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Imputing Phenotypes
for Genome-wide Association Studies

Farhad Hormozdiari,1 Eun Yong Kang,1 Michael Bilow,1 Eyal Ben-David,2 Chris Vulpe,3

Stela McLachlan,4 Aldons J. Lusis,2,5 Buhm Han,6,* and Eleazar Eskin1,2,*

Genome-wide association studies (GWASs) have been successful in detecting variants correlated with phenotypes of clinical interest.

However, the power to detect these variants depends on the number of individuals whose phenotypes are collected, and for pheno-

types that are difficult to collect, the sample size might be insufficient to achieve the desired statistical power. The phenotype of in-

terest is often difficult to collect, whereas surrogate phenotypes or related phenotypes are easier to collect and have already been

collected in very large samples. This paper demonstrates how we take advantage of these additional related phenotypes to impute

the phenotype of interest or target phenotype and then perform association analysis. Our approach leverages the correlation structure

between phenotypes to perform the imputation. The correlation structure can be estimated from a smaller complete dataset for which

both the target and related phenotypes have been collected. Under some assumptions, the statistical power can be computed analyt-

ically given the correlation structure of the phenotypes used in imputation. In addition, our method can impute the summary statistic

of the target phenotype as a weighted linear combination of the summary statistics of related phenotypes. Thus, our method is appli-

cable to datasets for which we have access only to summary statistics and not to the raw genotypes. We illustrate our approach by

analyzing associated loci to triglycerides (TGs), body mass index (BMI), and systolic blood pressure (SBP) in the Northern Finland Birth

Cohort dataset.
Introduction

Genome-wide association studies (GWASs) are conducted

by collecting genotypes and phenotypes from a set of indi-

viduals. This is followed by a series of statistical tests to

identify variants that are significantly associated with the

phenotype. Recently, the sample size for GWASs has

increased to tens of thousands or hundreds of thousands.

These large studies have discovered hundreds of new vari-

ants involved in multiple common diseases.1,2 Most of

these variants have very small effect sizes, which emphat-

ically supports the message that the larger the association

study the better it fares in discovering associations.

Unfortunately, some phenotypes are either logistically

difficult or very expensive to collect. For these phenotypes,

it is impractical to perform GWASs with tens of thousands

or hundreds of thousands of individuals with these pheno-

types. Examples of these phenotypes include ones that

require (1) obtaining an inaccessible tissue such as brain

expression, (2) using a complex intervention such as a

response to diet, or (3) re-contacting individuals simply

because they were unmeasured in the original cohort. In-

vestigators are often unable to collect samples that are large

enough to discover variants with small effect sizes for these

phenotypes. As a result, it is unlikely that GWASs will be

effectively conducted on these phenotypes.

One approach to increase power for GWASs on a pheno-

type that is hard to collect is to utilize an intermediate or
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proxy phenotype that is correlated to the target phenotype

of interest. In this approach, one intermediate or proxy

phenotype, which is highly correlated and easily collect-

able, is collected and then a GWAS is performed on the

intermediate phenotype in order to detect associated

signals. For example, triglyceride levels can be collected

as a proxy for obtaining information about metabolic dis-

eases. This approach is known as intermediate phenotype

analysis.3,4

One way to interpret the intermediate phenotype anal-

ysis is to consider the target phenotype as missing data

and use the intermediate phenotype as inferring the

missing data. This connection to missing data analysis mo-

tivates the following intuition. In missing data analyses, it

is well known that utilizing multiple sources of informa-

tion can be more effective than using a single source of in-

formation, which has been shown in machine learning5–9

and genetics.10–12 This motivates an intuition that utiliz-

ing multiple phenotypes together as proxies for a trait

can lead to better performance. This is the basis of our

approach.

In this paper, we propose an approach called phenotype

imputation that allows one to perform a GWAS on a

phenotype that is difficult to collect. Our approach lever-

ages the correlation structure between multiple pheno-

types to impute the uncollected phenotype. Specifically,

we estimate the correlation structure from a complete

dataset that includes all phenotypes. The conditional
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distribution based on the multivariate normal (MVN) sta-

tistical framework is used to impute the uncollected

phenotype in an incomplete dataset. Our imputation

approach utilizes only phenotypic information and not ge-

netic information; therefore, imputed phenotypes can be

subsequently used for association testing without incur-

ring data re-use. We provide an optimal meta-analysis

strategy for situations where the final GWAS will include

the complete and incomplete datasets. This strategy com-

bines association results from the collected phenotype

and imputed phenotype while accounting for imputation

uncertainties. Moreover, we demonstrate that we can

analytically calculate the statistical power of an association

test using an imputed phenotype, which can be helpful for

study design purposes. In addition, we show that the

summary statistics of the imputed phenotype can be

approximated by a weighted linear combination of sum-

mary statistics for the proxy phenotypes. This result makes

our method applicable to datasets where we have access

only to the summary statistics and not to the raw geno-

types and phenotypes.

We show the effectiveness of our proposed approach by

applying it to the Northern Finland Birth Cohort (NFBC)

data.13 Imputing the triglyceride (TG), body mass index

(BMI), and systolic blood pressure (SBP) phenotypes enable

us to recover most of the significantly associated loci in the

original data at the nominal significance level. This shows

that even though the imputed phenotype might not pro-

vide sufficient power for discovery purposes due to imputa-

tion uncertainties, it can effectively be used for replication

purposes.
Material and Methods

A Standard Genome-wide Association Study
Initially, we describe the standard GWAS framework for testing ge-

netic effects on quantitative phenotypes. SNPs are the most com-

mon form of genetic variation; therefore, we consider SNPs

throughout this paper. However, the frameworks can be general-

ized to other types of variants. Suppose that we collect genotypes

of m SNPs and [ quantitative phenotypes for n individuals. Let Y

indicate a ðn3[Þ matrix of phenotypic values where yk is a (n 3 1)

vector for the kth phenotype. Let yjk be the phenotypic value of

the jth individual for the kth phenotypeand gji¼ {0,1,2} be theminor

allele count of the jth individual at the ith SNP. Let pi indicate the fre-

quency of ith variant in the population. The derivations are simpli-

fied by standardizing theminor allele counts for each SNP to have a

mean of 0 and a variance of 1, such that xji˛fð � 2pi=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p Þ; ðð1� 2piÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p Þ; ðð2� 2piÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p Þg
represents the standardized value of gji. Let xi be the (n3 1) vector

of standardized minor allele counts at the ith SNP, where 1T xi ¼ 0

and xT
i xi ¼ n. We assume Fisher’s polygenic model where the

phenotype and the genotype follow normal distributions. Under

the additive model, each SNP contributes linearly toward the

phenotype:

yk ¼ mk1þ
X
i¼1

m

bikxi þ ek; (Equation 1)
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where mk is the phenotypic mean for the kth phenotype, 1 is a

(n 3 1) vector of all ones, and bik is the effect of the ith SNP to-

ward the kth phenotype. ek � Nð0; s2ekIÞ is the environment and

measurement errors where I is an identity matrix. We addition-

ally assume that the phenotypes are standardized so that their

means are 0 and their variances are 1.

In a standard GWAS, we consider one SNP and one pheno-

type at a time. We omit SNP index below (e.g., instead of xi, we

use x) for notation clarity. The following model is used to test

each SNP:

yk ¼ mk1þ bkxþ ek: (Equation 2)

Equation 2 is different from Equation 1 in that it omits the effects

of the other SNPs, which can manifest as background genetic ef-

fects. This was the motivation for using mixed model14–17 in

the situations where sample data have population structures.

