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Abstract

The Community Structure-Activity Resource (CSAR) benchmark exercise provides a unique 

opportunity for researchers to objectively evaluate the performance of protein-ligand docking 

methods. Patch-Surfer and PL-PatchSurfer, molecular surface-based methods for predicting 

binding ligands of proteins developed in our group, were tested on both CSAR 2013 and 2014 

benchmark exercises in combination with an empirical scoring function-based method, AutoDock, 

while we only participated in CSAR 2013 using Patch-Surfer. The prediction results for Phase 1 

task in CSAR 2013 showed that Patch-Surfer was able to rank all the four designed binding 

proteins within top ranks, outperforming AutoDock Vina. In Phase 2 of 2013, PL-PatchSurfer 

correctly selected the correct ligand pose for two target proteins. PL-PatchSurfer performed 

reasonably well in ranking ligands according to their binding affinity and in selecting near-native 

ligand poses in 2013 Phase 3 and 2014 Phase 1, respectively, although AutoDock Vina showed 

better performance. Lastly, in the 2014 Phase 2 exercise, the PL-PatchSurfer scores computed for 

ligands to target protein pairs correlated well with their pIC50 values, which was better or 

comparable to results by other participants. Overall, our methods showed fairly good performance 

in CSAR 2013 and 2014. Unique characteristics of the methods are discussed in comparison with 

AutoDock.
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1. INTRODUCTION

Substantial progress has been made in the past two decades in developing virtual screening 

methods; however, developing accurate scoring functions for evaluating binding energy of 
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ligand-protein interaction is still a challenging problem1, 2. A scoring function is aimed at 

not only identifying the correct docking pose of a ligand, but also differentiating the binding 

affinity between different small molecules.

Scoring functions can be classified into three different categories: molecular force fields3–7, 

statistical knowledge-based scoring functions8–12, and empirical scoring functions13–16. 

Force field scoring functions calculate potential energy between a protein and a small 

molecule, which usually contain several energy terms derived from the first principles of 

physics, such as van der Waals, electrostatic, and hydrogen-bond interactions. Solvent 

effects are often included in an energy term as well. In contrast, statistical knowledge-based 

scoring functions are derived from the frequency of observed interacting atomic pairs and 

other structural features in a database of known protein-ligand complexes. Using the 

Boltzmann relationship, the observed frequency can be used to compute the energy of the 

structural feature17. Knowledge-based scoring functions do not provide individual energetic 

contributions to protein-ligand interaction, but they provide an efficient and practical way of 

calculating the binding affinity of ligands. Empirical scoring functions, the last category, 

combine force-field-based energy terms, knowledge-based terms, and other physically 

meaningful terms. Typically, weighting factors associated to different energy terms are 

calibrated by training on a set of known protein-ligand complexes with known binding 

affinity.

Since there are many different kinds of scoring functions but none are sufficiently accurate 

and while remaining efficient, it is important for the community to have objective 

benchmarks to validate and compare existing methods. In the past years, Dr. Heather 

Carlson and her team at the University of Michigan have been leading an effort of providing 

experimental datasets of crystal structures and binding affinities for diverse protein-ligand 

complexes, which are referred to as CSAR (Community Structure-Activity Resource, http://

www.csardock.org/)18–21. The 2013 CSAR benchmark exercise included selecting 

artificially designed proteins that bind to a ligand molecule, which made the exercise more 

interesting for the community. The 2014 CSAR exercise was to predict correct poses from 

sets of docking decoys and to rank-order compounds.

We participated and submitted predictions in CSAR 2013 using two methods of different 

types, Patch-Surfer22, 23 and AutoDock programs, AutoDock424 and AutoDock Vina25. 

Patch-Surfer, which is developed in our group, makes binding ligand prediction for a target 

pocket by searching similar known ligand binding pockets. The method uses a local surface 

patch representation of binding pockets, which facilitates correct identification of local 

surface similarity and increases the search speed. In this article, we further extend our 

submitted predictions by applying our newly developed protein-ligand virtual screening 

method called PL-PatchSurfer26–28, which predicts binding ligands for a query binding 

pocket by directly evaluating complementarity between the protein pocket and ligands. PL-

PatchSurfer was benchmarked in CSAR2013 Phase 2, Phase 3, as well as CSAR2014 Phase 

1 and 2.

Patch-Surfer performed very well in Phase 1 of CSAR 2013, being able to rank all four 

designed binding proteins that bind to a target ligand within top ranks. This performance 
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was better than AutoDock Vina. In Phase 2 of 2013, PL-PatchSurfer correctly selected the 

correct ligand pose for two target proteins. PL-PatchSurfer performed reasonably well in 

ranking ligands according to their binding affinity in 2013 Phase 3 and in selecting near-

native ligand docking pose in 2014 Phase 1, although AutoDock Vina showed better 

performance. In the 2014 Phase 2 exercise, the PL-PatchSurfer scores computed for ligands 

to target protein pairs correlated well with their pIC50 values, which was better or 

comparable to results by other participants.

