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Boosting the Power
of the Sequence Kernel Association Test
by Properly Estimating Its Null Distribution

Kai Wang1,*

The sequence kernel association test (SKAT) is probably the most popular statistical test used in rare-variant association studies. Its null

distribution involves unknown parameters that need to be estimated. The current estimationmethod has a valid type I error rate, but the

power is compromised given that all subjects are used for estimation. I have developed an estimation method that uses only control

subjects. Named SKATþ, this method uses the same test statistic as SKAT but differs in the way the null distribution is estimated. Exten-

sive simulation studies and applications to data from the Genetic Analysis Workshop 17 and the Ocular Hypertension Treatment Study

demonstrated that SKATþ has superior power over SKAT while maintaining control over the type I error rate. This method is applicable

to extensions of SKAT in the literature.
Introduction

Since the proliferation of DNA microarray technology

about a decade ago, genome-wide association studies

(GWASs) have successfully discovered many genetic vari-

ants associated with numerous human diseases and

traits.1 However, these identified variants explain only a

small fraction of the overall heritability for most complex

traits.2–5 Because DNA microarray technology targets

only common SNPs, it is possible that the ‘‘missing herita-

bility’’ is due to variants that are rare. The rapid develop-

ment of next-generation sequencing technology provides

a great opportunity for studying rare variants.

Because a single SNP can provide only limited power, it is

important to simultaneously leverage multiple SNPs in a

gene or a region in rare-variant association studies. One

approach is to test for the cumulative effect of rare vari-

ants.6–10 Such burden tests are most powerful when the

effects of all variants are in the same direction. When

some variants are protective but others are deleterious,

this approach is no longer optimal.

An alternative approach is to test for the cumulative

quadratic effect of rare variants. Examples include the

C-alpha test11 and the sequence kernel association test

(SKAT).12 SKAT is a score-based variance-component test

and is computationally efficient. It includes the C-alpha

test as a special case. It has a solid theoretical founda-

tion.13,14 It can handle both dichotomous traits and contin-

uous traits and is able to control for covariates. SKAT has

been generalized inmany ways for the purposes of incorpo-

ratingburden tests,15 conductingmeta-analysis,16 analyzing

extremecontinuous traits17 andsurvivaloutcomes,18–20 per-

forming family-basedassociation tests,21 and studyinggene-

gene and gene-environmental interactions.22,23

One advantage of SKAT is that the form of its limiting

distribution is known. It is a linear combination of a
1Department of Biostatistics, College of Public Health, University of Iowa, Iow

*Correspondence: kai-wang@uiowa.edu

http://dx.doi.org/10.1016/j.ajhg.2016.05.011.

104 The American Journal of Human Genetics 99, 104–114, July 7, 20

� 2016 American Society of Human Genetics.
certain number of independent and identically dis-

tributed random variables, each of which follows a chi-

square distribution with 1 degree of freedom (df).

Although these combination coefficients are unknown,

once they are estimated, one is able to compute the theo-

retical p value right away24,25 without using computa-

tion-intensive techniques such as permutation. The

focus of this report concerns ways to estimate these

coefficients.

The current practice used by SKAT is to use all subjects in

estimating these coefficients. However, as I will show,

although the type I error rate is maintained, the power of

SKAT is compromised in such a practice. Recognizing this

fact, I propose a general approach to estimating these

coefficients by using only control subjects. I demonstrate

how this approach can be applied to dichotomous traits

with and without covariates, as well as continuous

traits. Its performance is assessed by extensive simulation

studies. I further illustrate the utility of this method by

applying it to data from the Genetic Analysis Workshop

17 (GAW17)26 and the Ocular Hypertension Treatment

Study (OHTS).27
Material and Methods

Let m be the number of SNPs in a candidate region or a pathway.

The genotype score of subject i at SNP j is denoted by gij, which

takes value 0, 1, or 2, the number of copies of the minor allele.