Equation 2 leads us to least square solutions, bmk ¼ ð1Tx=nÞ andbbk ¼ ðxTyk=x
TxÞ, where ‘‘hat’’ over parameters denotes esti-

mated values. bek ¼ yk � bm1� bbkx is the residual error that is

used to compute the standard error bsk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibeT
k
bek=ðn� 2Þ

q
.18–21

Note that the estimated effect size is equal to the correlation

between the standardized minor allele counts and the standard-

ized phenotypic values, bbk ¼ corðx; ykÞ. If the sample size is

large enough, bbk follows a normal distribution with the mean

equal to the true effect size bk. Thus, we can define a normally

distributed association statistic as sk ¼ ðbbk

ffiffiffi
n

p
=bskÞ. Under the

null hypothesis of no association (bk ¼ 0), the statistic sk
follows the standard normal distribution. Under the alternative

hypothesis of true association, the statistic sk follows a

normal distribution with non-centrality parameter (NCP) l
ffiffiffi
n

p ¼
ðbk=skÞ

ffiffiffi
n

p
:14,15,20,22

sk ¼
bbkbsk

ffiffiffi
n

p �
�
Nð0;1Þ null hypothesisðno associationÞ
N
�
l

ffiffiffi
n

p
;1

�
alternative hypothesis

:

(Equation 3)

To reject the null hypothesis of no association, given the signif-

icance threshold a, we compute the p value, which is the probabil-

ity that the observed statistic sk will be equally or more extreme

under the null hypothesis, and determine that the association is

significant if this probability is less than the significance threshold

a (e.g., a ¼ 5 3 10�8 in GWASs). Equivalently, we reject the null

hypothesis when F(sk) < as/2 or F(sk) > 1 � as/2, where F(.) indi-

cates the cumulative density function of the standard normal

distribution.

The statistical power is the probability of detecting an associa-

tion in a situation where an association is present with a

certain effect size.22–25 Intuitively, power measures the probabil-

ity that the truly associated variants will be discovered.

Statistical power depends on both the effect size and the number

of individuals in the study; therefore, power estimates can

guide the choice of study size as well as provide expectations

for which effect sizes can and can not be discovered. Power is esti-

mated as

Pða;bk;sk;nÞ ¼F

�
F�1ða=2Þ � bk

sk

ffiffiffi
n

p �
þ 1�F

�
F�1ð1� a=2Þ � bk

sk

ffiffiffi
n

p �
;

(Equation 4)

which is a function of the effect size bk, its standard error sk, the

number of individuals n, and the significance threshold a.



Phenotype Imputation
Phenotype Imputation Method

We consider two phenotype datasets in which we collected [

phenotypes from n1 and n2 individuals, respectively. Let Y(1)

and Y(2) be matrices of phenotypic values of size ðn13[Þ and

ðn23[Þ, and yð1Þ
k and yð2Þ

k be vectors of phenotypic values for the

kth phenotype in the first and second datasets, respectively. We

use :[ to indicate phenotypes excluding the [th phenotype.

Thus, yð1Þ
j:[ and yð2Þ

j:[ are row vectors of size ð13ð[� 1ÞÞ for the jth in-

dividual phenotypes excluding the [th phenotype in Y(1) and Y(2),

respectively.

We assume that the phenotypic values follow a multivariate

normal distribution. In the Discussion, we explore the case where

this assumption is violated. If we assume that each phenotype is

standardized to a mean of 0 and variance of 1, then we model

the joint distribution of multiple phenotypes as

26664
yð1Þj1

y
ð1Þ
j2

«
y
ð1Þ
j[

37775 � N

0BBBB@
2664
0
0
«
0

3775;
266664

1 r12 / r1[
r21 1 / r2[
«

rð[�1Þ1 rð[�1Þ2 / rð[�1Þ[
r[1 r[2 / 1

377775
1CCCCA:

This can be represented more compactly with a block matrix:"
yð1ÞT
j:[
y
ð1Þ
j[

#
� N

�
0;

�
S:[ r:[[
rT
:[[ 1

	�
¼ Nð0;RÞ;

where yð1Þ
j:[ is a row vector for the first ð[� 1Þ phenotypic values for

the jth individual obtained fromY(1) and yð1ÞT
j:[ is the same vector in

column format. Let rk1k2 indicate the correlation between the two

phenotypes k1 and k2, and let r:[[ ¼ ½r1[; r2[;/r[�1[�T denote a

ðð[� 1Þ31Þ vector of correlations between yð1Þ
[ and the phenotypes

in Y(1) excluding the [th phenotype. S:[ is a ðð[� 1Þ3ð[� 1ÞÞ
covariance matrix between the phenotypes in Y(1) excluding the

[th phenotype.

Using the above joint distribution, we condition on yð1Þ
j:[ pheno-

types to compute the distribution of phenotypic values for the jth

individual for the [th phenotype. This distribution is computed as

follows:

y
ð1Þ
j[ j yð1Þ

j:[
�
� N



rT
:[[S

�1
:[ y

ð1ÞT
j:[ ;1� rT

:[[S
�1
:[ r:[[

�
: (Equation 5)

We assume that the [th phenotype is not collected in the second

study in the phenotype imputation problem. Let by ð2Þ
[ be the

imputed phenotypic values for the uncollected phenotype. We as-

sume that the correlation between any pair of phenotypes is the

same in two datasets Y(1) and Y(2). As a result, the above joint dis-

tribution in Equation 5 holds for Y(2). Thus, we can perform a

similar conditional analysis. The conditional distribution is

computed as follows:

yð2Þj[ j yð2Þ

j:[
�
� N



rT
:[[S

�1
:[ y

ð2ÞT
j:[ ;1� rT

:[[S
�1
:[ r:[[

�
: (Equation 6)

The method for imputing the missing phenotype for a particular

individual j uses the mean of the conditional distribution as

shown in Equation 6, rT:[[S
�1
:[ y

ð2ÞT
j:[ , as our prediction. A more

compact formula to impute the [th phenotype for all the individ-

uals in the dataset Y(2) is as follows:

by [ ¼ yð2Þ
:[ S

�1
:[ r:[[: (Equation 7)

Equation 7 shows that the imputed phenotype is a linear weighted

combination of other collected phenotypes. Thus, if our multivar-
The
iate normal assumption holds, the imputed phenotype will also

follow a normal distribution.

We utilized the imputed phenotype in the association study to

compute the association statistic of the imputed phenotype as

the ratio between the estimated effect size for the imputed pheno-

type and its standard error. The association statistic is:

bs[ ¼ bb0
[bs0
[

ffiffiffiffiffi
n2

p ¼
xTcy[

xTxffiffiffiffiffiffiffiffiffiffiffiffiffiffibe 0T
[
be 0
[

n2 � 2

s ffiffiffiffiffi
n2

p
; (Equation 8)

where bb0
[, bs0

[, and be 0
[ are the estimated effect size, standard error,

and residual error, respectively, as computed from the imputed

values of the [th phenotype. Given a sufficiently large sample

size, this statistic will follow a normal distribution. It will follow

Nð0;1Þ under the null hypothesis of no association to imputed

phenotype.

Noisy Measurement Model

We introduce a model that is closely related to our phenotype

imputation method. Under this model, called noisy measurement

model (NMM), our method has interesting optimal properties that

are related to the weighted sum of statistics approach. However,

NMM is not a requirement for our method to work.

Under NMM, we assume that the phenotype [ has the main ge-

netic effect, whereas other phenotypes can be modeled as the

phenotype [ plus noise. We consider the other phenotypes as

noisy measurements of the phenotype [. Under this model, the

pleiotropic genetic effects to other phenotypes are driven by the

main genetic effect to phenotype [. As a result, the observed ge-

netic effect to each of the [� 1 phenotypes cannot be greater

than the genetic effect to phenotype [. Generally, this can be a

strict assumption, but considering our situation where only

phenotype [ is missing, this can be a reasonable assumption; if

the genetic effect is greater in phenotype ks[, then it makes

more sense to model the main effect driven by phenotype k. An

analysis of the collected phenotype k data alone would be optimal,

and we do not even need to perform phenotype imputation.

Specifically, we describe NMM as

yð2Þ
k ¼ yð2Þ

[ þ ukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

uk

q ; (Equation 9)

where uk is ‘‘noise’’ in the measurement. We assume that the noise

follows a normal distribution withmean zero and variance s2uk . We

further assume that the noise is independent of genotypes. The de-

nominator was formulated to standardize the phenotype y2
k .