Although Patch-Surfer and PL-PatchSurfer employ rather coarse-grained molecular surface-

based representations of binding pockets and ligands, which are very different from 

conventional virtual screening methods, they showed fairly good performance in CSAR 

2013 and 2014. At the same time, comparison with performance of AutoDock and results 

with other participants revealed weakness of the methods. Unique strengths of the Patch-

Surfer and PL-PatchSurfer as well as weakness identified through the CSAR exercise are 

discussed.

2. METHODS

2.1 Data sets

CSAR 2013 was based on the experimental data of artificially designed ligand-binding 

proteins by the David Baker’s group of University of Washington29. In the first Phase, the 

organizers provided sequences of 16 designed proteins and a ligand molecule, a derivative of 

steroid digoxigenin. Its chemical structure in the SMILES representation is 

[C(C(=O)NCCC)O[C@H]1CC[C@]2([C@@H](C1)CC[C@@H]1[C@@H]2C[C@@H]

(O)[C@]2([C@]1(O)CC[C@@H]2[C@@H]1COC(=O)C1)C)C″)]. The participants were 

asked to predict which proteins bind to the ligand and also to rank the binding ability of the 

designed proteins. In the second phase, the organizers provided the structures of two proteins 

and a set of pre-generated docking ligand decoys and the participants were asked to score 

the provided poses and rank them. These two proteins were designed and produced by the 

Baker group from a putative isomerase (PDB ID: 1Z1S)29. In the third phase, the organizers 

provided one protein structure, which is one of the two designed proteins whose crystal 

structures have been solved by the Baker group (PDB ID: 4J9A. This PDB ID was reported 

after the 2013 CSAR exercise), and ten potential inhibitors. Participants were asked to 

predict the relative binding affinity of the ten different inhibitors to the protein and predict 

the best three poses of each ligand.

Although we did not participate in CSAR 2014 at the time of the exercise, in this work we 

tested PL-PatchSurfer on the benchmark datasets provided in its two phases. For Phase 1, 

similar to Phase 2 of CSAR 2013, the organizers provided pre-generated 200 docking poses 

for 22 protein-ligand complexes. The target proteins were coagulation factor Xa (FXa) (three 

datasets each with a different ligand molecule), Spleen tyrosine kinase (SYK) (five sets), and 

tRNA-methyltransferase (TRMD) (fourteen sets). The participants were asked to find the 

nearest native pose to the crystal structure. Phase 2 of CSAR 2014 was a ligand ranking 

problem of given congeneric ligand sets for the three proteins in Phase 1. The five ligand 

sets were given to the participants, three for FXa, one for SYK, and one for TRMD, and 

each ligand set consisted of 31–276 ligands in the SMILES string format.
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2.2 Patch-Surfer

Patch-Surfer is a program for predicting a binding ligand for a query protein by comparing 

the shape and physicochemical properties of a potential binding pocket of the query to 

known pockets in a database22, 23. In Patch-Surfer, the pocket surface is represented by a set 

of overlapping local surface patches. A surface patch is characterized by four features: 

geometric shape, electrostatic potential, hydrophobicity, and visibility (concavity), each of 

which is described by three dimensional Zernike Descriptors (3DZD), which is a 

mathematical series expansion of a 3D function. Here, we briefly explain 3DZD. For more 

details, refer to the original papers30, 31. To describe a surface with 3DZD, a surface patch is 

considered as a three dimensional (3D) function, f(x), in the 3D space. To represent the 

geometric shape of a surface patch, the surface is mapped on a 3D grid, where 1s are placed 

for positions that are occupied by the surface and 0 otherwise. For the other properties, a 3D 

grid holds the property’s value at each position. The 3D grid with mapped values is 

considered as a 3D function, f(x). The function can be expanded into a series in terms of the 

Zernike-Canterakis basis:

(1)

where

(2)

In this Zernike-Canterakis basis, Rnl(r) is the radial function and  is the spherical 

harmonics. m and l are integers that have ranges −1 < m < 1 and 0 ≤ 1 ≤ n.  are called 3D 

Zernike moments and the 3DZD, Fnl, are calculated as norms of vectors Ωnl as shown in 

Equation 3. The norm gives rotational invariance to the descriptor.

(3)

To compare two pockets, similar patches from the two pockets are matched and a similarity 

score is computed, which reflects the similarity of the features of matched patches and the 

relative positions of corresponding patches in each pocket.

Patch-Surfer was originally designed to compare the similarity between two protein pockets. 

In Phase 1 of CSAR 2013 benchmark, we used Patch-Surfer in its original aim of comparing 

pockets. Two scoring terms, one for considering geometric shape similarity and another for 

comparing visibility (concavity) were used. In Phases 2 and 3, we modified the program so 

that it can compare the surface of a binding pocket with molecular surface of a small ligand 

molecule. For pocket-to-ligand comparison, we used scoring terms for shape and the 
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electrostatic potential to quantify complementarity of the two properties of a pocket and a 

ligand molecule.