The genotypes of all subjects can be summarized by an n 3 m

matrix G ¼ (gij), where n is the number of subjects.
Case-Control Data with No Covariates
Let n1 be the number of case subjects and n0 be the number of con-

trol subjects. The total number of subjects is n ¼ n1 þ n0. Pheno-

types are represented by an n 3 1 vector y, whose elements are

equal to 1 for case subjects and 0 for control subjects. Define
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bp ¼ n1=n as the proportion of case subjects. The most popular

version of the SKAT statistic is the one with linear kernel12 and

has the following form:

SKAT ¼ ðy� bp1ÞtGGtðy� bp1Þ:
When none of the m SNPs is associated with the case-control sta-

tus (i.e., the null hypothesis), the distribution of SKAT can be

approximated by that of
Pn

k¼1lkc
2
k;1, where flkgk¼1;2;.;n are eigen-

values of the n 3 n matrix P1=2GGtP1=2, which has

P ¼ bpð1� bpÞðI� n�111t Þ, an n3 nmatrix, and fc2
k;1gk¼1;2;.;n as in-

dependent 1-df chi-square-distributed random variables.12 Here,

I is an n 3 n identity matrix, and 1 is an n 3 1 vector of values

of 1. The rank of matrix P1=2GGtP1=2 is min {m, n}. Because the

non-zero eigenvalues flkgk¼1;2;.;n are the same as the non-zero ei-

genvalues fromGtPG, the distribution of
Pn

k¼1lkc
2
k;1 is completely

determined by the eigenvalues of GtPG. Note that the dimension

of GtPG, which is m 3 m, is smaller than that of P1=2GGtP1=2 in

the usual case of m < n. It is computationally more convenient

to use GtPG.

Define the sample variance matrix of G as S. We have

S ¼ 1

n� 1
Gt

�
I� n�111t

�
G

¼ 1

ðn� 1Þbpð1� bpÞGtPG:

That is, GtPG ¼ ðn� 1Þbpð1� bpÞS. The matrix S is an estimate

of the underlying variance matrix of m SNPs when the null

hypothesis of no association is true. When none of the SNPs

is associated with the phenotype (the null hypothesis), it

makes sense to use all subjects to compute S for the null dis-

tribution because none of the subjects carries a variant, and all

of them are expected to share a common variance of genotype

scores. However, when some SNPs are associated with the pheno-

type, using all subjects is no longer appropriate because case and

control subjects are expected to have different mean SNP scores

at these SNPs. Their variance matrices of the genotype scores

are expected to be different as well. In this situation, a reasonable

estimation of the null variance matrix of the m SNPs is the sam-

ple variance matrix of the genotypes scores for the control

subjects.

I propose the following method for approximating the null dis-

tribution of SKAT. Let S0 be the sample variance matrix of the ge-

notype scores on the m SNPs among the n0 control subjects:

S0 ¼ 1

n0 � 1
Gt

0

�
I0 � n�1

0 101
t
0

�
G0;

where G0 is an n0 3 m matrix of genotype scores of control sub-

jects, I0 is an n0 3 n0 identity matrix, and 10 is an n0 3 1 vector

of values of 1. Let f~lkgk¼1;2;.;n0
be the eigenvalues of matrix

ðn� 1Þbpð1� bpÞS0. The null distribution of the SKAT statistic is

approximated by
Pm

k¼1
~lkc

2
k;1 provided that n0 > m. I call this

method SKATþ.
Apparently, when none of the SNPs is associated with

the phenotype, S0 and S converge to the same variance

matrix as n0 and n get large. That is, using either S0 or S will

give a valid type I error rate. However, when the null hypothesis

is not true, S0 and S no longer converge to the same variance ma-

trix. The trace of the limiting matrix of S is larger than that of S0.

Using S instead of S0 tends to get a distribution with larger vari-
The A
ance and a larger p value and hence a less powerful testing

procedure.
Case-Control Data with Covariates
Let xi be a p3 1 vector of the values of p covariates for subject i. To

remove their confounding effect, the following logistic regression

is fit first:

logit Pr
�
yi ¼ 1

� ¼ a0 þ atxi:

Let bpi be the estimated probability of yi ¼ 1:

bpi ¼ expfba0 þ batxig
1þ expfba0 þ batxig

;

where ba0 and ba are estimates of a0 and a, respectively. Let

bp ¼ ðbp1; bp2;.; bpnÞt . The SKAT12 statistic is now defined by

SKAT ¼ ðy� bpÞtGGtðy� bpÞ:
When the sample size is large enough, the distribution of SKATcan

be approximated by that of
Pn

k¼1lkc
2
k;1, where flkgk¼1;2;.;n are

eigenvalues of P1=2GGtP1=2 or, equivalently, those of GtPG. Here,

P ¼ V�V ~X
�
~X

t
V ~X

��1 ~X
t
V;

which has ~X ¼ ½1 X�, an n 3 (p þ 1) matrix, and

V ¼ diagðbp1ð1� bp1Þ; bp2ð1� bp2Þ;.; bpnð1� bpnÞÞ:

Define S as

S ¼ 1

n� p� 1
GtPG:

S is the variance matrix of the residuals of the projection ofV1=2G

on the linear space spanned by V1=2 ~X, where V1=2 ¼
diagð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp1ð1� bp1Þ

p
;.;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpnð1� bpnÞ
p Þ. Following the same idea as

in the previous subsection, we substitute S with its counterpart

computed with subjects whose value of yi � bpi is low. One decision

we have to make is the threshold for selection. For instance, we

can use those subjects whose yi � bpi value is below the median

or third quartile of fðyi � bpiÞgi¼1;.;n. Another choice is to use con-

trol subjects only. This is equivalent to using 0 as the threshold

given that all control subjects satisfy yi � bpi%0.