Let rk[ be the correlation between yð2Þ
[ and yð2Þ

k . It is straightfor-

ward to show that

rk[ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ s2
uk

s
:

Thus, we can re-write Equation 9 such as

yð2Þ
k ¼ rk[



yð2Þ
[ þ uk

�
: (Equation 10)

An important property of NMM is that if NMM holds, then the

strength of the effect of the variant on phenotype k is approxi-

mately the strength of the effect of the variant on phenotype [

times the correlation between the two phenotypes. That is, if

s[ � Nðl ffiffiffiffiffi
n2

p
;1Þ, then approximately sk � Nðrk[l ffiffiffiffiffi

n2
p

;1Þ. This can
be shown as
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sk ¼
xTyð2Þ

k

xTxffiffiffiffiffiffiffiffiffiffiffiffiffiffibeT

k
bek

n2 � 2

s ffiffiffiffiffi
n2

p ¼
xTyð2Þ

[

xTxffiffiffiffiffiffiffiffiffiffiffiffiffiffibeT

k
bek

n2 � 2

s rk[
ffiffiffiffiffi
n2

p þ
uk

xTxffiffiffiffiffiffiffiffiffiffiffiffiffiffibeT

k
bek

n2 � 2

s rk[
ffiffiffiffiffi
n2

p

¼ rk[

ffiffiffiffiffiffiffiffiffiffiffibeT

[
be[beT

k
bek

vuut s[ þ
uk

xTx
rk[ffiffiffiffiffiffiffiffiffiffiffiffiffiffibeT

k
bek

n2 � 2

s ffiffiffiffiffi
n2

p

sk � Nðr[kl
ffiffiffiffiffi
n2

p
;1Þ

;

where we further assume that the residual errors are similar for two

phenotypes ðbeT
k
bekzbeT

[
be[Þ; this holds true if the genetic effects are

small. A similar relationship arises when considering the statistics

of two SNPs in linkage disequilibrium (LD) and the correlation be-

tween the two SNPs is r. Others have shown that the ratio between

the NCPs of two statistics is the same as r.26–29 This is similar to

NMM in the sense that a causal SNP drives the genetic effect,

and the proxy SNP can be thought of as a noisy measurement of

the causal SNP due to LD.

Power of Phenotype Imputation

If NMM describes truth, it is possible to analytically calculate the

power of our phenotype imputation method. We consider the sit-

uation that the variant we are testing under NMM is associated

with the [th phenotype with NCP of l
ffiffiffiffiffi
n2

p
. The NCP of the associ-

ation statistic for the kth phenotype on the same variant is rk[l
ffiffiffiffiffi
n2

p
where rk[ is the correlation between the phenotypes k and [. Here,

instead of considering the correlation between the phenotype [

and another phenotype k, we consider the correlation between

the phenotype [ and the imputed phenotype of [.

The covariance of the imputed and true phenotype is:

Cov

cy[ ; y[

�
¼ Cov



Yð2Þ

:[ S
�1
:[ r:[[;y

ð2Þ
[

�
¼ Cov



Yð2Þ

:[ ;y
ð2Þ
[

�
S�1

:[ r:[[ ¼ rT:[[S
�1
:[ r:[[

(Equation 11)

We know that the variance of yð2Þ
[ is 1, because we have already

standardized the phenotypes. We compute the variance of the

imputed phenotype as follows:

Var

by ð2Þ

[

�
¼ Var



Yð2Þ

:[ S
�1
:[ r:[[

�
¼ rT

:[[S
�1
:[ Var



Yð2Þ

:[
�
S�1

:[ r:[[

¼ rT
:[[S

�1
:[ S:[S

�1
:[ r:[[

¼ rT
:[[S

�1
:[ r:[[

: (Equation 12)

If we utilize the covariance between the imputed and true pheno-

types and the variance of phenotypes, we can compute the corre-

lation as follows:

Cor

by ð2Þ

[ ; yð2Þ
[

�
¼

Cov

by ð2Þ

[ ; yð2Þ
[

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var


by ð2Þ
[

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
:[[S

�1
:[ r:[[

q
: (Equation 13)

Under NMM, each phenotype is modeled as a standardized linear

combination of phenotype [ and noise. Imputed phenotype is also

a linear combination of those phenotypes; thus, we can consider

the imputed phenotype as a new phenotype where we can apply

NMM. That is, we can consider the imputed phenotype as a noisy

version of the true phenotype. Then, by the property of NMM,

Cov

bs[ ; s[� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
:[[S

�1
:[ r:[[

q
¼ rimp

bs[ � N
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rT
:[[S

�1
:[ r:[[

q
l

ffiffiffiffiffi
n2

p
;1

� : (Equation 14)
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We obtained NCP of the statistic for the imputed phenotype;

therefore, we can analytically calculate power of our phenotype

imputation using Equation 4.

It should be noted that the following quantity will have a

mean of 0:

bs[ � rimps[ � N


0;1� r2imp

�
: (Equation 15)

The variance of bs[ � rimps[ is computed as follows:

Var
�bs[ � rimps[

� ¼ Varðbs[Þ þ r2impVarðs[Þ � 2rimpCovðbs[; s[Þ
¼ 1þ r2imp � 2r2imp ¼ 1� r2imp

:

Our results evaluate this quantity in real dataset to determine

whether our imputation method works as expected.

Relation to Optimal Linear Combinations of Marginal Statistics

The result of phenotype imputation is a weighted linear combina-

tion of the observed phenotypes. We show that under NMM,

phenotype imputation is the ‘‘optimal’’ weighted combination

of the phenotypes in terms of statistical power. Let s:[ be a vector

of association statistics computed for the first [� 1 phenotypes,

s:[ ¼ ½s1; s2;/s[�1�T . Under NMM, given that the NCP of the un-

collected phenotype is l
ffiffiffiffiffi
n2

p
, we have s:[ � Nðr:[[l ffiffiffiffiffi

n2
p

;S:[Þ.
We calculate the association statistic of the imputed pheno-

type as a linear combination of weighted statistics computed

for the ð[� 1Þ phenotypes. Let w ¼ fw1;w2;/w[�1g indicate

the vector of weights where wi is the weight corresponding to

the ith phenotype marginal statistics, then we have following

formula:

wTs:[ � N
�
wTr:[[l

ffiffiffiffiffi
n2

p
;wTS:[w

�
: (Equation 16)

Using the above formula and the fact the variance of the associ-

ated statistic is 1, we have:

bs[ � N
�

wTr:[[ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTS:[w

p l
ffiffiffiffiffi
n2

p
;1

�
:

It has been shown that power is maximized when we maximize

the NCP.30 Thus, we find the set of weights that maximizes

wTr:[[=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTS:[w

p
. Let ATA ¼ S:[ and w0 ¼ Aw, then our maxi-

mization problem reduces to following optimization:

arg max
w0

w0TAS�1
:[ r:[[ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w0Tw0
p :

If we let Q ¼ AS�1
:[ r:[[ and use the Cauchy-Schwarz inequality,

we get the following:

X[�1

j¼1

w0
jqj%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX[�1

j¼1

w02
j

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiX[�1

j¼1

q2j

vuut :

The optimal value forw0 isQ and the maximumNCP is as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
:[[S

�1
:[ r:[[

q
l

ffiffiffiffiffi
n2

p
:

This is exactly the NCP obtained from the previous section. More-

over, the optimal value for w is S�1
:[ r:[[, which is the same vector

of weights used in the previous section. This is the justification for

Equation 14 above.

Interestingly, this result indicates that we can use Equation 16

and the optimal weights, which are obtained in this section, to

estimate the marginal statistics of the imputed phenotype as

weighted linear combinations of observed marginal statistics



from other phenotypes. Thus, given the observed marginal statis-

tics of the first ð[� 1Þ phenotypes and the pairwise phenotype cor-

relations, we can compute the estimated marginal statistics. Our

method does not need to have access the raw genotypes and phe-

notypes. This makes our method applicable to datasets where we

have access only to the summary statistics.

We note that for any vector of weights, including the ones uti-

lized in imputation, the type I error rates are controlled. The

reason is that if the variant we are testing is not associated with

the phenotype, l ¼ 0, then the NCP of the imputed statistic for

that variant is zero.

