the variables.

Photochemical efficiency of the symbionts. Maximum quantum yield (Fv/Fm) of photo-
system II (PSII), a measure of the proportion of available light that can be photochemically
quenched, was measured for all surviving juveniles on day 54 of the experiment. A reduction of
Fv/Fm is indicative of photooxidative stress and damage to PSII [66]. Measurements of Fv/Fm
were made using a Maxi Imaging Amplitude Modulation Fluorometer (I-PAM, Walz GmbH,
Germany), which measures the fluorescence of a selected area of interest in an image (i.e., the
juvenile). Measurements were performed by placing all surviving juveniles from each treatment
tank into a 0.5 l container under the treatment conditions. Juveniles were dark-adapted for one
hour prior to each saturation light pulse (gain = 1, intensity = 7, saturation pulse = 5) and Fv/
Fm calculated using the formula Fv/Fm = (Fm−F0)/Fm with Fv = variable fluorescence, Fm =
maximum fluorescence, and F0 = minimum fluorescence [67].

Survivorship, growth and weight. Survivorship of juveniles was assessed every two days
by placing each recruit in a 60 ml chamber filled with the treatment water and observing it
using a stereomicroscope. Death was defined as the time point when live tissue was no longer
present. Survivorship was expressed as the proportion of colonies within each tank that sur-
vived to day 59 (20 days of nutrient exposure + 2 days of temperature ramping + 37 days nutri-
ent and temperature exposure) in relation to the initial number of juveniles at the beginning of
the experiment (19 juveniles per tank). The number of polyps per juvenile was counted on days
4 and 59. Images of each juvenile were taken on days 39 and 59, using a Leica MC170 stereomi-
croscope. The area of live tissue was measured with the program ToupView 3.7 and was used
as an estimate of the colony size. At this age, juvenile morphology was typically 2-dimensional,
enabling a good estimation of their planar surface areas (size). Growth (μm2 day-1) was esti-
mated as the change in area of each juvenile colony over 20 days (between day 39 and 59 of the
experiment). On day 59, the juveniles were carefully detached from the substrate using a nee-
dle, and placed in 20 ml scintillation vials with chlorine 6% for 3 days. Skeletons were washed
twice with Milli-Q water and dried at 60°C for 48 hours in an oven before final weight mea-
surements were taken with a microbalance.
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Data analysis
Generalized linear models (GLM) were used to assess changes in fertilization success, embryo
development, larval survivorship and settlement as a function of temperature (fixed numerical
factor) and nutrient enrichment (fixed categorical factor). Quasi-binomial errors and the log
link function were used when models had overdispersion. Linear mixed effects models were
used to model changes in growth rates, the production of new polyps, the ratio of final weight
to final size of coral juveniles, and photochemical efficiency of symbiotic Symbiodinium (Fv/
Fm) with both temperature and nutrient enrichment as fixed factors (categorical) and tank as
random error term. Survivorship curves of coral juveniles were estimated using the Kaplan-
Meier method [68], a non-parametric statistic that estimates survivorship conditional probabil-
ities at each time point. Survivorship curves were compared using an accelerated failure time
model with a Weibull distribution. The analyses were conducted with the lme4 and the survival
packages in R (R Development Core Team, 2016). A multiplicative model was used to deter-
mine the type of effects (additive, multiplicative synergistic or multiplicative antagonistic) in
all analysis except for the response variable Fv/Fm for which an additive model was used since
data were normally distributed and no transformation was required [69].