2.3. PL-PatchSurfer

We ran PL-PatchSurfer for the benchmark datasets of Phase 2 and 3 of CSAR2013 and 

Phase 1 and 2 of CSAR2014. PL-PatchSurfer searches complementarity between a receptor 

pocket and a ligand by surface-patch comparison between the molecules represented by 

3DZD. Thus, while Patch-Surfer compares a query pocket against known ligand binding 

pockets, PL-PatchSurfer compares a query pocket to ligands. Complementarity of a pocket 

and a ligand surface patch pair is evaluated in terms of shape, electrostatic potential, 

hydrogen-bond donor and acceptor positions, hydrophobicity, and the relative position of the 

patch in the molecule. In addition to the five features, the overall score of a pocket and a 

ligand considers similarity of relative position of corresponding patches in each molecule. 

These terms were combined with weighting factors that were trained to maximize accuracy 

of virtual screening tests. To score given a ligand for a target pocket, a maximum of 50 3D 

structures of the ligand were generated from its SMILE representation using OMEGA32. 

Then, surface of each conformation of the ligands was generated and converted into 3DZD. 

The score of a ligand for a target protein was defined as the maximum score among the 

scores computed for all the conformations of the ligand. For more details, refer to the 

original paper26.

2.4 AutoDock programs

We used two versions of the AutoDock program, AutoDock424 and its subsequent version, 

Autdock Vina25. Although both of the programs were developed by the same group, the 

scoring functions and sampling methods are different. AutoDock4 uses Lamarkian Genetic 

algorithm and force-field based scoring function composed of van der Waals, Coulombic 

interaction, hydrogen bonding, solvation, and torsional entropy terms24, while AutoDock 

Vina uses Local Search and empirical scoring function with steric, hydrogen bonding, 

hydrophobic, and torsional entropy terms25. Weight parameters of both scoring functions 

that associate with these terms were calibrated using a set of protein-ligand complexes with 

known binding affinities. Although the same types of scoring terms were considered by the 

two programs, they have different implementations and thus performance can be different25. 

To run AutoDock4 and AutoDock Vina, input files of a target protein and a ligand were 

prepared with AutoDockTools (ADT) tools and Python scripts named prepare_ligand4.py 

and prepare_receptor4.py, which are associated with the AutoDock program. The binding 

pocket position in target protein was specified with the ADT molecular viewer. The 

parameters were kept at their default values.

For Phase 2 and Phase 3 in CSAR2013, we combined the scores from AutoDock Vina and 

Patch-Surfer, considering the complementary nature between the two. Because the scales of 

the two scores are different, we calculated the Z-score of each score and summed the two Z-

scores as the final score.
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3. RESULTS AND DISCUSSION

3.1 Phase 1 Results

The task of the Phase 1 of the CSAR 2013 exercise was to identify proteins out of 16 

artificially designed proteins that bind to a derivative of the steroid digoxigenin (SMILES of 

this molecule provided in the Dataset section). Since only amino acid sequences of the 16 

proteins were provided, we needed to model 3D structures of the proteins. The modeling 

was performed using threading web servers, HHPred32 and LOMETS33, both of which build 

a structure model of a query protein based on a known protein structure that is used as a 

template. LOMETS takes a meta-server approach, which runs 10 independent prediction 

programs. Thus, by adding HHPred, we had 11 independent predictions for each target 

protein. Among the 11 structure models, we have selected the one which was built based on 

a template protein selected by the majority of the programs. The left side of Table 1 shows 

the templates identified by this procedure for building the target proteins and the sequence 

identity between each template to its target protein. The structure models were expected to 

be sufficiently accurate for the subsequent docking prediction because the sequence 

identities were all very high. Indeed, RMSD of Cα atoms of the model structure for DIG19 

to its crystal structure that was revealed after Phase 1 experiment (PDB ID: 4J9A) was 0.602 

Å (Fig. 1).

For further post-analysis, we have also constructed a model for each target protein using a 

template structure that has a lower sequence identity to the target (the right columns in Table 

1). Later in this section we investigate how the model quality affects the accuracy of 

selecting targets that bind to the ligand.

We applied Patch-Surfer to the homology models to determine which proteins have a 

binding pocket that is the most similar to known steroid binding pockets. The reference 

steroid binding pockets were identified by keyword searches on the PDB website. Two 

entries of steroid binding proteins were found, 1HDC (20β-hydroxysteorid dehydrogenase) 

and 3UP0 (nuclear receptor DAF-12). 1HDC has bound carbenoxolone (PDB ID: CBO) in 

the crystal structure while 3UP0 has bound (5β, 14β, 17α, 25S)-3-oxocholest-7-en-26-oic 

acid (PDB ID: D7S). Among these two PDB entries, we decided to use 1HDC as the 

reference because its ligand, CBO, has 5 ring structures, which is consistent with the target 

ligand.