Optimal Meta-analysis Strategy for Combining Imputed and Observed

Values

We use the phenotype imputation to fill the values of the

phenotype for individuals whose phenotypic values are missing.

We then want to obtain an association statistic for the combined

dataset, including the imputed and observed phenotypes. How-

ever, our imputation is not always accurate; thus, it is

suboptimal to use combined observed and imputed data without

distinguishing between them. We propose to compute the

association statistics by performing statistical tests on the collected

phenotype and imputed phenotype separately. Then, we perform

a fixed-effect meta-analysis to combine the two statistics.

We use Ym and Yc to indicate the missing and collected pheno-

types, respectively. We compute the association statistic of each

set separately. The association statistic for the collected pheno-

type is computed as sc � Nðlc ffiffiffiffiffi
nc

p
;1Þ where lc is the NCP of the

phenotype and nc is the number of individuals whose phenotypic

values are collected for this phenotype. We use Equation 14

to compute the Z-score for the imputed phenotype asbsm � Nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT:[[S

�1
:[ r:[[

q
lc

ffiffiffiffiffiffi
nm

p
;1Þ where nm is the number of

individuals whose phenotypic values are missing for this

phenotype.

We combine the two statistics using the fixed-effects meta-anal-

ysis. The fixed-effects meta-analysis association statistic, sFE, is

computed as sFE ¼ ððwcsc þwmbsmÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

c þw2
m

p Þ, where wc and wm

are computed such that the meta-analysis association statistic is

maximized.31,32 Other studies31,33 show that the optimal weights

are computed as wc ¼ ffiffiffiffiffi
nc

p
and wm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT:[[S

�1
:[ r:[[nm

q
. Thus, we

have:

sFE ¼
ffiffiffiffiffi
nc

p
sc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
:[[S

�1
:[ r:[[nm

q bsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc þ rT

:[[S
�1
:[ r:[[nm

q : (Equation 17)

We can use Equation 17 to combine the statistics computed for the

collected and imputed phenotypes as a joint association statistic.

Polygenic Model

We described the properties of our method under NMM. However,

NMM is a simple model andmight not always hold true. We intro-

duce a more complex model, which explicitly models both the ge-

netic and environmental correlations in phenotypes. We suggest a

strategy that is optimized for this model and show that the new

strategy is equivalent to our standard strategy under some simpli-

fying assumptions.

Let b ¼ fb1;b2;/b[g indicate the vector of true effect sizes of a

given variant toward all [ phenotypes where bj is the effect size

for the jth phenotype. Let E be a ðn3[Þ matrix which models the

errors. We consider a multi-phenotype setting, where we perform

a joint testing of a variant for all the [ phenotypes:

vecðYÞ ¼ ðI5xÞbþ vecðEÞ
The
where vec() is an operator that converts amatrix to vector by stack-

ing columns of matrix and 5 is an operator that performs Kro-

necker product between two matrices.

This multi-phenotype setting enables us to model the genetic

and environmental correlations. Let rij and xij indicate the genetic

and environment correlations, respectively, between ith and jth

phenotype. Let s2gi denote the genetic variance of phenotype i

and s2ei denote the error variance of phenotype i. The true vector

of effect sizes are assumed to follow a MVN in the multi-pheno-

type polygenic model,15,34–36 such that
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(Equation 18)

where 1=m is the proportion that the variant contributes to the ge-

netic variance.15,34–36 We assumed that 1=m is the same for all

phenotypes. We define a ð[3[Þ variance matrix that encodes the

environmental correlations in a similar manner as follows:

Y ¼

2664
s2
e1

x12se1se2 / x1[se1se[

x21se1se2 s2
e2

/ x2[se2se[

«
x[1se[se1 x[2se[se2 / s2

e[

3775:
If we use the polygenic model, we have Covðy i; y iÞ ¼ s2giKþ s2ei I

and Covðyi; y jÞ ¼ rijsgisgjKþ xijseisejI where K is the kinship ma-

trix that represents the genetic relatedness between individuals.

We use the following ð[n3[nÞ matrix, V, that encodes the covari-

ance for all pairs of phenotypes:

V ¼

2664
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3775 ¼ G5Kþ Y5I:

Let bb indicate the vector of estimated effect sizes for all the [ phe-

notypes for a given variant. Using the mixed model we havebb ¼ ððI5xÞTV�1ðI5xÞÞ�1ðI5xÞTV�1Y and VarðbbÞ ¼ ððI5xÞT
V�1ðI5xÞÞ�1 ¼ J. Let jij be the ith row and jth column element

of c. We can obtain marginal statistics for all the [ phenotypes

by standardizing bb. Let s ¼ fs1; s2;/s[g indicate a ð[31Þ vector

of marginal statistics. The joint distribution of statistics follows a

MVN where L is the vector of NCPs.

s � N

0BBBBBBBBBBBBB@
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1CCCCCCCCCCCCCA
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(Equation 19)

If we use Equation 18, we can assume a prior distribution for ef-

fect size of the single SNP that we test, such as b � Nð0; ð1=mÞGÞ.
NCP is an expectation of marginal statistic, which is standardized

effect size. Therefore, prior distribution for b gives us prior distri-

bution for NCP.
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where H is a ð[3[Þ matrix and hij is the ith row and jth column

of matrix H. We have hij ¼ ðrijsgisgj=
ffiffiffiffiffiffiffiffiffiffiffi
jiijjj

p Þ. We can utilize

block matrix notation H ¼
�
H:[ h:[[
hT

:[[ h[[

	
where h:[[ ¼ ½h1[;

h2[;/hð[�1Þ[�T and H:[ is a ðð[� 1Þ3ð[� 1ÞÞ matrix of prior distri-

bution for NCP of all the phenotypes excluding the [th phenotype.

In summary, we have s � NðL;GÞ andL � Nð0;HÞ. We assume

that the NCP for the [th phenotype is l
ffiffiffiffiffi
n2

p
. Conditioned on this,

the NCPs of the phenotypes excluding the [th phenotype is as

follows:

L:[ � N �
hT

:[[h
�1
[[ l

ffiffiffiffiffi
n2

p
;H:[ �h:[[h

�1
[[ h

T
:[[

�
: (Equation 21)

As a result, the marginal statistics of all the phenotypes excluding

the [th phenotype is as follows:

s:[ � N �
hT

:[[h
�1
[[ l

ffiffiffiffiffi
n2

p
;H:[ � h:[[h

�1
[[ h

T
:[[ þ G:[

�
: (Equation 22)

The equation above can be simplified by setting the L:[ to the

mean of Equation 21. This assumption implies that the marginal

statistics of all the phenotypes excluding, the [th phenotype is as

follows:

s:[ � N �
hT

:[[h
�1
[[ l

ffiffiffiffiffi
n2

p
;G:[

�
: (Equation 23)

Similarly, we consider that the imputed marginal statistics are a

weighted linear combination of all the marginal statistics that

maximizes the power. If we use Cauchy-Schwartz inequality,

we can show that the maximum NCP of bs[ will beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�1
[[ h

T
:[[G

�1
:[ h:[[h�1

[[

q
l

ffiffiffiffiffi
n2

p
. The maximum NCP is achieved when

the weights of the marginal statistics are G�1
:[ h:[[h�1

[[ . Therefore,

we have successfully derived the weighted combination of mar-

ginal statistics that are optimized for the polygenic model.

Relation between Polygenic Model and Noisy Measurement Model

We show that under some simplifying assumptions, the method

for the polygenic model is equivalent to the standard method

for NMM. We make two assumptions. First, the pairwise genetic

and environment correlations are equal (e.g., rij ¼ xij) and the in-

dividuals are sufficiently unrelated so that we can approximate

K with I. The second assumption implies that we have no popula-

tion structure. Based on these two assumptions, we can simplifyV,

as follows:
V ¼

2666664
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where s2gi þ s2ei ¼ 1 for any phenotypes as we standardized the phe-

notypes. Recall that we defined R as a phenotypic correlation ma-

trix. Thus, VarðbbÞ ¼ ððI5xÞTðR5IÞ�1ðI5xÞÞ�1 ¼ ð1=n2ÞR. As a

result, we have L � Nð0; ð1=mn2ÞRÞ. Given the NCP for the [th

phenotype is l
ffiffiffiffiffi
n2

p
, then the NCPs of all the phenotype excluding

the [th phenotype will have a distribution with mean equal to

r:[[l
ffiffiffiffiffi
n2

p
. Similar to previous section, if we fix NCP to its mean

value for simplification, the method converges to the standard

approach based on NMM. If we consider the two assumptions dis-

cussed above, then the result implies that our approach for the

multi-phenotype polygenic model is equivalent to the standard

strategy for NMM.