To determine the total effect size (SEFtotal) of the simultaneous exposure to the two factors,
the effect sizes (SEF) of all individual factors and their interactions were expressed as the pro-
portion of change in the response variable evaluated (i.e., fertilization, larval survivorship and
settlement, and juvenile survivorship) compared to control conditions (27°C, +0 mg l-1 OC). In
order to estimate the total effect of exposing several early stages to combined temperature and
nutrient enrichment, the following equation was used:

SEFtotal ¼ 100 � ½ð1� SEFiÞ � ð1� SEFiþ1Þ � ð1� SEFnÞ� ð1Þ

where SEFtotal denotes the size (percentage) of the total effect on the final process considered (i.e.
recruit success), SEFi denotes the size of the effect of the stressors (proportion) on a particular pro-
cess (i.e. fertilization), and n denotes the number of stages. SEFtotal values can vary between 0 and
+1. SEFtotal = 0 indicates the maximum treatment effect (i.e. 0 recruit success), SEFtotal = 100
indicate no treatment effect, and SEFtotal< 100 and SEFtotal> 100 indicate a negative and positive
effect of the treatment, respectively (i.e. SEFtotal = 80 represents a decrease of recruitment by 20%,
and SEFtotal = 150 indicates an increase of 50% in recruitment). The SEFtotal was estimated for
early life history stages that had been exposed to treatment conditions for gamete fertilization,
embryo development, larval survivorship and settlement, and the survivorship of 4-month-old
juveniles. This represents a minimum estimation of the total effect, because the stages between
recently settled larvae and 4-month-old juveniles were not exposed to the temperature and nutri-
ent treatments and are therefore considered to be constant.

Results

Elevated temperature and nutrient enrichment effects on gamete
fertilization (Experiment 1a)
Fertilization success was high (83 ± 6%, mean ± sd) across all temperatures and nutrient
enrichment treatment combinations up to 30°C (Fig 2). There were significant detrimental
main effects from both temperature elevation and nutrient enrichment on fertilization success
(p<0.001, Table 2; Fig 2), while the interactions were non-significant, indicating additivity
of effects on the log scale (pTemperature�Nuttrients = 0.389 Fig 2, Table 2). The reduction in
fertilization success compared to the control treatment (nutrient enrichment = ‘low’,
temperature = 27°C) was 5 ± 6% at nutrient enrichment = ‘high’ (temperature = 27°C), and
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8 ± 7% at temperature = 32°C (nutrient enrichment = ‘low’), while temperature = 32°C and
nutrient enrichment = ‘high’ in combination resulted in a 14 ± 10% decline in fertilization.

Elevated temperature and nutrient enrichment effects on embryo
development and larval settlement (Experiment 1b)
Elevated temperature and nutrient enrichment together increased the proportions of abnormal
embryos (Fig 2) in an interactive fashion (pTemperature�Nutrients< 0.001, Table 3). Between 27 and
29°C, 100% of embryos underwent normal development characterized by radial holoblastic
cleavage, resulting in equally-sized blastomeres, regardless of nutrient enrichment. Abnormalities
in the form of asymmetrical and irregular cleavage increased in the ‘high’ nutrient enrichment
(6 ± 12%), while the individual effect of the highest temperature (32°C) was a pronounced
increase (15 ± 14%). When the highest levels of both factors co-occurred, the proportion of
abnormal embryos increased (27 ± 16%) to values higher than expected for the addition of the
individual effects of temperature and nutrient enrichment (Fig 2), indicating a multiplicative syn-
ergistic interaction of both stressors according to the GLMmodel with the log-link function.

Elevated temperature and nutrient enrichment effects on larval
survivorship (all preceding stages exposed to stressors; Experiment 1c)
After exposure of all early life processes (fertilization and embryo development) to the different
treatments, survivorship of larvae in their first few days was significantly affected by tempera-
ture (pTemperature < 0.001, Table 3). Larvae had highest survivorship (95 ± 4%) in treatments
between 27–30°C, and at higher temperatures larval mortality increased significantly from
12 ± 18 at 30°C to 60 ± 18% at 32°C (Fig 3A). In contrast, nutrient enrichment and its interac-
tion with temperature had no effect (pNutrients = 0.880, pTemperature�Nutrients = 0.181, Table 3).