Let n0 be the number of such chosen subjects. LetG0,V0, and ~X0

denote the sub-matrices of G, V, and ~X, respectively, correspond-

ing to the selected subjects. Let P0 and S0 be defined as

P0 ¼ V0 �V0
~X0

�
~X

t

0V0
~X0

��1
~X

t

0V0:

and

S0 ¼ 1

n0 � p� 1
Gt

0P0G0;

respectively. Let f~lkgk¼1;2;.;m be the eigenvalues ofmatrix (n� p� 1)

S0. BecauseG
tPG can be expressed asGtPG ¼ ðn� p� 1ÞS, the null

distribution of the SKAT statistic is approximated by
Pm

k¼1
~lkc

2
k;1

when n0 > m. This is because when the null is true, the residuals

fyi � bpigi¼1;.;n are independentof thecovariate-correctedgenotypes.

Hence, S0 and S converge to the same matrix as n0 and n get large.

When there are no covariates, we have ~X ¼ 1 and

P ¼ bpð1� bpÞðI� n�111tÞ, where bp ¼ n1=n. This method reduces

to the method proposed in the previous subsection.
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Continuous Traits
First, we fit the following null linear regression that has covariates

only (that is, no genotype scores are used):

yi ¼ a0 þ atXi þ ei;

where ei � Nð0; s2Þ. Let byi denote the predicted value of yi andby ¼ ðby1; by2;.; bynÞt . The estimates of a0, a, and s2 are denoted

by ba0, ba, and bs2, respectively. The SKAT statistic with linear kernel

is defined as12

SKAT ¼ ðy� byÞtGGtðy� byÞ:
Its asymptotic distribution is

Pn
k¼1lkc

2
k;1, where flkgk¼1;.;n are the

eigenvalues of GtPG, in which P ¼ bs2ðI� ~Xð ~Xt ~XÞ�1 ~X
t Þ and

~X ¼ ½1 X�.
We write the matrix GtPG as GtPG ¼ ðn� p� 1Þbs2S, where

S ¼ 1

n� p� 1
Gt

�
I� ~X

�
~X

t ~X
��1 ~X

t
�
G

denotes the variancematrix of the genotype scores after the effects

of the covariates are removed. Assuming that higher phenotypic

value is positively associated with disease severity, we can choose

subjects whose residual yi � byi is low. Denote the matrices of the

genotypes and the covariates of these selected subjects as G0 and

X0, respectively. Define ~X0 ¼ ½1 X0�. Furthermore, denote their

covariate-corrected genotype-score variance matrix as S0. The

asymptotic distribution of SKAT is then estimated by
Pn

k¼1
~lkc

2
k;1,

where f~lkg are the eigenvalues of ðn� p� 1Þbs2S0. S0 and S

converge to the same matrix under the null given that the resid-

uals fyi � byig are independent of the genotypes, and selection

based on fyi � byig doesn’t bias S0 as an estimate of the underlying

genotype covariance matrix.

A Resampling Procedure
To obtain a resampling p value, we can use the following proce-

dure. Given the n0 selected subjects and their genotype-score ma-
Table 1. Simulated Type I Error Rate for Dichotomous Traits over 1,0

Method

a ¼ 0.05

No. of Neutral Rare Variants

0 4 8 16 32

Without Covariates

SKATþ 0.046 0.040 0.047 0.043 0.04

SKATþ (rs) 0.063 0.046 0.059 0.062 0.04

SKAT 0.050 0.036 0.049 0.049 0.04

SKAT-O 0.041 0.041 0.052 0.052 0.04

aSPU 0.037 0.037 0.047 0.048 0.04

With Covariates

SKATþ 0.050 0.042 0.038 0.051 0.03

SKATþ (rs) 0.062 0.047 0.049 0.066 0.05

SKAT 0.042 0.039 0.044 0.049 0.04

SKAT-O 0.055 0.046 0.054 0.057 0.05

aSPU 0.045 0.046 0.049 0.053 0.05

SKATþ (rs) represents the SKATþ method based on resampling p values.
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trix G0, we randomly select n0 phenotype residuals fyi � bpig
(or fyi � byig for continuous traits). Let ~y0 ¼ y0 � bp0 denote the

vector of selected phenotype residuals. A resampling version of

the SKAT statistic is computed as

n� p� 1

n0 � p� 1
~yt
0

�
I0 � n�1

0 101
t
0

�
G0G

t
0

�
I0 � n�1

0 101
t
0

�
~y0:

Repeat this process the desired number of times. The resampling

p value is computed as the proportion of the resampled

SKAT statistic that is equal to or larger than the observed SKAT

statistic.
Results

Simulation Studies

I simulated dichotomous traits and continuous traits under

various configurations in order to evaluate the perfor-

mance of the proposed SKATþ method. I calculated both

the p value based on the asymptotic distribution and the

resampling p value based on 1,000 resamples. I compared

SKATþwith SKAT, SKAT-O,28 and aSPU,29 a recent compet-

itor to SKAT. The aSPUmethod depends on the best p value

of a number of sums of powered score statistics at each SNP.

For the SKAT method, I used the R package SKAT (version

1.1.2). Small-sample adjustment was turned off, and no

weights were applied to SNPs, although such tricks can

be used in SKATþ as well. For the aSPU method, I down-

loaded (on November 30, 2015) the permutation-based

aSPU R code aSPUperm.R from Dr. Wei Pan’s website.

This aSPU R code works only for dichotomous traits,

although in theory it works for continuous traits as well.

The number of permutations for aSPU is fixed at 1,000.

Under each configuration, the number of simulation
00 Replicates

a ¼ 0.01

No. of Neutral Rare Variants

0 4 8 16 32

0 0.007 0.005 0.013 0.005 0.006

9 0.017 0.012 0.017 0.014 0.013

0 0.007 0.006 0.011 0.004 0.006

5 0.009 0.008 0.010 0.004 0.005

1 0.005 0.007 0.009 0.005 0.005

9 0.004 0.011 0.002 0.012 0.004

0 0.012 0.016 0.010 0.017 0.008

5 0.006 0.008 0.003 0.013 0.008

1 0.006 0.013 0.005 0.012 0.008

1 0.005 0.011 0.007 0.016 0.011
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Figure 1. Simulated Power of Dichoto-
mous Traits over 1,000 Replicates
There are no covariates. Only control sub-
jects were selected for SKATþ.
replications for all methods is fixed at 1,000. Rejection

rates at significance levels 0.05 and 0.01 are reported unless

otherwise noted.

For the assessment of type I error rate and power for

dichotomous traits, I used an R code used previously30

and many other publications coauthored by Dr. Wei

Pan. This R code (simRareSNP.R) was downloaded (on

November 30, 2015) from Dr. Wei Pan’s website. Specif-

ically, there are eight disease-susceptibility variants whose

odds ratios for each additional copy of the minor allele are

pre-specified. For instance, an odds ratio equal to 1 for each

of these variants implies that none of them is associated

with the simulated trait. So, this is a setup used for the

study of type I error rate. The disease probability can be ex-

pressed via the following logistic-regression model:

logit½PrðdiseaseÞ� ¼ b0 þ b1g1 þ.þ b8g8;

where b0 ¼ �logð0:05=0:95Þ corresponds to a background

disease probability of 0.05, and expðb1Þ;.; expðb8Þ are

the odds ratios for the eight disease-susceptibility variants,

respectively. In addition, a varying number of neutral rare

variants whose minor allele frequencies (MAFs) were

randomly chosen from a uniform distribution on interval

(0.001, 0.01) were simulated. All variants were in linkage

equilibrium. A total of 500 case and 500 control subjects

were simulated. A similar simulation setup has also been

used elsewhere.12,31 Only control subjects were used for

the SKATþ method. Simulated type I error rates with
The American Journal of Hum
odds ratios equal to 1 for each of the

eight disease-susceptibility variants

are reported in the first half of Table 1.

They are under control for all four sta-

tistics except that the resampling

p values for SKATþ are slightly liberal

in some situations.

I also considered the case where

there are two covariates, X1 and X2.

The disease probability is determined

by

logit½PrðdiseaseÞ� ¼ b0 þ 0:5 X1

þ 0:5 X2 þ b1g1

þ.þ b8g8;

where X1 follows a standard normal

distribution, and X2 follows a binary

distribution taking value 0 or 1 with

probability 0.5. This way of add-

ing covariates has been used else-

where.12 To accommodate covariates
X1 and X2, I modified Dr. Wei Pan’s R code accordingly.