Avoiding Over-fitting

The number of phenotypes is large ([ is large) in some datasets,

such as eQTL datasets; thus, we have the risk of over-fitting, which

occurs in amethodwhere the number of parameters is large. These

methods usually do not generalize, but it produces very high accu-

racy in the training dataset and very low accuracy in the test data-

set. One way to avoid over-fitting is to add a sparsity prior, such as

the Laplace prior,37 which reduces the linear regression to

LASSO.38 The LASSO setting allows imputing of the phenotype,

while utilizing few phenotypes to avoid over-fitting. Another solu-

tion is to select the most informative phenotypes and then apply

our method. For example, we can pick the top ten phenotypes

based on their correlation with the target phenotype. We use

only these ten phenotypes in our method.

Handling Missing Data

Our method can handle missing data in the target dataset by per-

forming imputation with only the available phenotypes for each

individual. Some of the individuals will have more accurate impu-

tation, because they utilizemore phenotypes to perform the impu-

tation.We have developed an optimal approach for performing an

association test utilizing these differing degrees of quality of

phenotype imputation, which we explain in Appendix A.

Adjusting for Covariates

In a typical GWAS, we usually adjust for the non-genetic factors

that influence the phenotype, such as sex, age, study design,

and known clinical covariates. Covariate adjustment reduces the

spurious association signals in a study. Given that we have p cova-

riates, we need to adjust for them by extending Equation 1. Thus,

the polygenic model used to handle covariates for the kth pheno-

type is as follows:

yk ¼ mk1þ
X
i¼1

m

bikxi þ
X
i¼1

p

gikzi þ ek; (Equation 25)

where zi is the ith covariate and gik is the effect of that covariate

toward the kth phenotype. Moreover, to perform the single SNP as-

sociation test instead of using Equation 2, we need to adjust for the

covariates. We use the following model for the single SNP associa-

tion test:
/
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Figure 1. The Pairwise Correlation between Each Phenotype
Pair in the NFBC Dataset
yk ¼ mk1þ bkxþ
X
i¼1

p

gikzi þ ek: (Equation 26)

There are two possible ways to adjust for covariates for phenotype

imputation. The first is to impute the phenotype and then use

Equation 26 for association testing. This testing is similar to

testing collected phenotypes and adjusting for covariates. The sec-

ond possible way is to regress out the covariates from all the

collected phenotypes to generate new phenotypes where the cova-

riates are removed. Then, we use our imputation method to

impute the uncollected phenotype using the phenotypes where

the covariates are regressed out. We can use Equation 2 to perform

association testing.
Results

Overview of Phenotype Imputation

In phenotype imputation, we consider two datasets (D1

and D2) in which multiple phenotypes are collected along

with genetic information to perform a GWAS. In the first

dataset (D1), we collect the target phenotype and the

related phenotypes. In the second dataset (D2), the related

phenotypes have been collected for all of the individuals

but the target phenotype has not been collected. These da-

tasets are used to predict the uncollected target phenotype

in the second dataset (D2) by leveraging the correlation

structure between the additional phenotypes and the

target phenotype. The first dataset (D1) is used to approxi-

mate this correlation structure. GWAS is performed after

imputing the target phenotype to discover genetic variants

that are significantly associated with the imputed target

phenotype.

This framework allows for the estimation of the relative

power of imputation compared to the power if the pheno-

type was collected in the sample. Intuitively, the power

loss depends on how close the imputed phenotypes are

to the true phenotypes. The correlation between the

imputed and true phenotypes is defined as rimp, which

can be estimated from the first dataset. This provides an
The
idea of how well the imputation will perform in the target

dataset. Under some additional assumptions, which we

refer to as the noisy measurement model (NMM), the po-

wer in the imputed study with n individuals is equivalent

to the power of a complete study where r2impn individuals

are collected (see Material and Methods for the detailed

derivation). The number of individuals that contribute to-

ward the power of a statistical test for a phenotype is

defined as the effective number of individuals. For

example, we can impute triglyceride (TG) levels in the

NFBC dataset13 using high-density lipoproteins (HDL),

low-density lipoproteins (LDL), and systolic blood pressure

(SBP) with a correlation of 0.5. As a result, in a study where

HDL, LDL, and SBP were collected for 8,000 individuals,

the power of GWAS on the imputed TG is equivalent to

performing GWAS in 2,000 individuals where TG has

been collected.

Phenotype Imputation Controls Type I Error

We simulated datasets for multiple phenotypes under the

null model where the variant we are testing has no effect

(effect size of zero) toward the target phenotype. We

computed the type I error under five different significance

thresholds: 0.05, 0.01, 0.005, 5 3 10�6, and 5 3 10�8. We

generated 100,000,000 simulated datasets that consist of

1,000 individuals. The type I error rates for our imputation

method were 0.049, 0.0099, 0.00489, 4.90 3 10�6, and

4.89 3 10�8 for the significance thresholds of 0.05, 0.01,

0.005, 5 3 10�6, and 5 3 10�8, respectively. This indicates

that the type I error is correctly controlled in our imputa-

tion method. The Northern Finland Birth Cohort data-

set13 was used to show that the type I error is controlled

(see Figure S1). We plot the Q-Q plot of the Z-score for

the imputed triglyceride (TG) phenotype from the Finland

dataset. There is no inflation in the Q-Qplot as shown in

Figure S1.

Phenotype Imputation on Northern Finland Birth

Cohort

The Northern Finland Birth Cohort (NFBC) dataset13 was

used to assess the performance of our method. The NFBC

dataset consists of 10 phenotypes collected from 5,327 in-

dividuals. The 10 phenotypes are triglycerides (TG), high-

density lipoproteins (HDL), low-density lipoproteins

(LDL), glucose (GLU), insulin (INS), body mass index

(BMI), C-reactive protein (CRP) as a measure of inflamma-

tion, systolic blood pressure (SBP), diastolic blood pressure

(DBP), and height. The genotype data consists of 331,476

SNPs. Figure 1 shows the pairwise correlations between

each pair of phenotypes. The correlation coefficients be-

tween the phenotypes in this data are between 0.01 and

0.62. SBP and DBP are the two phenotypes that show the

highest correlation.

We considered the possibility of imputing each of these

ten phenotypes using the other nine phenotypes. First, the

corresponding value of rimp was computed (Table S1). In

order to evaluate our method, we are interested in the
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Table 1. Comparison between the Association Test on the Real Test Data for TG, BMI, and SBP Phenotypes and the Imputed Test Data in
the NFBC Data

Phenotype rsID

Real Test Dataa Imputed Test Data
jZimp - rimp *
Zreal jb se(b) Z-Score (Zreal) p value b se(b) Z-Score (Zimp) p Value