Table 2 shows the rank of the 16 proteins based on the Patch-Surfer score, which quantifies 

the similarity of the pockets in the targets and the steroid binding pocket of 1HDC. Since the 

Patch-Surfer score is meaningful in ranking proteins relative to each other but does not 

provide an absolute indication of ligand binding, we decided to submit the eight top-ranked 

target proteins as binders. They are, DIG5, DIG8, DIG19, DIG10, DIG18, DIG9, DIG2, and 

DIG3. The Patch-Surfer’s prediction was very successful in ranking all three positive 

proteins, whose binding affinity to DOG was confirmed by experiments to be in the μM 

range, within the top four ranks. Shown in Figure 2 are the crystal structures of 1HDC and 

the designed protein (DIG19) with bound ligands, which show that the ligands have similar 

binding mode in the two pockets. In both proteins, the ligands bind vertically in the pockets 
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and the hydrophobic ring structures in the ligands (the picene ring and the phenanthren ring 

for the ligands of 1hdc and DIG19, respectively) bind to a hydrophobic core of the pockets.

For Phase 1 of CSAR 2013 exercise, there were 16 predictions submitted. Among them, 

only four of them, including Patch-Surfer, correctly ranked all four binding proteins within 

top 5 ranks. Thus, Patch-Surfer was successful relative to the other participants in the 

benchmark exercise.

Besides the prediction by Patch-Surfer (Table 2), we also submitted a separate prediction in 

parallel that used a combined score of Patch-Surfer and four modes of AutoDock. Three 

scores are computed from AutoDock: one by flexible docking by AutoDock Vina, which 

explores various conformations of a ligand that give the lowest energy, another score by the 

Vina rigid docking mode, which treats a ligand as a rigid molecule, and lastly a score by the 

AutoDock4 flexible docking mode. With Patch-Surfer, we computed two scores, the pocket 

similarity score for the binding pocket of each target and either of 1HDC or 3UP0. Thus, in 

total, we had five different scores. These five scores were then normalized by computing a 

Z-score, and the sum of the five Z-scores was used to obtain the final rank of the target 

proteins (Table 3). It turned out that this prediction was worse than the Patch-Surfer’s 

prediction in Table 2, not being able to select the best binder, DIG19, within top half of the 

targets.

After CSAR2013, we extended the analysis in two directions to further understand the 

performance of Patch-Surfer. First, we made homology models of the designed proteins 

using templates with a lower sequence identity and examined how prediction results are 

affected by the quality of the models. Second, we used a variety of ligand binding pockets as 

the reference to investigate how they influence prediction results.

The right columns in Table 1 show template structures with a lower sequence identity used 

to build homology models for the first part of the extended analysis. These templates were 

identified by HHpred and the models were generated using MODELLER34 based on the 

templates. The structural difference of the models with close and distant templates is not 

large, on average, RMSD between them was 2.17 Å (Table 4, the rightmost column). The 

RMSD is even smaller, 0.98 Å, for the models of ligand binding proteins, DIG5, DIG10, 

DIG18, and DIG19. However, this difference of models made substantial difference in the 

prediction results (Table 4). Among the four ligand binding proteins, only DIG5 was ranked 

within the top while the other three proteins were below the half of the rank. By performing 

docking the target ligand, the derivative of digoxigenin, to the structure models, it turned out 

that this difference was enough to make very different binding modes of the ligand to the 

proteins (Fig. 3). The models built with high sequence identity templates (Fig. 3A, C, E, G) 

have one larger pocket that is consistent with the reference steroid binding protein, 1HDC. 

On the other hand, the corresponding pockets in the models built on lower sequence identity 

templates are smaller, which caused the positions of bound ligand the other side of the helix 

in the middle of the structures. These results suggest that, when computational protein 

models are used in ligand-binding prediction, their quality is critical to prediction results.

Zhu et al. Page 7

J Chem Inf Model. Author manuscript; available in PMC 2017 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the second post-analysis, we examined how different reference pockets affect the Patch-

Surfer results. In addition to 1HDC we originally used as the reference pocket, we newly 

selected nine more protein-ligand complexes as the references. These additional compounds 

were identified by the SIMCOMP webserver35 using the target ligand as the query molecule. 

Using Patch-Surfer, a reference pocket was compared with binding pockets of the structure 

models of the 16 target proteins built based on the high sequence identity templates, and the 

target proteins were ranked according to the Patch-Surfer pocket similarity scores. The nine 

binding pockets and their bound ligands are listed in Table 5 with five distance (i.e. 

dissimilarity) scores to the target ligand. Their two-dimensional (2D) structures are shown in 

Figure 4. All of the compounds but CBO share the four ring structure, 

cyclopenta[a]phenanthrene, with the target ligand (bottom right corner in Figure 4). The five 

compound distances measure different aspects of compounds, and thus their distances are 

not necessarily consistent. Zernike (3D Zernike descriptors) compares global surface shape 

of molecules28, 31, 36. SIMCOMP evaluates 2D graph similarity of molecules35. LIGSIFT 

compares molecules by overlapping Gaussian distributions that represent global shape of the 

molecules. We used two options of LIGSIFT, one that consider the shape only 

(LIGSIFT_SHP) and the other that also consider chemical nature of molecules 

(LIGSIFT_CHEM)37. The last one is the Tanimoto coefficient computed with the Open 

Babel software38, which indicates the fraction of common fingerprints of molecules.