Subjects whose yi � bp values were not higher than the

third quartile of fðyi � bpÞgi¼1;.;1;000 were selected for the

SKATþ method. Simulated type I error rates are reported

in the second half of Table 1. Again, they are under control

except that the resampling p values for SKATþ are slightly

liberal in some situations.

For the power analysis, I considered three scenarios in

terms of the odds ratios of the eight disease-causing

SNPs. They were (1) ORs ¼ (2, 2, 2, 2, 2, 2, 2, 2), (2)

ORs ¼ (3, 3, 2, 2, 2, 1/2, 1/2, 1/2), and (3) ORs ¼ (3, 1/3,

2, 2, 2, 1/2, 1/2, 1/2). These are typical scenarios used in

the literature.29,30 Scenario 1 mimics the situation where

all causal variants work in the same direction, whereas

the other two allow their directions to be different with

different deleterious/protective ratios. The power is pre-

sented in Figure 1 and Figure 2 for situations without

and with covariates, respectively. The SKATþ method per-

formed apparently better—in some cases much better—

than SKAT across the board. It also performed better than

SKAT-O and aSPU in almost all cases even when ORs ¼
(2, 2, 2, 2, 2, 2, 2, 2), a case in favor of SKAT-O and aSPU

because this is a situation for which they are opti-

mized.28,30

Continuous traits were simulated according to the

following model:12

y ¼ 0:5 X1 þ 0:5 X2 þ b1g1 þ.þ b8g8; (Equation 1)
an Genetics 99, 104–114, July 7, 2016 107



Figure 2. Simulated Power of Dichoto-
mous Traits over 1,000 Replicates
There are two covariates. The third quartile
of fyi � bpigi¼1;.;1;000 was used for selecting
subjects for SKATþ.
where X1 and X2 were generated in the same way as in the

case of dichotomous traits, and g1, ., g8 were genotype

scores at eight causal rare variants. The MAFs of these

causal variants were selected uniformly from the interval

(0.001, 0.01). For the study of type I error rate, b1;.; b8
were set at 0. For the study of power, the magnitude of bj
was equal to j0:2log10ðMAFÞ j , and the signs of these

b values were in one of the following three configurations:

(1) signs ¼ (þ, þ, þ, þ, þ, þ, þ, þ), (2) signs ¼ (þ, þ, þ, þ,

þ, þ, �, �), or (3) signs ¼ (þ, þ, þ, þ, �, �, �, �). Addi-

tional neutral SNPs were simulated with MAFs uniformly

chosen from the interval (0.001, 0.01). Sample size was

1,000, and subjects whose yi � byi values were below the

third quartile of the residuals were selected for SKATþ.
Table 2. Simulated Type I Error Rate for Continuous Traits over 1,000 Replicates

Method

a ¼ 0.05 a ¼ 0.01

No. of Neutral Rare Variants No. of Neutral

0 4 8 16 32 0 4

SKATþ 0.054 0.055 0.052 0.042 0.048 0.009 0.

SKATþ (rs) 0.051 0.058 0.051 0.040 0.056 0.011 0.

SKAT 0.048 0.048 0.045 0.036 0.043 0.008 0.

SKAT-O 0.039 0.049 0.037 0.038 0.043 0.008 0.

Subjects whose yi � byi values were among the lowest 75% were selected for the SKATþmethod. SKATþ (rs) r
p values. The aSPU method was not computed because the R code from its authors doesn’t handle continuo
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That is, 75% were selected. The type

I error rates are presented in Table 2.

All are in line with the nominal levels.

The simulated power is presented in

Figure 3. SKATþ performed better

than SKAT when the ratio of positive

b values to negative b values was 8:0

(configuration 1) or 6:2 (configura-

tion 2). When this ratio was 4:4

(configuration 3), the performance

of SKATþ was almost identical to

that of SKAT. This is because at this

ratio, the simulated trait according

to model 1 is symmetric with respect

to 0. After the effect of covariates is

removed, the sample covariance ma-

trix of the selected subjects is ex-

pected to be the same as that of

the whole sample. Compared with

SKAT-O, SKATþ performed worse

only in configuration 1, a situation
optimized for SKAT-O. In other situations, SKAT-O per-

formed even worse than SKAT.