TG rs3923037 0.074 0.0149 4.96 7.14 3 10�7 0.0224 0.0083 2.700 0.006 0.17

rs6728178 0.076 0.0149 5.10 3.45 3 10�7 0.0267 0.0083 3.209 0.001 0.24

rs6754295 0.074 0.0149 4.94 7.91 3 10�7 0.0266 0.0083 3.197 0.001 0.32

rs676210 0.0752 0.0149 5.01 5.38 3 10�7 0.0250 0.0083 2.996 0.002 0.084

rs673548 0.0762 0.0149 5.08 3.81 3 10�7 0.02530 0.0083 3.031 0.002 0.08

rs1260326 �0.0807 0.0150 �5.37 8.15 3 10�8 �0.004 0.0084 �0.534 0.59 2.58

rs10096633 0.0819 0.0147 5.55 3.00 3 10�8 0.0191 0.0082 2.324 0.02 0.79

BMI rs987237 �0.074 0.0150 �4.97 6.63 3 10�7 �0.037 0.00929 �4.07 4.62 3 10�5 0.93

rs11759809 �0.074 0.0150 �4.95 7.35 3 10�7 �0.036 0.00931 �3.96 7.43 3 10�5 0.84

SBP rs782586 0.074 0.0149 4.96 7.43 3 10�7 0.036 0.01016 3.50 0.00047 0.37

rs782588 0.074 0.0149 4.94 8.14 3 10�7 0.035 0.01014 3.43 0.00061 0.32

rs782602 0.075 0.0150 5.01 5.53 3 10�7 0.034 0.01016 3.39 0.00071 0.23

rs2627759 0.070 0.0150 4.65 3.44 3 10�6 0.032 0.01016 3.12 0.00183 0.19

rs10486523 �0.073 0.0145 �4.98 6.62 3 10�7 �0.031 0.00999 �3.08 0.00207 0.06

rs9791555 �0.073 0.0145 �4.97 6.79 3 10�7 �0.031 0.00999 �3.07 0.00214 0.06

rs7799346 �0.073 0.0145 �4.98 6.52 3 10�7 �0.030 0.00999 �3.04 0.00235 0.09

rs6976779 0.069 0.0146 4.71 2.59 3 10�6 0.039 0.01000 3.94 0.00008 0.97

rs2846572 �0.067 0.0145 �4.62 3.94 3 10�6 �0.031 0.00998 �3.10 0.00194 0.19

Zimp and Zreal are the test statistics (Z-score) obtained from the imputed and original datasets, respectively. The last column is the difference between the imputed
test statistics and the analytical test statistics.
aThe real test data is obtained from the NFBC data by removing the 500 individuals who are assumed to be missing in our experiment.
scenario where rimp is high and higher than the highest

pairwise correlation. The TG, INS, DBP, BMI, and SBP phe-

notypes satisfied these criteria. INS and DBP do not have

any significant associated variants; therefore, TG, BMI,

and SBP phenotypes were the focus of the evaluation.

For our experiments, we assume that TG, BMI, and SBP

phenotypes were collected for only 500 individuals to be

used as a training dataset to estimate the correlation struc-

ture between phenotypes. The TG, BMI, and SBP pheno-

typic values were masked in the rest of the individuals

and they were used only when the imputation accuracy

was measured. The 500 individuals were used to compute

the correlation structure between the phenotypes. Our

method was used to impute the TG, BMI, and SBP pheno-

types for the other individuals.

The correlation between the imputed phenotype and

the true TG phenotypes was rimp ¼ 0.58. Our estimate of

this correlation from the training data was br imp ¼ 0:58.

This correlation coefficient and the size of the data resulted

in an effective number of ~1,620 (0.582 3 (5,327 � 500) ¼
1,623) individuals. Therefore, we did not expect to see any

significant loci in our imputed data. However, the size

of the data was sufficient to observe an effect in a replica-

tion study. An association analysis was performed, using

EMMAX14 on the imputed phenotypes, along with the
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original TG phenotypes for comparison. Table 1 shows

the estimated effect size (b), standard error of the estimated

effect size (se(b)), Z-scores, and p values. The result in

Table 1 indicates that when EMMAX14 was run on the orig-

inal TG phenotype in the test dataset, then seven loci

passed our significance threshold of 5 3 10�6. When

EMMAX14 was run on the imputed phenotypes for these

seven loci, then most of these loci (six out of seven) passed

the replication significance threshold of at least 0.05.

Therefore, it appears that for most variants, phenotype

imputation power was equivalent to collecting r2impn

individuals. Surprisingly, the test statistic (Z-score) for

the imputed phenotype of all variants, other than

rs1260326, was close to rimp times the test statistic (Z-score)

at the actual variant (Table 1). Two statistical values are

defined as close when the difference between the two

values is less than one standard deviation (SD ¼ 1). This

is exactly the result we expect under NMM.We also expect

that if the assumption holds, the distribution of the statis-

tic on the imputed data minus rimp times the statistic on

the original data (last column of Table 1) over the whole

data will follow a distribution with mean of 0 and variance

of 1� r2imp as described in theMaterial andMethods. In Fig-

ures 2, S3, and S4, we show that this is the case for the

TG, BMI, and SBP phenotypes, respectively. These data



Figure 2. Difference between the Imputed Marginal Statistics
and Analytical Marginal Statistics for TG Phenotype
Imputed marginal statistics are obtained from the association be-
tween the genotype and the imputed phenotype. Analytical mar-
ginal statistics are equal to themarginal statistics computed on the
true target phenotype scaled by rimp. The blue curve is the normal
distribution with a mean of 0 and a variance of 1 � r2imp. This his-
togram indicates that the difference follows a normal distribution
(mean 0 and variance 1 � r2imp). Thus, for most null variants the
NMM assumption holds.
demonstrate that although NMM is a simple model, NMM

describes these datasets effectively. These results also show

that performing a GWAS on the imputed phenotype has

enough power to identify most of the associated loci that

are significant when it is performed on the original

phenotype.

A further investigation was performed on rs1260326,

whose imputed Z-score was not close to the expected

value. Table S2 shows the EMMAX14 results for

rs1260326 on all of the phenotypes in the NFBC data.

We observe that in the original data this SNP is significant

only for the TG phenotype. Thus, the effect sizes of this

SNP for multiple phenotypes are not well modeled by the

overall phenotypic correlation. Therefore, our method,

and any other approaches that use proxy phenotypes,

will have limited performance in detecting such a locus.

Phenotype Imputation on Hybrid Mouse Diversity

Panel

Our method was also applied to the Hybrid Mouse Diver-

sity Panel (HMDP) collected in the Bennett et al. study,39

which consisted of 25 phenotypes, 894 animals, and 98

strains. We imputed body fat (BF) mass, which we consid-

ered to be the target phenotype, by using metabolic phe-

notypes (HDL, TG, TC, UC, FFA, and GLU) as the related

phenotypes. The BF phenotype was measured by nuclear

magnetic resonance (NMR). It was assumed that the BF

phenotype was collected for only 200 animals, which

was used as a training dataset to compute the pairwise cor-
The
relations (see Figure S6). The correlation between the

imputed phenotype and the true BF phenotype was

rimp ¼ 0.4. We performed experiments similar to those per-

formed on the TG phenotype for the NFBC dataset. Table 2

indicates the significant SNPs, which passed our significant

threshold of 0.05 for both imputed and real test datasets.

These results are similar to the NFBC dataset. For all of

the variants, the test statistic (Z-score) for the imputed

phenotype is close to rimp times the test statistic (Z-score)

at the actual variant (Table 2, last column).

Evaluating Imputation Power by Simulation

We evaluated the power of phenotype imputation through

simulations. We removed the phenotype of interest from

the dataset and applied phenotype imputation to predict

its value andmeasure the corresponding association power

after imputation. In order to robustly measure this power,

we randomized the individuals from whom we removed

the phenotype values.

Specifically, we performed the following simulation pro-

cedure. A locus that had a significant association was

considered. First, we computed the number of individuals

that were needed to remove their phenotypic values to

obtain a statistical power of 50% for that locus. Let k indi-

cate the number of individuals obtained from this step.

The second step required random selection of k individuals

and consideration of the phenotypic values for these k in-

dividuals that were missing. Our imputation model was

used to impute the phenotypic values of these k individ-

uals. An association test on the complete dataset was per-

formed. The second step was repeated 10,000 times in

order to compute the statistical power. The statistical

power was computed as the number of times that the

computed association statistic value was significant (with

p< 10�6). A power increase greater than 50%was expected

if the imputation was working; therefore, it was used as the

reference for statistical power before imputation. The value

of kwas computed by randomly removing phenotypes of k

individuals for 10,000 simulations. The value of k was

checked by determining whether the number of simula-

tions, where the association statistics is significant (with

p < 10�6), equaled 5,000 (50% of total simulations that

corresponded to a statistical power of 50%). The TG,

BMI, and SBP phenotypes from the NFBC data were used

to perform the power simulation. The power gained by

imputing the missing phenotype was 8%–33% (Table 3).