On the right side of Table 5, Patch-Surfer’s predictive accuracies computed using each of the 

ten reference binding pockets were shown. The accuracies are represented in terms of Area 

Under the Receiver Operator Characteristics Curve (AUC), Top 4, Top 6, and Top 8 

accuracies. Top 4, 6, 8 accuracies show the ratio of the four designed proteins that bind the 

target ligand (DIG5, DIG10, DIG18, and DIG19) ranked within each respective rank. Using 

1HDC as the reference pocket performed best, with an AUC value and Top 4, 6, 8 accuracies 

of 0.938, 0.75, 1.00, and 1.00, respectively. The second and the third well performed pockets 

were 3AQI and 3A3Y. Interestingly, the bound ligands of these three proteins, 1HDC, 3AQI, 

and 3A3Y, are not particularly similar to the target ligand, according to the five compound 

distance measures. In Table 6, we further computed Pearson’s correlation coefficient 

between compound distance measures and accuracy measures. Global shape difference 

measured with 3D Zernike descriptors (3DZD) and SIMCOMP showed relatively large 

correlation to the accuracy measures, but overall the correlations were not substantially high 

between those ligand distance measures and the predictive accuracies. The reason of the 

highest correlation to the accuracies with the Zernike distance might be because Patch-

Surfer uses the 3DZD for describing binding pocket surface properties, although the way 

3DZD is used for the ligand distance measure and for Patch-Surfer is different. The former 

uses it for representing global shape of ligands while the latter uses it for representing 

segmented pocket surface regions.

The two post analyses revealed that the original choices of the templates and the reference 

pocket we made were very appropriate. The analyses also confirm that the qualities of 

homology models are very important in ligand binding prediction as also reported by 

previous works39–41.
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3.2. 2013 Phase 2 Results

In Phase 2 of CSAR 2013 exercise, the organizers provided structures of two proteins, 

DIG18 and DIG20 (PDB ID: 4J8T), as well as 200 pre-generated ligand poses of the target 

ligand, for both of the proteins. Participants were asked to score those 200 ligand poses to 

identify the correct pose of the ligand. We submitted two predictions for this phase, one by 

using AutoDock Vina in the score only mode and the other one by using the consensus score 

between Vina and Patch-Surfer. Moreover, we ran PL-PatchSurfer for this exercise as a post-

analysis.

All the three methods successfully selected the correct pose of the ligand with the lowest 

score among all the pre-generated poses. Figure 5 shows the distribution of the scores and 

the RMSD of the 200 ligand poses of DIG18 (Fig. 5A, B, C) and DIG20 (Fig. 5D, E, F). 

Spearman’s rank coefficients between the Vina results and the consensus results were 0.642 

and 0.886 for DIG18 and DIG20, respectively, which indicate that the ranks by the two 

scores are different but correlated. To run PL-PatchSurfer, we used the binding pocket of an 

engineered lipocalin protein structure (PDB ID: 1LKE), which was co-crystallized with 

digoxigenin (DOG), instead of using the homology models prepared for Phase 1. Ligand 

poses that have an RMSD of 10 Å or higher to the reference binding pose of 1LKE were not 

scored because they were obviously dissimilar to the reference pose.

3.3. 2013 Phase 3 Results

In Phase 3 of CSAR 2013 exercise, the organizer provided the 3D structure of one of the 

artificially designed proteins, DIG19 (PDB ID: 4J9A), and ten different small molecules. 

Participants were asked to find the correct binding pose of each ligand and its corresponding 

binding affinity. We used Vina to generate a set of ligand poses and used the Vina score and 

the consensus of Vina and Patch-Surfer scores to rank the poses. AutoDock Vina was run in 

the flexible docking mode. For the most cases, Vina generated nine poses (Table S1 in 

Supporting Information). In addition to the submitted predictions, we newly ran PL-

PatchSurfer as a post analysis of this exercise.

Figure 6A shows how the Vina score predicted the rank of the ligands in the order of their 

binding affinity. The ligands were ranked in two ways: First, we ranked them based on the 

Vina score of the lowest energy conformation among those which were generated (circles in 

Figure 6A). Next, we ranked the ligand using the average of the top three lowest energies 

among the generated conformations (triangles). Overall predicted ranks showed reasonable 

agreement with the experimental results. The two highest affinity ligands (the left bottom 

corner) were ranked correctly when the average score of the three best poses was considered 

and also selected by the best pose energy as the two best binders but with reversed rank. 

Moreover, the ligand with the lowest affinity (the right upper corner) was selected correctly 

when considering the best pose energy. The correlation coefficient between the best Vina 

score (filled circles) and the experimental pKd was 0.819, while it was 0.834 when the 

average score of the three best poses was considered (empty circles) (Fig. 7A).

Next, in Figure 6B and 7B, we examined how the combined score of Vina and Patch-Surfer 

works for ranking and predicting binding affinity of ligands. The results were not as good as 
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using the Vina score only (Figs. 6A and 7A). The correlation coefficients were −0.344 and 

−0.394, when the best score (filled circles) and the average of the three best scores (empty 

circles) were used, respectively.