Application to GAW17 Data

GAW17 provided 200 phenotype datasets26 simulated

with mini-exome genotype data on 697 subjects selected

from the 1000 Genomes Project. There were 24,487 SNPs

in 3,205 genes. Four phenotypes were simulated on the

basis of the genotypes of these subjects. Three of them (de-

noted by Q1, Q2, and Q4) were quantitative, and one was

dichotomous such that the affection status was deter-

mined by Q1, Q2, and Q4 and a latent liability through a

liability threshold model. Q1 was influenced by 39 SNPs

in 9 genes. Q2 was influenced by 72 SNPs in 13 genes.
Rare Variants

8 16 32

010 0.007 0.011 0.006

011 0.008 0.013 0.010

006 0.005 0.009 0.006

008 0.005 0.009 0.006

epresents the SKATþ method based on resampling
us traits.



Figure 3. Simulated Power of Contin-
uous Traits over 1,000 Replicates
There are two covariates. The third quartile
of fyi � byigi¼1;.;1;000 was used for selecting
subjects for SKATþ.
Q4 was not influenced by any of the genotyped SNPs. The

latent liability was influenced by 51 SNPs in 15 genes. As a

result, the dichotomous trait was influenced by 162 geno-

typed SNPs in 36 genes (Q1 and the latent liability shared

one common gene). Age, gender, and smoking status were

confounders to Q1, Q4, and the latent liability, but not to

Q2. I compared the proportion of times SKATþ, SKAT, and
SKAT-O were significant at level 0.05 at each causal gene

across 200 simulated datasets. I focused on the continuous

traits Q1, Q2, and Q4. The following linear null model was

considered:

y ¼ a0 þ a1 ageþ a2 smokeþ a3 gender:

Note that covariates were controlled for although they

were known to have no effect on Q2. Q4 was used here

for confirming that the type I error rate of SKATþwas un-

der control. The effects of the genotyped causal SNPs

were all in the same direction of increasing the contin-

uous traits. Only SNPs whose MAFs were no larger than

1% were used. Genes with only one genotyped SNP

were excluded. Because the majority of the MAFs at

the causal genes were extremely rare at a magnitude of

1 3 10�4, the 95th percentile of the residuals was used

for selecting subjects for SKATþ. The proportion of re-

jecting the null hypothesis at level 0.05 out of the 200

simulated replicates is presented in Table 3. Given that

the power was not high for most causal genes even at

level 5% for all methods, only those genes at which
The American Journal of Hum
the maximum power of the three

statistics was greater than 10% are

presented. It is clear that SKATþ
has higher power than SKAT. Its po-

wer is less than SKAT-O in most situ-

ations. This is very possibly because

the direction of the causal variants

in these genes is simulated to be

the same, a situation SKAT-O is opti-

mized for. The results for trait Q4

suggest that the type I error rates

for all three methods are under con-

trol, especially given that there were

only 200 replicates.

Application to OHTS

Primary open-angle glaucoma (POAG

[MIM: 137760]) is a leading cause of

irreversible blindness. Although a ge-

netic basis has been established for a

substantial fraction of POAG, no risk

alleles of major effect have been iden-
tified.32 The etiology of POAG is likely to be complex.

Because POAG is assessed through quantitative measures

such as central corneal thickness (CCT), intraocular pre-

ssure, and cup-to-disc ratio, one promising research

direction is to map genes underlying these quantitative

measures. Indeed, large-scale GWASs have identified genes

that affect CCT.33–35 Using data from the OHTS,27 I applied

the methods SKATþ, SKAT, and SKAT-O to a gene-based

GWAS of CCT.

OHTS is a multi-center, randomized clinical trial

sponsored by the National Eye Institute. Its goal is to inves-

tigate the efficacy of medical treatment in delaying or pre-

venting the onset of POAG in individuals with elevated

intraocular pressure. A total of 1,636 individuals between

40 and 80 years old were enrolled, and 1,077 of them

were genotyped in a subsequent study. Data for this ge-

netic study are available from dbGaP (study accession

number dbGaP: phs000240.v1.p1). Both genotype data

and baseline phenotype data are available for 1,057 sub-

jects. The vast majority of these subjects are non-Hispanic

white (752) and black (249).