Fig 2. Effects of temperature and nutrient enrichment on the percentage of fertilized eggs (blue line, black
circles; Experiment 1a) and abnormal embryos (red line, open circles; Experiment 1b) of Acropora tenuis.
Control treatment: ‘low’ nutrient enrichment and at temperature = 27°C. Solid lines indicate fitted GLM trend lines,
while dashed lines are 95% confidence intervals.

doi:10.1371/journal.pone.0161616.g002
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Elevated temperature and nutrient enrichment effects on larval
settlement (all preceding stages were exposed to stressors; Experiment
1d)
Settlement success of larvae that had developed from gametes under the different temperature
and nutrient enrichment treatments was significantly affected only by temperature (pTemperature

< 0.001, Table 3). The highest settlement success was observed at 27°C (68 ± 13%), and settle-
ment declined to 0% at 32°C (Fig 3B).

Elevated temperature and nutrient enrichment effects on the settlement
of 5-day-old larvae (no preceding stages exposed to treatment
conditions; Experiment 2)
Settlement success of larvae fertilized and reared under control conditions (27°C and ambient
nutrient levels) increased significantly with temperature (pTemperature < 0.001, Table 3; Fig 4)
being lowest (81 ± 11%) in the temperature control treatment (27°C) and highest (95 ± 5%) at
32°C, while no effect was found in response to nutrient enrichment or its interaction with tem-
perature (pNutrients = 0.061, pTemperature�Nutrients = 0.968, Table 3, Fig 4).

Elevated temperature and nutrient enrichment effects on physiology and
survivorship of 4-month-old coral juveniles (no preceding stages
exposed to treatment conditions; Experiment 3)
Growth rates (μm2 day-1) of coral juveniles changed significantly with temperature (pTemperature =
0.010, Table 3, Fig 5A, Fig 6), but were unaffected by nutrient enrichment or a combination of
the two factors (pNutrients = 0.302 and pTemperature�Nutrients = 0.845, Table 3, Fig 5A). Juveniles
exposed to 32°C exhibited the highest growth rates, having a 1.6-fold increase in area when
compared to juveniles at 27°C (Fig 5A). However, there was no effect of temperature or nutri-
ent enrichment on the rate of budding of new polyps (pTemperature = 0.793 and pNutrients =
0.204, Table 3, S1 Fig), or on the relationship between their final skeletal dry weights and final
size (pTemperature = 0.255 and pNutrients = 0.251 respectively, Table 3). Photochemical efficiency
(Fv/Fm) of the symbiotic algae was significantly affected by the combination of elevated temper-
ature and nutrient enrichment in an interactive fashion (pTemperature�Nutrients = 0.017, Table 3),

Table 3. Results of treatments effects on Acropora tenuis early life history stages based on generalized linear models (GLM) with log-link function
temperature (Temp) and nutrient enrichment (Nut) as fixed factors and tank as random error term. Significance at p<0.05 is shown in bold. Refer to
S2 Table for detailed information for the analyses.

Experiment Dependent variable Treatment effect p values

Temp Nut Temp x Nut

1a Fertilization Temp and Nut decreased fertilization <0.001 <0.001 0.389

1b Abnormalities Temp and Nut increased abnormalities <0.001 <0.001 <0.001

1c Larval survivorship Temp decreased larval survivorship <0.001 0.880 0.181

1d Settlement Temp decreased settlement <0.001 0.951 0.895

2 Settlement Temp increased settlement <0.001 0.061 0.968

3 Growth Temp increased growth 0.010 0.302 0.845

Production of new polyps No effect 0.793 0.204 0.825

Final weight/Final size No effect 0.255 0.251 0.229

Fv/Fm on day 54 Nut increased Fv/Fm while Temp decreased it <0.001 0.013 0.017

Survivorship curves Nut increased survivorship while Temp decreased it <0.001 0.076 0.001

doi:10.1371/journal.pone.0161616.t003
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and the combined effect of these factors was antagonistic (Fig 5B). Nutrient enrichment had a
positive effect on Fv/Fm until 30°C, but at 32°C (Fig 5B) the effect of the enrichment was coun-
teracted by the negative effects of high temperatures, dropping Fv/Fm values in the ‘medium’

and ‘high’ nutrient enrichment treatments to values similar to the ‘low’ nutrient enrichment
treatment. Juvenile survival was also affected in an interactive fashion by temperature and
nutrient enrichment (pTemperature�Nutrients = 0.001, Table 3, Fig 7) and their interaction was mul-
tiplicatively antagonistic (GLMmodel). Survivorship at 27°C was slightly higher in the ‘low’
nutrient enrichment treatment (Fig 7A), while an increase to 30 and 32°C resulted in improved
survivorship for juveniles exposed to ‘high’ nutrient enrichment (Fig 7B and 7C).