At last, PL-PatchSurfer’s results on this benchmark are shown in Figure 8. Pearson’s 

correlation coefficient between the PL-PatchSurfer score and pKd is Phase is −0.41. 

Although this is not a strong correlation, it shows that the program could discriminate non-

binders from active compounds, as it is originally designed. The PL-PatchSurfer’s 

correlation is not as good as that of AutoDock Vina but better than the combined score of 

Vina and Patch-Surfer.

According to the CSAR organizer’s paper42, our results using Vina is the 6th among 27 

predictions submitted to this phase, a larger correlation (0.819 and 0.834), while the results 

with the combined score and PL-PatchSurfer were among the lower ranks.

3.4. Results for Phase 1 of CSAR 2014

We did not submit our predictions for CSAR 2014, but here we report results of PL-

PatchSurfer we newly ran on the exercise datasets of Phase 1 and 2. The dataset of Phase 1 

contained 22 protein-ligand pairs with 200 pre-generated decoys for each ligand. The target 

proteins were FXa, SYK, and TRMD. Participants were asked to score the decoy poses for 

each protein-ligand pair. To apply PL-PatchSurfer in this phase, weighting factors of the PL-

PatchSurfer scoring function were trained for each of the three target proteins using five 

crystal structures each for the target proteins (FXa: 2PR3, 2VVV, 2VWO, 2WYG, 3CEN; 

SYK: 1XBB, 3TUC, 4FYO, 4PV0, 4PX6; TRMD: 1P9P, 4MCB, 4MCC, 4MCD, 4YVJ). 

The ligands of these crystal structures were not the same as the target ligands of this 

exercise. Using the crystal structures, decoy conformations of the cognate ligand for each 

target protein were generated by DOCK643. The average number of the generated decoys 

were 763.4, 701.2, and 259.0 for FXa, SYK, and TRMD, respectively. Using the decoys, the 

weights were trained to maximize the Pearson’s correlation coefficients between RMSD of 

the docked ligand and the PL-PatchSurfer score of the decoys.

Table 7 summarizes the results of PL-PatchSurfer’s prediction. PL-PatchSurfer was able to 

select the nearest native (i.e. correct) pose as the top 1 choice for two out of three FXa decoy 

sets, three out of five SYK decoy sets. As for TRMD decoy sets, although the top 1 rank was 

correct only for one out of fourteen set sets, the top 1 rank was within 2 Å RMSD from the 

nearest-native binding pose for additional nine cases. When Top 3 ranks were considered, 

the correct pose was selected for the all three FXa decoy sets, and four out of five SYK sets, 

and five TMSD sets. If the consideration was further extended to top 10 ranks, correct poses 

were selected for all but three decoy sets. Although these results by PL-PatchSurfer is not as 

high as AutoDock Vina we have also applied (Table S2 in Supporting Information), it shows 

that PL-PatchSurfer is able to predict a near native pose within a top rank.

3.5. 2014 Phase 2 results

The exercise for Phase 2 of CSAR2014 was to rank the ligands in the give ligand library in 

terms of their pIC50 values (three sets for FXa, one set for SYK, and one set for TRMD). 

The numbers of ligands in the library are 45, 67, and 51 for the three sets for FXa, 31 for 
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TRMD, and 276 for SYK. We used PL-PatchSurfer to compute the scores for the all ligands 

and compared the scores with provided pIC50 values by computing the Pearson’s correlation 

coefficients (Table 8). Moderate correlation coefficients of −0.590 and −0.671 were 

observed for the dataset 1 of FXa and TRMD, respectively. Correlation was weak for the 

other cases. However, when compared with results of other participants44–46 that are 

available at the time of writing (Table 8), PL-PatchSurfer was the best among the other 

available prediction results for FXa dataset 1 and competitive for TRMD.

The correlations of Nedumpully-Govidan et al. were taken from Figure 4 of their paper47. 

Kumar et al. 44 were taken from Table 2 of their paper. For FXa, they provided an overall 

correlation for the three sets. Yan et al. are from Table V of their paper48. The first three 

values are IT-Score and its variations and the last one is score by AutoDock Vina. The values 

for Hogues et al. 45 are from Table 3 of their paper. Values of Baumgartner et al. 49 were 

computed from Figure 6 of their paper. Values of Matiny et al.46 were computed from R2 

values in Table 3 of their paper. Since it was not clear if their score has a positive or negative 

correlation to pIC50, we chose to put positive values.

4. Conclusions and Discussions

The CSAR benchmark exercise provided a unique opportunity for researchers who develop 

or use protein-ligand docking methods to objectively evaluate the performance of such 

methods. We participated in all three phases of CSAR 2013 and submitted our predictions. 

In the submitted predictions, we used Patch-Surfer in combination with AutoDock. 

Moreover, in this work we have further used PL-PatchSurfer to complete exercises provided 

in CSAR 2014. Patch-Surfer and PL-PatchSurfer are both for predicting binding ligands for 

a query pocket in a protein surface but achieve in complementary ways: The former is 

designed to compare a query pocket against a database of known ligand binding pockets 

while the latter compares molecular surface of ligands to a query pocket.