There were 1,051,295 genotyped SNPs and 30,562

autosomal genes. The HGNC gene symbols were ob-

tained with the R/Bioconductor package biomaRt

(version 2.26.1). As in Lee et al.,28 genes that contained

fewer than three SNPs were excluded from further

consideration. This reduced the number of genes to

23,778.
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Table 3. Proportion of Significant Test Results at Level 0.05 out of the 200 Simulated GAW17 Datasets

Gene

Q1 Q2 Q4

SKATþ SKAT SKAT-O SKATþ SKAT SKAT-O SKATþ SKAT SKAT-O

FLT1 (MIM: 165070) 1.000 1.000 1.000 – – – 0.045 0.045 0.035

FLT4 (MIM: 136352) 0.500 0.430 0.570 – – – 0.055 0.065 0.045

HIF1A (MIM: 603348) 0.110 0.100 0.195 – – – 0.070 0.060 0.065

KDR (MIM: 191306) 0.995 0.995 1.000 – – – 0.075 0.065 0.075

BCHE (MIM: 177400) – – – 0.400 0.340 0.410 0.050 0.040 0.055

PDGFD (MIM: 609673) – – – 0.710 0.680 0.715 0.035 0.025 0.035

RARB (MIM: 180220) – – – 0.440 0.420 0.345 0.065 0.055 0.050

SIRT1 (MIM: 604479) – – – 0.625 0.600 0.640 0.080 0.055 0.075

SREBF1 (MIM: 184756) – – – 0.425 0.375 0.670 0.065 0.065 0.075

VLDLR (MIM: 192977) – – – 0.185 0.175 0.180 0.035 0.030 0.040

VNN1 (MIM: 603570) – – – 0.195 0.185 0.150 0.075 0.065 0.085

VWF (MIM: 613160) – – – 0.335 0.300 0.300 0.025 0.030 0.035
Because a thinner CCT increases the risk of POAG,32

subjects with higher CCT measurements were used as

control subjects in calculations of the null distribution

for SKATþ. In particular, two inclusion criteria were

used: the first and second quartiles. CCT measurements

from both eyes were averaged and used as the response,

and age and gender were used as covariates. The analysis

was done on non-Hispanic white samples only, given

that this group is much larger than other ethnic groups.

A scatterplot matrix of the genome-wide gene-based

p values from SKATþ (with two different inclusion

criteria), SKAT, and SKAT-O is shown in Figure 4. SKAT-O

behaved rather differently from the others. The other

three behaved pretty similarly to each other, but they

did differ, especially SKATþ with 50% of the subjects,

which is not surprising. Most importantly, there doesn’t

seem to exist a systematic bias in favor of SKATþ. Those
genes at which at least one of SKATþ, SKAT, and SKAT-O

had a p value less than 0.0001 are listed in Table 4. These

genes warrant further investigation. Unfortunately, they

do not overlap ZNF469 (MIM: 612078), COL5A1 (MIM:

120215), COL8A2 (MIM: 120252), AKAP13 (MIM:

604686), or AVGR8, genes for which association with

CCT has been reported previously.33–35 I also conducted

a simulation study to confirm that the type I error rate of

SKATþ is under control at a much higher level. For

this purpose, genes TRERF1 (MIM: 610322) and IQUB

in Table 4 were arbitrarily selected. A continuous trait

following a standard normal distribution and a dichoto-

mous trait with disease probability 0.3 were each gener-

ated with 5 3 106 replicates. For the continuous trait,

75% of the subjects were used as control subjects. For

the dichotomous trait, all simulated control subjects

were used for the SKATþ method. The expected propor-

tion of control subjects is equal to 1 � 0.3 ¼ 0.7. The
110 The American Journal of Human Genetics 99, 104–114, July 7, 20
type I error rates are presented in Table 5. They are clearly

under control.
Discussion

I have proposed the SKATþ method for gene-based associ-

ation testing. This method uses the same test statistic as

SKAT but estimates the null distribution differently. By us-

ing a properly selected subset of subjects, this estimation

method leads to amore powerful testing procedure. The se-

lection is based on the residuals of the phenotype after

the effect of covariates has been removed. The null distri-

bution depends only on the second moments of the

phenotype and the genotypes controlling for the effect

of covariates. Selection based on phenotype residuals

does not affect the validity of the test but has an effect

on the power.

The current estimation method has a valid type I error

rate, but the power is compromised because the estimated

distribution does not correspond to the desired one when

the null hypothesis is not true. It is contaminated by the

distribution of SKAT under the alternative hypothesis.

Because of this, the proposed SKATþ method is almost

surely destined to be more powerful than SKAT as sample

size increases. No other SKAT competitors can make such

a statement given that they perform better in only certain

situations. To demonstrate this point, I simulated 10,000

datasets from the covariate-free dichotomous-trait model

(Simulation Studies) used in the simulation studies with

ORs ¼ (2, 2, 2, 2, 2, 2, 2, 2) and no neutral SNPs.