The Material and Methods section provides an optimal

weight for combining imputed and observed summary sta-

tistics in a fixed effect meta-analysis. This process is bene-

ficial when we have access to the summary statistics. The

simulation process described above was used. The k indi-

viduals were randomly selected to mask them as individ-

uals with missing phenotypes. The summary statistics (sc)

were computed for individuals whose phenotypic values

were observed. The missing phenotypes were imputed

and the summary statistics ðbsmÞ were computed for indi-

viduals whose phenotypic values were missing. There
American Journal of Human Genetics 99, 89–103, July 7, 2016 97



Table 2. Comparison between the Association Test for BF Phenotype on the Real Test Data and the Imputed Test Data in the HMDP

rsID

Real Test Data Imputed Test Data

jZimp - 0.4 * Zreal jb se(b) Z-Score (Zreal) p Value b se(b) Z-score (Zimp) p Value

rs38946050 �0.247 0.05887 �4.200 3.04 3 10�5 �0.093 0.03220 �2.891 0.003 1.211

rs37558901 �0.163 0.03803 �4.286 2.09 3 10�5 �0.051 0.0209 �2.448 0.01 0.733

rs27178379 �0.185 0.04433 �4.176 3.36 3 10�5 �0.055 0.02435 �2.275 0.02 0.604

rs50810977 �0.163 0.03803 �4.286 2.09 3 10�5 �0.051 0.0209 �2.448 0.01 0.733

rs51148868 �0.185 0.04433 �4.176 3.36 3 10�5 �0.055 0.02435 �2.275 0.02 0.604

rs32339557 �0.163 0.03803 �4.286 2.09 3 10�5 �0.051 0.02093 �2.448 0.01 0.733

rs51646366 �0.163 0.03803 �4.286 2.09 3 10�5 �0.051 0.02093 �2.448 0.01 0.733

rs31560659 �0.163 0.03803 �4.286 2.09 3 10�5 �0.051 0.02093 �2.448 0.01 0.733

rs50923350 �0.163 0.03803 �4.286 2.09 3 10�5 �0.051 0.02093 �2.448 0.01 0.733

rs37193394 �0.205 0.04742 �4.331 1.72 3 10�5 �0.056 0.02599 �2.161 0.03 0.428

rs26890141 �0.185 0.04433 �4.1769 3.36 3 10�5 �0.055 0.02435 �2.275 0.02 0.604

rs46913800 �0.185 0.04433 �4.1769 3.36 3 10�5 �0.055 0.02435 �2.275 0.02 0.604

rs38214662 �0.163 0.03803 �4.2867 2.09 3 10�5 �0.051 0.02093 �2.448 0.01 0.733

rs47384543 �0.185 0.04433 �4.1769 3.36 3 10�5 �0.055 0.02435 �2.275 0.02 0.604

rs51585751 �0.163 0.03803 �4.2867 2.09 3 10�5 �0.051 0.02093 �2.448 0.01 0.733

rs29268223 �0.185 0.04433 �4.1769 3.36 3 10�5 �0.055 0.02435 �2.275 0.02 0.604
were two options for combining these statistics. The first

option uses Equation 17 to combine the computed sum-

mary statistics in an optimal way. This option is referred

to as imputation-based fixed-effect meta-analysis. The sec-

ond option applies fixed-effect meta-analysis with typical

fixed-effect meta-analysis weights. In this case, we use

wc ¼ ffiffiffiffiffi
nc

p
and wm ¼ ffiffiffiffiffiffi

nm
p

. This option is called general

fixed-effect meta-analysis. We lost power when we used

the second option where the weights were not optimal

(see Table 4). The first option, which is optimal, was

compared to the previous simulations, where the imputed

and observed phenotypic values were combined to

compute the summary statistics. The data showed a small

difference between them. We used the TG phenotype

from the NFBC dataset for these experiments.

The statistical power of imputation depends on rimp,

which is the correlation between the imputed and true

phenotype (see Figure 3). We considered imputing the

TG phenotype using HDL, LDL, CRP, and GLU pheno-

types. There were 24 � 1 ¼ 15 possible combinations for

these four phenotypes to impute the TG phenotype

(excluding one combination that refers to a case where

none of the four phenotypes are used for imputation).

The rimp and the statistical power for a given variant for

each combination of phenotypes was computed. The black

circle in Figure 3 indicates 1 of the 15 possible combina-

tions for imputing TG phenotype. The x axis is the

computed rimp for a given combination of phenotypes,

and the y axis is the computed statistical power. The

red curve indicates a second order polynomial that is
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fitted to the black circles. We observe that the statistical

power increases as we increase the value of rimp (see

Figure 3). Two factors increase rimp. The first factor is

the number of phenotypes that satisfies the NMM assump-

tion. As we use more phenotypes that satisfy the NMM

assumption in our imputation method, we can increase

rimp that result in increases of power. The second factor is

the correlation between phenotypes that are used to

impute target phenotype. As we use more correlated phe-

notypes, we can increase rimp that result in increases of

power.

Utilizing Simulation Data to Validate Our Model

In theMaterial andMethods section, we show that the rimp,

which is the correlation between imputed and true pheno-

type, is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
:[[S

�1
:[ r:[[

q
. One of the phenotypes was

imputed by utilizing any combination of the remaining

nine phenotypes. There are 29 � 1 possible combinations

for these nine phenotypes to impute the desired pheno-

type in the NFBC dataset. The computed difference be-

tween rimp and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT
:[[S

�1
:[ r:[[

q
is small (see Figure S5). The

rimp was computed as a correlation between the imputed

and true phenotypes. This experiment was performed for

all the nine phenotypes (TG, HDL, LDL, BMI, CRP, GLU,

INS, SBP, and DBP) in the NFBC dataset.

Next, the difference between the computed association

statistics for imputed phenotype and the analytical associ-

ation statistics were obtained from Equation 14. We simu-

lated phenotypes for 1,000, 5,000, and 10,000 individuals

and we considered three, four, five, and six phenotypes in



Table 3. Measuring Power of Imputation by Simulation in the
NFBC Data

Phenotype rsID

Power
after
Imputation

Power
before
Imputation

Absolute
Power
Gain

TG rs673548 83.59% 50% 33.59%

rs10096633 62.16% 50% 12.16%

rs3923037 63.74% 50% 13.74%

rs6728178 80.97% 50% 30.97%

rs6754295 76.40% 50% 26.40%

rs676210 82.16% 50% 32.16%

BMI rs987237 63.12% 50% 13.12%

rs11759809 61.33% 50% 11.33%

SBP rs782586 82.52% 50% 32.52%

rs782588 81.72% 50% 31.72%

rs782602 81.99% 50% 31.99%

rs2627759 74.05% 50% 24.05%

rs9791555 58.77% 50% 8.77%

rs7799346 58.63% 50% 8.63%

Table 4. The Optimal Meta-analysis Strategy to Combine
Summary Statistics for Imputed and Observed Phenotype Achieves
Maximum Power

rsID

Imputation-Based
Fixed-effect Meta-
analysis Power

General Fixed-Effect
Meta-analysis Power

rs673548 83.56% 82.30%

rs10096633 62.14% 45%

rs3923037 63.65% 60.86%

rs6728178 80.96% 80.00%

rs6754295 75.49% 74.31%

rs676210 82.01% 80.85%

Imputation-based fixed-effect meta-analysis uses the optimal weights that are
shown in Equation 17. General fixed-effect meta-analysis uses the typical fixed-
effect meta-analysis weights where the weight for each study is the square root
of the number of samples in the study.
each simulation. Multi-phenotypes were simulated utiliz-

ing the matrix-variate, as previous reported.15,34–36 We

run each of the simulations for 10,000 times and our result

is the average of 10,000 runs (Table S3).
Discussion

We propose a method for resolving the problem of pheno-

type imputation. The primary advantage of our framework

is that it increases the power of GWASs on phenotypes that

are difficult to collect. Analytical power computation is

provided that allows investigators to determine the benefit

of the imputation for a given dataset prospectively.