It was our pleasant surprise that Patch-Surfer performed well in 2013 Phase 1, even better 

than AutoDock, in selecting designed proteins that bind to the target ligand. PL-PatchSurfer 

performed well in 2013 Phase 2 in identifying correct binding pose of ligands and in 2014 

Phase 2 in terms of correlation to pIC50. In 2014 Phase 2, PL-PatchSurfer performed the best 

among other available participants’ results in one of the datasets (FXa dataset 1) and also 

better or comparable in another set (TRMD). On the other hand, PL-PatchSurfer showed 

weakness in 2013 Phase 3 and 2014 Phase 1, whose aims were ranking of ligands and ligand 

binding poses, respectively, which probably needed more detailed atomic detailed energy 

evaluation than PL-PatchSurfer is equipped with. The surface-based coarse-grained 

molecular representation used in PL-PatchSurfer seemed not work well in these two 

exercises, however, the coarse-grained representation can be an advantage in certain 

situations, including virtual screening for binding pockets in apo form as we showed in our 

recent study27. Thus, it is important to use the methods for appropriate purposes for their 

algorithms, knowing their characteristics and when they show their strengths.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Superposition between the model and the crystal structure of DIG19 (PDBID: 4J9A). The 

crystal structure is showed in cyan and the modeled structure is shown in pink. The RMSD 

between the model and the crystal structure is 0.602 Å.
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Figure 2. 
The crystal structures of 1HDC and the designed protein DIG19 (PDB ID: 4J9A). Ligands 

are shown in yellow. The ligands of 1HDC and DIG19 are carbenoxolone and digoxigenin, 

respectively. A, B: the overall structure of 1HDC and DIG19, respectively. C, D: Binding 

sites of 1HDC and DIG19, respectively.
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Figure 3. 
Predicted binding mode using models built on high and low sequence identity templates. At 

each row, the structure on the left/right is a model based on the high/low sequence identity 

template. The target ligand was docked using the AutoDock Vina in the flexible docking 

mode. The lowest energy structures are shown. A, B: DIG5; C, D: DIG10; E, F: DIG18; G, 

H: DIG19.
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Figure 4. 
Bound ligands of the ten reference pockets used in Table 5.
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Figure 5. 
Score distributions relative to the RMSD of ligand poses. The correct pose is shown in red 

and the other poses are in blue. A, B, C are for DIG18 and D, E, F are results for DIG20. A 

and D showed results using the Vina score, B and E used the consensus score, and C and F 

used PL-PatchSurfer. In C and F, the ligand poses that have an RMSD of 10 Å or higher to 

the reference binding pose of 1LKE were not scored because they were obviously dissimilar 

to the reference.
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Figure 6. 
Correct and predicted rank of the ten ligands in CSAR 2013 Phase 3. A: Ranks of ligands 

were predicted by AutoDock Vina scores. B: Prediction of the rank was performed by the 

combined scores of Vina and Patch-Surfer. Filled circles, ranking of the ligands based on the 

lowest energy (score) among the constructed conformations for the ligands. Triangles, 

ranking based on the average of the lowest three energies (scores) among the constructed 

conformations for the ligands.
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Figure 7. 
The correlation between the scores and experimentally determined pKd in 2013 Phase 3. 

Filled circles, for each ligand, its lowest energy (score) among the constructed 

conformations was plotted. Empty circles, the average of the three lowest energies (scores) 

among the constructed conformations was plotted for each ligand. Lines are linear 

regression between pKd and the scores. A: Correlation with the Vina score of the ligands. B: 

Correlation with the combined score of Vina and Patch-Surfer.
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Figure 8. 
The correlation between the PL-PatchSurfer score and pKd in 2013 Phase 3.
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Table 1

Template proteins used for building the target proteins in 2013 Phase 1 exercise.

Target ID High Sequence Identity Template a) Low Sequence Identity Template b)

PDB ID a) Sequence Identity (%) PDB ID Sequence Identity (%)

DIG1 1GY7B 86.9 1ZO2A 39.3

DIG2 1MVEA 89.9 1CPNA 27.5

DIG3 1YNAA 81.3 3AKQA 54.7

DIG4 3JUMB 87.9 3FF0A 48.3

DIG5 1Z1SA 91.5 1S5AA 36.1

DIG6 3CU3A 80.0 4I4KA 25.2

DIG7 3GWRB 86.2 3CNXA 24.2

DIG8 3HK4A 78.1 5AIGA 23.9

DIG9 1I60A 88.2 2ZVRA 22.1

DIG10 1Z1SA 92.2 1S5AA 35.3

DIG12 2OWPA 88.8 2RCDA 46.5

DIG13 2OX1A 90.8 4CNNA 19.6

DIG14 3E5ZA 92.0 3DR2A 28.3

DIG17 3CU3A 85.0 4I4KA 24.6

DIG18 1Z1SA 89.9 1S5AA 35.3

DIG19 1Z1SA 86.0 1S5AA 33.6

a)
Templates with a high sequence identity to the target proteins.

b)
Templates with a low sequence identity to the targets. The models were used in the post-analyses to investigate how the quality of homology 

models affects to the predicting ligand-binding proteins.
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Table 2

Rank of predicted binding affinity of the target designed proteins using Patch-Surfer.