Cumulative effects of elevated temperature and nutrient enrichment on
total recruitment success
When modelled together, the total effect of temperature increases and nutrient enrichment on
recruitment success of A. tenuis was deleterious: it was reduced under exposure to the higher
levels of either of the treatments, and was further reduced when the treatments were combined
(Fig 8). Recruitment success declined compared with control values (normalised to 100%)
to� 50% at 30°C and ‘medium’ nutrient enrichment (Fig 8). Temperatures > 30°C lead to
a< 50% reduction in recruitment success in all nutrient enrichment treatments.

Discussion
This study illustrates that early life history stages of A. tenuis have different sensitivities to
increased temperatures and nutrient enriched waters. Temperature and nutrient enrichment
both reduced fertilization success, with their combined effects being additive for fertilization
and synergistic for abnormal early embryo development respectively. Larval survivorship and
settlement, and the growth rates of juveniles were only affected by increased temperatures,

Fig 3. a) Percentage larval survivorship 5 days after fertilization for Acropora tenuis reared under different
temperatures and nutrient enrichment [low (open circles), medium (grey circles), high (black circles);
Experiment 1c]. b) Settlement rates for larvae of A. tenuis that had being fertilized, reared and settled under
different temperatures and nutrient enrichment (Experiment 1d). Control treatment: ‘low’ nutrient enrichment and at
temperature = 27°C. Solid lines indicate fitted GLM trends, while dashed lines are 95% confidence intervals. Individual
points are jittered horizontally for clarity.

doi:10.1371/journal.pone.0161616.g003
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while survivorship of 4-month-old juveniles decreased in an antagonistic fashion when simul-
taneously impacted by increased temperature and nutrient enrichment. Modelling the effects
of nutrient enrichment and heat stress together illustrated how changes in both local (water
quality) and global factors (ocean warming) may interact to jointly decrease the success of suc-
cessive early life history stages in corals. Our results also demonstrate serious consequences for
overall recruitment if early life stages (from fertilization to recruit survival) are cumulatively
exposed to elevated temperatures and/or nutrient enrichment.

This is the first study to test the effect of combined organic and inorganic nutrient enrich-
ment on corals early life history stages; contrasting our work with previous studies which only
tested the effects of elevated inorganic nutrients. Our experimental approach realistically pre-
serves the stoichiometric composition of nutrients and trace elements present in seawater on

Fig 4. Proportion of 5 days old Acropora tenuis larvae, fertilized and reared under control conditions
(27°C and FSW) but settled under different temperatures and nutrient enrichment [low (open circles),
medium (grey circles), high (black circles); Experiment 2]. Control treatment: ‘low’ nutrient enrichment
and at temperature = 27°C. Solid lines indicate fitted GLM trends, dashed lines are 95% confidence intervals.
Individual points are jittered horizontally for clarity.

doi:10.1371/journal.pone.0161616.g004

Fig 5. Four-month-old Acropora tenuis juveniles. a) Growth rates (mean ± sd) under different
temperatures and nutrient enrichment [low (white bars), medium (grey bars), high (black bars)], b)
maximum quantum yields (Fv/Fm, mean ± sd) under different temperatures and nutrient enrichment
(Experiment 3). Control treatment: ‘low’ nutrient enrichment and at temperature = 27°C.

doi:10.1371/journal.pone.0161616.g005
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river-exposed inshore reefs. This method has inherently higher natural variability among nutri-
ent treatments than additions of specific forms of dissolved organic and inorganic nutrients,
and also may affect other variables not measured here (microbial and plankton successions,
enrichment or depletion of trace elements, accumulation of metabolites or pathogenic interac-
tions). Consequently, our experimental design cannot tease apart effects of other variables
potentially affected by the co-occurrence of nutrient enrichment and warming temperatures,
limiting our capacity to fully elucidate mechanism affecting early life history stages. However,
all these variables will also vary under natural conditions of eutrophication [70], and their

