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PADRE: Pedigree-Aware
Distant-Relationship Estimation

Jeffrey Staples,1 David J. Witherspoon,2 Lynn B. Jorde,2 Deborah A. Nickerson,1 the University of
Washington Center for Mendelian Genomics,1 Jennifer E. Below,3,5,* and Chad D. Huff4,5,*

Accurate estimation of shared ancestry is an important component of many genetic studies; current prediction tools accurately estimate

pairwise genetic relationships up to the ninth degree. Pedigree-aware distant-relationship estimation (PADRE) combines relationship

likelihoods generated by estimation of recent shared ancestry (ERSA) with likelihoods from family networks reconstructed by pedigree

reconstruction and identification of a maximum unrelated set (PRIMUS), improving the power to detect distant relationships between

pedigrees. Using PADRE, we estimated relationships from simulated pedigrees and three extended pedigrees, correctly predicting 20%

more fourth- through ninth-degree simulated relationships than when using ERSA alone. By leveraging pedigree information, PADRE

can even identify genealogical relationships between individuals who are genetically unrelated. For example, although 95% of 13th-de-

gree relatives are genetically unrelated, in simulations, PADRE correctly predicted 50% of 13th-degree relationships to within one degree

of relatedness. The improvement in prediction accuracy was consistent between simulated and actual pedigrees. We also applied PADRE

to the HapMap3 CEU samples and report new cryptic relationships and validation of previously described relationships between fam-

ilies. PADRE greatly expands the range of relationships that can be estimated by using genetic data in pedigrees.
Introduction

Accurate prediction and verification of relationships

among individuals is essential in a variety of genetic

studies. Errors in pedigrees are common1–3 and have

adverse consequences, including biased phasing and fam-

ily-based imputation results, inaccurate identification of

Mendelian errors, and reduction of power to detect link-

age4 or family-based associations. Therefore, ensuring

that the genetic relationships among the DNA samples

match the reported pedigree structure is critical for accu-

rate family-based genetic analysis.5 Detecting cryptic rela-

tionships can be important as well.6 Genetic relationships

identified in population studies can be leveraged for

improved haplotype phase inference, detection of popula-

tion structure, genotype imputation, and study designs

such as identical-by-descent (IBD) mapping and tests to

detect multiple rare and common variants that contribute

to disease.7–13 The identification of relatives also plays an

important role in forensics in criminal investigations,14

identification of victims of mass disaster,15 and discovery

of family history.

With close relationships (first through third degree),

pedigree reconstruction can provide the kinship structure

of the individuals in a genetic dataset.5 However, genetic

datasets often contain relationships that are more distant

than third degree, resulting in sparsely connected pedi-

grees that are unsuitable for reconstruction. Algorithms

that consider IBD segment data, such as ERSA (estimation

of recent shared ancestry),16,17 can accurately predict pair-

wise relationships up to ninth-degree relatives (e.g., fourth
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cousins), but do not reconstruct pedigrees, nor can they

utilize information from known or observed pedigree

structures in the data. Here, we introduce PADRE

(pedigree-aware distant-relationship estimation), which

leverages the pedigree reconstruction of known or cryptic

first- to third-degree relatives by PRIMUS (pedigree recon-

struction and identification of a maximum unrelated

set)5 along with the accurate distant relationship predic-

tions by ERSA.17 PADRE, which has been implemented as

an extension of PRIMUS and ERSA, uses ERSA-generated

relationship likelihoods to identify the highest composite

likelihood connection between family networks recon-

structed by PRIMUS (Figure S1), significantly improving

the accuracy of the predictions and expanding the range

of relationships that can be predicted.
Subjects and Methods

PADRE Algorithm
PADRE combines reconstructed pedigree information with distant

pairwise relationship predictions to identify distant relationships

between pedigrees and requires results from PRIMUS (v.1.8.0)

and ERSA (v.2.1) as input (Figure S1). PRIMUS identifies family-

based networks of individuals within a dataset, where each

family network consists of the set of individuals with a detected

first- through third-degree relationship to at least one other indi-

vidual in the network. When PRIMUS reconstructs a dataset into

family networks (i.e., Net1, Net2,. Netn), each network can be rep-

resented by one or more possible pedigrees that fit the genetic

data, annotated here with subscripts (i.e., Net11, Net12, . and

Net1j). PADRE tests for significant relationships between each
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pair of networks by using the likelihood ratio test in ERSA. This test