The �log10-transformed 10,000 p values for SKATþ were

plotted against SKAT p values transformed in the same

way (Figure 5). The vast majority of the 10,000 p values

from SKATþ were much more significant than those
16



Figure 4. Scatterplots of Genome-wide Gene-Based p Values for the OHTS
SKATþ (0.5) refers to the SKATþ method using 50% of the subjects for its p value calculation. SKATþ (0.75) uses 75% of the subjects.
from SKAT, and almost none of them were apparently

worse.

Selection of subjects for the SKATþ method is critical

for power improvement. For case-control studies without

covariates, the selection seems to be obvious. When

there are covariates or the trait is continuous, the selec-

tion is less so. For the simulation studies, I selected sub-

jects whose trait values were not higher than the third

quartile after the effect of covariates had been removed.

I also tried other thresholds, such as the median and

the 80% quantile. The results are not shown, but they

were consistent with the intuition that SKATþ becomes

more similar to SKAT as more subjects are selected.

Generally, a lower threshold leads to fewer subjects and

less accuracy in p value computation. The larger the sam-

ple size, the lower the threshold one can afford while still

having enough selected subjects for estimating the null
The A
distribution with certain accuracy. SKATþ contains

SKAT as a special case. If small sample size is a concern,

one is recommended to use SKAT instead of SKATþ.
Furthermore, one can use the recently proposed small-

sample method.36 A previous method28 for small-sample

situations ‘‘can overcorrect and lead to inflated type I

error.’’36

A related issue in selecting control subjects is the allele

frequencies of the variants. The rarer they are, the more

sensitive the sample variance matrix of genotype scores is

to the selected control subjects. Hence, a larger number

of control subjects should be used. For anMAF of 1%, there

are on average two copies of the minor allele per 100 sub-

jects. So, 500 subjects would have ten copies of the minor

allele. If the MAFs are rarer, having a more stable sample

variance matrix would require more subjects for the con-

trol group.
merican Journal of Human Genetics 99, 104–114, July 7, 2016 111



Table 4. A Summary of Gene-Based Association p Values with Data from the OHTS

Chromosome Gene SKATþ (0.5) SKATþ (0.75) SKAT SKAT-O

2 HAGLROS 3.525 3 10�5 4.821 3 10�5 5.918 3 10�5 8.619 3 10�5

6 EXOC2 (MIM: 615329) 2.725 3 10�4 3.285 3 10�4 3.327 3 10�4 2.951 3 10�5

TRERF1 (MIM: 610322) 2.976 3 10�5 2.586 3 10�5 3.427 3 10�5 7.390 3 10�5

7 NDUFA5 (MIM: 601677) 1.822 3 10�5 5.848 3 10�5 1.042 3 10�4 1.129 3 10�4

IQUB 1.680 3 10�5 4.322 3 10�5 7.473 3 10�5 8.301 3 10�5

15 MTMR10 (MIM: 208500) 4.767 3 10�3 5.528 3 10�3 5.592 3 10�3 3.536 3 10�5

SNAP23 (MIM: 602534) 3.355 3 10�5 1.217 3 10�4 1.486 3 10�4 1.359 3 10�4

HAUS2 (MIM: 613429) 9.859 3 10�5 1.930 3 10�4 2.581 3 10�4 2.784 3 10�4

MYL12BP1 4.672 3 10�5 1.155 3 10�4 1.693 3 10�4 1.748 3 10�4

16 TXNDC11 7.867 3 10�5 9.746 3 10�5 8.708 3 10�5 9.013 3 10�5

Genes were selected if any statistic had a p value less than 0.0001 in the non-Hispanic white-only sample. SKATþ (0.5) refers to SKATþ method using 50% of the
subjects for its p value calculation. SKATþ (0.75) uses 75% of the subjects.
Note that when there are no covariates, it is possible to

estimate the unknown null-distribution parameters by

using data from a reference database, such as the 1000

Genomes Project or the International HapMap Project.

One can compute the variance matrix for the SNPs

used in the study and use it in place of the matrix S0.

In this way, there is no need to select subjects for the

SKATþ method, but one needs to use an appropriate

matching data sample. When there are covariates, ge-

nerally it is not possible to use a reference database

this way.

Also note that the basic principle behind SKATþ is app-

licable to extensions of SKAT, as mentioned in the Intro-

duction. It can also be generalized to phenotype with a

distribution in the exponential family if the diagonal

matrix V is replaced with a diagonal matrix of proper

estimates of fvarðyiÞgi¼1;.;n.
14

An implementation of the SKATþ method is provided

in the R package iGasso.
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