Fig 6. Images of juveniles on day 39 (odd numbers) and 59 (even numbers) of treatment exposure.
Treatments consisted in three levels of nutrient enrichment (low, medium and high) and three temperatures
(27, 30 and 32°C). Control treatment: ‘low’ nutrient enrichment and at temperature = 27°C.

doi:10.1371/journal.pone.0161616.g006

Fig 7. Survivorship curves of 4-month-old juveniles of Acropora tenuis that were exposed to nutrient enrichment [low (continuous line),
medium (dashed line) and high (dotted line)] and temperature for 58 days.Control treatment: ‘low’ nutrient enrichment and at
temperature = 27°C. Nutrient enrichment started on day one of the experiment, while heat stress started on day 21.

doi:10.1371/journal.pone.0161616.g007
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impacts are likely to increase with increases of nutrient enrichment and temperature. These
experiments therefore represent a valid first step to understand the interplay between nutrient
enrichment and temperature and identify the most sensitive processes and stages to these
stressors. Future research efforts should aim to understand the underlying mechanisms driving
the observed impacts.

Fertilization and embryo development under heat and nutrient
enrichment stress
Reduced fertilization was observed in treatments with either high temperatures or nutrient
enrichment (organic and inorganics), and effects were additive once treatments were combined
(Experiment 1a). Previous single stress experiments have also found reduced fertilization
under elevated temperatures [71, 72] or inorganic nutrients [31, 37]. Although our experimen-
tal design did not allow us to identify the individual mechanism(s) driving the impacts of com-
bined stressors, results of previous single-factor studies suggest possible explanations. Elevated
temperature is likely to impair coral fertilization through reduction sperm flagella motility,
reducing the number of sperm-egg interactions [71]. In addition to possible molecular and bio-
chemical impacts, nutrient enrichment is likely to foster the development of microbial commu-
nities that could be deleterious to gametes, a possibility that deserves further study. However,
although other studies have also found elevated concentrations of dissolved inorganic nutrients
reduce coral fertilization success [31, 33, 37]; the underlying mechanisms of nutrient toxicity
on fertilization remain unknown. The additive effect of increased temperatures and nutrients
indicates that enrichment is likely to exacerbate impacts on fertilization when high tempera-
tures and coastal runoff coincide with coral spawning.

Abnormalities in early embryos were higher following exposure to high temperatures and
nutrient enrichment, and these stressors acted synergistically when they co-occurred

Fig 8. Total effect size of nutrient enrichment and temperature on recruitment success when the
different stages (fertilization, embryo and larval development, settlement and 4-month-old juveniles)
were equally exposed to contrasting temperatures and nutrient enrichment (low, medium and high).
Control treatment: ‘low’ nutrient enrichment and at temperature = 27°C. Values between 0 and 100 indicate a
negative effect of the treatment (e.g. 0 represents 0% survivorship), while a value of 100 indicates no effect of
the treatment on the final stage considered (i.e. 100% survivorship).

doi:10.1371/journal.pone.0161616.g008
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(Experiment 1b). Abnormal embryo development in corals has been described previously in
response to temperature increases [39, 72–74] or in the presence of inorganic nutrients (how-
ever see [31, 33, 37]). Abnormalities could result from disruption of processes such as gene
expression, cell rearrangement and differentiation, signalling pathways, arrested mitotic divi-
sions, or impairment of functional enzymes or structural proteins [72, 75, 76]. The mechanism
by which nutrients and elevated temperatures simultaneously affect embryo development at
the ultrastructure level is unknown, although we hypothesize that it may be due to molecular,
biochemical or microbial processes. Moreover, population-level implications of abnormal
embryo development also remain unclear, as no studies so far have examined the ultimate fate
of aberrant embryos. However, studies with other marine invertebrates [77–79] suggest that
abnormalities result in energy depletion and higher mortality rates, which would clearly be del-
eterious for larval fitness and consequently for population maintenance.