Rank Target protein Patch-Surfer Score a) Binding or not

1 DIG5 0.592 Yes (205μM)

2 DIG8 0.653 No

3 DIG19 0.684 Yes (541 pM)

4 DIG10 0.686 Yes (8.9 μM)

5 DIG18 0.688 Yes b)

6 DIG9 0.702 No

7 DIG2 0.711 No

8 DIG3 0.723 No

9 DIG13 0.724 No

10 DIG6 0.729 No

11 DIG7 0.752 No

12 DIG4 0.785 No

13 DIG12 0.789 No

14 DIG17 0.802 No

15 DIG14 0.847 No

16 DIG1 0.963 No

Eight targets in bold (DIG5 to DIG3 in the table) were predicted to bind the target ligand.

a)
A small Patch-Surfer score indicates that the putative binding pocket is similar to the reference steroid binding pocket.

b)
The binding affinity of this protein is not available because it was not reported in the paper by Tinberg et al. 29.
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Table 3

Rank of predicted binding affinity of the designed proteins using the combined score.

Rank Target protein Total Z-score Binding or not

1 DIG5 −4.21 Yes (205uM)

2 DIG18 −2.71 Yes

3 DIG10 −2.61 Yes (8.9 uM)

4 DIG2 −2.30 No

5 DIG3 −2.21 No

6 DIG8 −1.95 No

7 DIG4 −1.47 No

8 DIG17 −1.27 No

9 DIG6 −0.83 No

10 DIG13 −0.65 No

11 DIG14 −0.59 No

12 DIG19 0.48 Yes (541pM)

13 DIG9 2.03 No

14 DIG7 2.51 No

15 DIG12 2.93 No

16 DIG1 12.87 No

Target proteins in bold (the top eight targets) were predicted to bind to the target ligand.
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Table 4

Rank of predicted binding affinity of the target designed proteins using structure models with a lower quality.

Rank Target protein Patch-Surfer Score Binding or not RMSD (Å) a)

1 DIG5 0.592 Yes (205uM) 1.02

2 DIG13 0.614 No 3.31

3 DIG14 0.626 No 0.86

4 DIG9 0.645 No 2.80

5 DIG6 0.657 No 4.83

6 DIG4 0.675 No 0.36

7 DIG7 0.680 No 1.86

8 DIG8 0.688 No 3.35

9 DIG18 0.689 Yes 0.93

10 DIG2 0.696 No 3.83

11 DIG3 0.734 No 0.60

12 DIG10 0.742 Yes (8.9uM) 1.00

13 DIG12 0.742 No 0.48

14 DIG17 0.767 No 7.67

15 DIG19 0.768 Yes (541pM) 0.97

16 DIG1 0.988 No 0.91

a)
RMSD between the model constructed using a low sequence identity template (the right column in Table 1) and the model using a high sequence 

identity template (the left columns in Table 1).
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Table 6

Pearson’s correlation coefficients between reference ligand dissimilarity to the target ligand and predictive 

accuracies of Patch-Surfer in CSAR 2013 Phase 1.

AUC Top 4 Acc Top 6 Acc Top 8 Acc

Zernike 0.400 0.433 0.532 0.504

SIMCOMP 0.516 0.360 0.534 0.559

LIGSIFT_SHP 0.067 −0.110 −0.070 0.131

LIGSIFT_CHEM 0.075 −0.097 −0.049 0.117

Babel −0.047 0.115 0.008 0.020
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Table 7

PL-PatchSurfer’s results of CSAR 2014 Phase 1.

Target Top 1 a) Top 3 Top 5 Top 10

01_FXA_gtc101 X b) X X X

02_FXA_gtc398 1.630 X X X

03_FXA_gtc401 X X X X

04_SYK_gtc224 2.053 1.550 1.550 1.550

05_SYK_gtc225 X X X X

06_SYK_gtc233 2.370 X X X

07_SYK_gtc249 X X X X

08_SYK_gtc250 X X X X

09_TRMD_gtc445 3.214 3.096 X X

10_TRMD_gtc446 3.181 3.095 X X

11_TRMD_gtc447 1.772 1.772 1.772 X

12_TRMD_gtc448 2.564 2.564 2.541 X

13_TRMD_gtc451 1.614 X X X

14_TRMD_gtc452 1.746 1.477 1.477 1.477

15_TRMD_gtc453 1.501 1.501 X X

16_TRMD_gtc456 3.920 X X X

17_TRMD_gtc457 1.536 X X X

18_TRMD_gtc458 1.602 1.602 X X

19_TRMD_gtc459 1.721 1.710 1.495 X

20_TRMD_gtc460 1.442 X X X

21_TRMD_gtc464 X X X X

22_TRMD_gtc465 1.919 1.919 1.919 1.919

a)
The lowest RMSD (Å) within top 1, 3, 5, 10 were reported.

b)
X shows that the best pose (the pose that is nearest to the native) was selected within the specified top hits. The values are RMSD from the best 

pose (Å).
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