Another advantage of this method is that it allows the

use of summary statistics when the raw genotypes are

not available.

Ourmodel assumes that the phenotypes follow a normal

distribution. This assumption is widely accepted in the

GWAS community.14,15,20 When the phenotypes are not

normal, one possible solution is to transform the pheno-

types to follow a normal. We applied inverse normal

transformation to the data, a procedure that is heavily

used in many studies.40–42 We verified that when all of

the phenotypes in the NFBC data were transformed, the

phenotypes as a set follow a multivariate normal distribu-

tion (see Figure S2). Another possible way to deal with non-

normal phenotypes is to use the weighted combination of

statistics approach. Asymptotically, the multivariate cen-

tral limit theorem applies if the datasets are large enough

and the statistics themselves will follow a multivariate

normal distribution. Thus, using a weighted combination

of Z-scores will control the type I error, but its optimal
The
properties might not be guaranteed for non-normal

phenotypes.

Our framework is closely related to the noisy measure-

ment model (NMM) in that both the power calculation

and the connection to weighted combination of statistics

are based on NMM. In Material and Methods, we showed

that we can assume a more complex polygenic model.

NMM is equivalent to a polygenic model where we assume

that the genetic correlation is the same as the environ-

mental correlation. We also developed a weighted combi-

nation of statistics approach for situations where this is

not the case; it is optimized for the polygenic model.

This approach might show a better performance if we

have an accurate estimate of genetic and environmental

correlations. However, estimating genetic correlations us-

ing SNP data often requires thousands of individuals. On

the other hand, the phenotypic correlations can be accu-

rately measured relatively easily from a much smaller set

of individuals. Therefore, we expect that our standard solu-

tion based on phenotypic correlation and NMM will be a

practical solution for situations where the size of the com-

plete dataset is small. Moreover, our analysis is based on

real data, which shows that NMM is a reasonable model

for most loci that we evaluated.

An implicit assumption of our approach is that we

expect that we can borrow information of a target pheno-

type from the proxy phenotypes. We assume that there

will be pleiotropy between phenotypes that are reflected

in correlations. If this is not the case, such as the TG-asso-

ciated locus (rs1260326), then the power to detect such a

locus using other phenotypes is considerably limited.

Note that this is not the limitation of only our method,

but can be a limitation of any possible approaches that

depend on proxy phenotypes. Nevertheless, our NFBC

analysis shows that such a situation is relatively rare (one

out of seven loci) compared to the situations where our

method was effective.

It is worth mentioning that phenotype imputation has

some similarities to phenotype prediction. In phenotype
American Journal of Human Genetics 99, 89–103, July 7, 2016 99
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Figure 3. An Increase of rimp Increases
the Statistical Power
The x axis is the rimp and the y axis is
computed power. Shown are the effect of
rimp on the power of imputing the TG
phenotype for rs6728178 (A), rs673548
(B), rs6754295 (C), and rs676210 (D). The
TG phenotype in the NFBC data was
imputed using HDL, LDL, CRP, and GLU
phenotypes. The black circle indicates the
rimp and the statistical power for a combi-
nation of four phenotypes to impute TG
for one variant. The red curve indicates a
second order polynomial that is fitted to
the black circles.
prediction, one typically predicts phenotypes based on

available genetic information. One of the widely used

methods for phenotype prediction is BLUP (best linear un-

biased prediction).43 Phenotype prediction is an active

research area, and various approaches have been proposed

to solve this problem efficiently.44,45 The main difference

between phenotype prediction and phenotype imputation

lies in the main goal of the approaches. The main goal of

phenotype prediction is to have a method that predicts

the phenotypic values as close as possible to the true value

using the genetic data and possibly using other pheno-

types. However, in phenotype imputation, the goal is to

impute the phenotypic values using other phenotypes

such that we can recover the associated signals if we have

collected the imputed phenotype. Therefore, we cannot

use the genetic data for phenotype imputation. If the ge-

netic data in our imputation are used, we would not be

able to perform genetic association, because the genetic

data would be used twice (once in imputation and once

again in the GWAS).

Phenotype imputation is analogous to genotype impu-

tation in several ways.46–50 Genotype imputation involves

imputing the missing genotypes. As in phenotype

imputation, if we use one tagged variant in the geno-

type imputation to impute the missing variant, we

lack sufficient power when we perform a GWAS on

the imputed genotype. However, if we use a panel of

reference individuals and multiple variants, we can

achieve higher power. This is similar to our phenotype

imputation where utilization of multiple phenotypes
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will achieve higher power than only

one phenotype. These similarities

are the reasons we use the name

‘‘phenotype imputation’’ for this

problem.

Our method controls type I errors

even in situations where there are sys-

tematic differences between the refer-

ence (first dataset) and target (second

dataset) datasets. Power will be

affected, but our method will not

report false positives.
We acknowledge the fact that more sophisticated ma-

chine learning can be utilized, including techniques such

as support vector machines (SVM),51 LASSO,38 Elastic-

net,52 and supervised PCA53 to solve the phenotype

imputation problem and improve the imputation power.

Moreover, these methods do not make any assumption

on the distribution of collected phenotypes. However,

these methods are designed for general missing data prob-

lems and do not utilize the genetic data. A recent multiple

imputation method54 was proposed that incorporates the

genetic similarity (kinship) between individuals to perform

phenotype imputation. This method performs better than

generalized machine learning methods described above.

However, all of these methods require access to individ-

uals’ raw data, which is not possible in most cases. One

the main advantages of our method is that we can perform

imputation using available summary statistics. In addition,

we provide an analytical power calculation for our

method, although performing analytical power computa-

tion is not easy for other methods.

Our approach allows us to know the exact distribu-

tion of the imputed phenotype due to our parametric

assumptions. We can directly use the mean value of this

distribution as the imputed value. Furthermore, we utilize

the variance of the missing phenotype in our analysis of

the statistical power. If we use a more sophisticated ma-

chine learning method for the imputation, as mentioned

above, then we can use multiple imputation tech-

niques8,55 to obtain the confidence intervals for the

imputation.



Appendix A. Phenotype Imputation for Cases

Where Different Subsets of Phenotypes Are

Missing

TheMaterial and Methods section explains the method we

use when the target phenotype is the only missing pheno-

type. Unfortunately, if the number of related phenotypes is

large, then there are many individuals where one or more

phenotypic values are missing. Let c indicate a vector of

size [� 1 where each element of the vector has value of 0

or 1. Vector c indicates which phenotypes are missing,

excluding the target phenotype. The ith element of c is

one for the cases where the ith phenotype is missing. We

refer to c as one configuration of missing phenotypes in

the second dataset. If we have [� 1 phenotypes, then we

have at most 2[�1 such configurations. Let C indicate the

set of all possible configurations, C ¼ fc1; c2;/c2[�1g. Let
Yð2Þ

ci
indicate a new partition of the second dataset to a

set of individuals which miss exactly the phenotypes de-

noted by configuration ci. We can easily extend our

method to impute the target phenotype for those individ-

uals, who belong to configuration ci by removing the phe-

notypes that are missing for these individuals. Thus, S:[
and r:[[ are computed in a manner similar to the methods

as mentioned in previous section, while we exclude the

phenotypes that are missing for these individuals.

We apply Equations 7 and 14 to compute the imputed

target phenotype and the imputed marginal statistics,

respectively, for only those individuals utilizing the

observed phenotypes. It is possible to have up to 2[�1

different configurations and up to 2[�1 different marginal

statistics for each configuration. Let bsci indicate the

imputed marginal statistics for the configuration ci.

Then, we compute the total marginal statistics by applying

the fixed-effect meta-analysis as shown in previous sec-

tion. Thus, we have:

bs[ ¼ w1bsc1 þ w2bsc2 þ/þ w2[�1bsc
2[�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1 þ w2

2/w2
2[�1

q (Equation A1)

where wi is the optimal weight for the marginal statistics

for the configuration ci. This is proportional to the correla-

tion between the imputed target phenotypic values and

the true uncollected phenotypic values for all the individ-

uals in configuration ci.
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