Larval survivorship and settlement under heat and nutrient enrichment
stress
Embryos resulting from fertilization at high temperatures (>30°C) exhibited significantly
reduced survivorship as they developed into planula larvae (Experiment 1c). The impacts of ther-
mal stress on azooxanthellate larvae may be related to inhibition of their development or to sub-
cellular damage, since decreases in larval cilia motility, pre-competency periods and survivorship
have been observed after exposures to high temperatures [35, 38, 39, 80, 81]. In this study, the
sensitivity of developing larvae to thermal stress may have been exacerbated by prior exposure
during fertilization and early embryogenesis. The present study represents the first report of
exposure of developing coral larvae to enriched seawater (Experiment 1c) and our results indicate
that for A. tenuis, this life history stage may not be sensitive to nutrient enrichment.

Our results show that the effects of thermal stress on settlement success of A. tenuis
depended on prior exposure during early development stages. Higher temperatures enhanced
settlement success of larvae developed under control conditions (Experiment 2). Conversely,
larvae developed from gametes and embryos that were also exposed to thermal stress exhibited
reduced settlement and metamorphosis success (Experiment 1d). Larval settlement success has
been observed to vary with intensity and frequency of temperature changes. Short-term (min-
utes to hours) exposure of larvae to higher temperatures have positive effects on settlement [81,
82], while longer exposures (days to months) can have negative effects ([34, 39], however see
[56, 82]). Our results demonstrate that exposures to thermal stress and nutrient enrichment
over fertilization and early (<2 h) embryogenesis can have significant flow-on impacts on lar-
val fitness and function.

Positive effects of high temperatures on settlement success have been related to acceleration
of metabolic rates in coral larvae [38, 82, 83]. However, increases in settlement success at ele-
vated temperatures have also been accompanied by increases in post-settlement mortality [81,
82]. The consequences of accelerated settlement with increased temperature could be deleteri-
ous for population and metapopulation dynamics, since larval dispersal, connectivity and post-
settlement survivorship have been observed to be compromised when larvae are exposed to
thermal stress [84]. Consequently, thermal stress impacts on already competent larvae (Experi-
ment 2) could have negative implications for coral reef resilience; however, they could also
improve local settlement success.

Single exposure of nutrients and temperature on 4-month-old juveniles
Physiological responses of 4-month-old juveniles of A. tenuis differed depending on the tem-
perature and level of nutrient enrichment. For example, elevated temperatures had positive
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effects on growth, while the combination of both stressors affected photochemical performance
(Fv/Fm) and survivorship of juveniles. While long-term impacts of thermal stress on adult cor-
als are overwhelmingly negative [1], the effects of elevated organic and inorganic nutrients on
adult corals are varied and can be negative, neutral or positive [85–88]. These results confirm
that stressors have different mechanisms of action on metabolic processes and suggest trade-
offs between processes that might determine the corals’ overall physiological performance
under the co-occurrence of these stressors.

The maximum quantum yield of PSII in symbiotic zooxanthellae responded positively to
nutrient enrichment at temperatures less than 32°C. This estimate is conservative since the
most sensitive individuals died and were not included in the analysis. It has been proposed that
enhancement of photosynthesis by dissolved and particulate organic nutrients occurs through
the transfer of nitrogen from the host to the zooxanthellae and increases zooxanthellae division
rates [89]. However, the positive effect of nutrient enrichment on photosystem efficiency was
counteracted when temperatures reached 32°C, indicating that oxidative stress from high tem-
peratures damaged PSII [90]. The occurrence of optimal Fv/Fm values at 30°C is similar to find-
ings previously reported for A. tenuis juveniles [86] and in adult corals of other species [87].
Improved performance of PSII at warmer (30°C) temperatures than at ambient (27°C) temper-
atures in A. tenuis associations may be related to symbiont clades having different reaction
norms [88], presenting as greater photochemical performance and tolerance at high tempera-
tures due to local adaptations [91]. However, values of Fv/Fm at 32°C were similar to values
obtained at 27°C despite marked differences in mortality in these two treatments, suggesting
that Fv/Fm was not a good predictor of the health status of coral juveniles in this experiment.

Among the physiological responses investigated for 4-month-old juveniles, growth and sur-
vivorship were affected to the greatest extent. Growth rates increased at the highest tempera-
tures (32°C), in contrast to previous reports for other species [40, 92, 93]. Reduced growth
rates in those studies were often linked to bleaching and the subsequent loss of energy derived
from the zooxanthellae. While increasing temperatures had a clear negative effect on the sur-
vival of juveniles, the effects of nutrient enrichment varied, similar to a previous study with
adult colonies of A.millepora [47].

Cumulative effects of nutrient enrichment and temperature stress on
early life history stages
There is mounting evidence that nutrients and heat stress produce adverse and long lasting
effects on the reproductive output of corals. These stressors have induced reductions in the
fecundity of colonies [94], fertilization and normal embryo developmental success [33, 72, 73],
larval respiration rates [95], the duration of the larval pre-competency period [38] and larval
survivorship [80]. The present study demonstrates that although some of the variables evalu-
ated (i.e., larval settlement when exposed to the nutrient enrichment and temperature only
during settlement and juvenile growth) had positive effects, the final outcome of the exposure
of early life-history stages of A. tenuis to nutrient enrichment and temperature increases was a
significant reduction in survivorship. The type of effect (additive vs synergistic or antagonistic)
of nutrient enrichment and high temperatures varied in direction and intensity between the
different early life history stages of A. tenuis. Nonetheless, we found temperature increase to be
the main driver of detrimental impacts on recruitment success, with nutrient enrichment sub-
tly increasing the impacts at the highest temperatures.

Our results indicate that the early life history stages of corals can be sensitive to temperature
and that this effect is more pronounced (i) in early development (gametes and early embryos)
and (ii) in the presence of nutrient-enriched water. This study shows that nutrient enrichment
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increases the impact of thermal stress on A. tenuis by compromising their replenishment
capacity through reductions in survivorship of sexually produced individuals. Even without
heat stress, exposure to nutrient enrichment will have a strong detrimental effect on the earliest
development processes of hard corals (fertilization and embryo development), compromising
later larval settlement and juvenile survivorship. Future research studies should be focused on
understanding the possible mechanism of action of the individual and simultaneous occur-
rence of nutrient enrichment and temperature stress on corals early life history stages, includ-
ing detailed analysis of structural and metabolic pathways changes during exposures.
Management strategies focused on water quality improvements by reducing the input of fertil-
izers will not only prevent coral mortality and macroalgae blooms [96], but they will also
enhance reef resilience by improving the thermal tolerance of early life history stages of some
inshore coral species.

Supporting Information
S1 Fig. Four-month-old Acropora tenuis juveniles production of new polyps (mean ± sd)
between day 4 and 59 of the experiment under different temperatures and nutrient enrich-
ment [low (white bars), medium (grey bars), high (black bars)]. Control treatment: ‘low’
nutrient enrichment and at temperature = 27°C.
(TIF)

S1 Table. Temperatures (°C) during the incubation of the modified FSW with nutrient
enrichment (Nut) and during Experiments 1 (a, b, c and d), 2 and 3 (incubation period in
Experiment 3 corresponds to the exposure to nutrient enrichment during 20 days before
starting the temperature stress). Values shown are means ± sd.
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S2 Table. GLM results showing the effects of temperature (Temp) and nutrient enrichment
(Nut) on i) fertilization success (Experiment 1a), embryo development (Experiment 1b),
larval development (Experiment 1c) and larval settlement (Experiment 1d), and ii) juvenile
growth, production of new polyps, final weigh/final size, Fv/Fm, survivorship curves
(Experiment 3) of Acropora tenuis. Temperature and nutrient enrichment were considered as
fixed factors. Significance at p<0.05 is shown in bold. Df: degrees of freedom.
(DOCX)
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