compares the null model that two founders in two different net-

works, x and y, are unrelated to the alternative model that the

two individuals are Nth-degree relatives. If a significant relation-

ship is detected between any two founders, PADRE will then iden-

tify the best fitting relationship between the two networks by us-

ing a composite likelihood framework. The significance threshold

is 0.05 by default but can be adjusted for the number of founder-

to-founder relationships tested by application of a Bonferroni

correction with the command-line argument adding ‘‘–PADRE_

multiple_test_correct.’’ For a significant relationship detected be-

tween founders x and y, PADRE calculates the maximum compos-

ite likelihood for each possible Nth-degree relationship between x

and y by multiplying the cross-network pairwise relationship like-

lihoods in ERSA for each pair of pedigrees Net1i and Net2j:

bL1i2jðx; y jNÞ ¼ LNet1i LNet2j

Y
ca˛Net1i

cb˛Net2j

bLabðsab jDabÞ; (Equation 1)

where a and b are individuals in the pedigrees Net1i and Net2j,

respectively,Dab is the degree of relatedness between a and b given

the two pedigrees and that founders x and y are Nth-degree rela-

tives, and sab is a set containing the length of each detected

IBD segment between a and b. bLabðsabjDabÞ is the maximum

likelihood of the observed IBD segments shared by a and b condi-

tioned on the degree of relationship distance Dab specified by N,

Net1i and Net2j. LNet1i and LNet2j are the composite pedigree

likelihoods consisting of the product of the PRIMUS likelihoods

for each pairwise relationship specified by Net1i and Net2j, respec-

tively. When Dab is less than 10, bLab includes two additional esti-

mated parameters compared to the model with no relationship

(relationship distance and number of shared segments condi-

tioned on relationship distance); these likelihoods are calculated

by ERSA.16

Because many 10th- and most 11th-degree human relatives share

no autosomal IBD segments from their most recent common

ancestor,16 models involving relationships more distant than

ninth degree require special consideration. Although such models

also include two additional parameters, the maximum likelihood

estimate for the number of shared genetic segments is typically

0, resulting in a compressed free parameter space. Maximizing

the likelihood of such models without accounting for the reduced
The A
free parameter space over-penalizes such distant relationships. We

address this problem with the following approximation. Given

that two individuals, a and b, are genetic ninth-degree relatives,

the unconditional maximum likelihood of a 10th-degree relation-

ship for individual a and the offspring of individual b is as follows:

with 50% probability, the shared segment is inherited by the

offspring of individual b, and the likelihood is equal to the

ninth-degree relationship likelihood. Otherwise, the likelihood

is equal to the unrelated likelihood. This approximation holds

for relationship distances detectable by PADRE and beyond (see

Figure S2) and leads to the following formula to approximate

the likelihood of 10th-degree and more-distant relationships in

PADRE:

bLabðsab jDab > 9Þ ¼ ð0:5ÞDab�9bLab

�
sab jD0

ab ¼ 9
�

þ
�
1� ð0:5ÞDab�9

�bLabðsab junrelatedÞ;
(Equation 2)

where the effective degrees of freedom is given by:

gðDabÞ ¼
�

2; Dab%9
ð0:5ÞDab�9

; Dab > 9

�
: (Equation 3)

To identify the best fitting model, PADRE calculates the compos-

ite likelihood Akaike information criterion (CL-AIC) for each

possible fourth- through ninth-degree relationship between the

founders of the two family networks via Equation 1.18 Because

each network could have more than one possible pedigree, we

evaluate all pairs of possible pedigrees identified by PRIMUS for

each network and identify the pair of pedigrees that minimizes

the CL-AIC of the two networks. For a given pair of pedigrees

Net1i and Net2j, the CL-AIC is calculated according to Equation 4:

AIC1i2jðx; y jNÞ¼2k1i2jðx; y;NÞ�2lnbL1i2jðx; y jNÞ�lnLNet1i�lnLNet2j ;

(Equation 4)

where k is equal to the effective number of parameters inbL1i2jðx; yjNÞ. The value for k is given by Equation 5:

k1i2jðx; y;NÞ ¼
X

ca˛Net1i

cb˛Net2j

gðDabÞ: (Equation 5)
Figure 1. Pedigree Structure Used to
Simulate Ninth-Degree Pedigrees
100 ninth-degree pedigrees, each with
different genotypes, were generated with
A2 and B2 related as ninth-degree relatives.
The same pedigree structures for samples
A1–A13 and B1–B13 were also used to
generate 100 pedigrees, eachwith different
genotypes, where A2 and B2 were fourth-,
fifth-, sixth-, seventh-, eighth-, and ninth-
degree relatives. The number of ancestral
relatives was adjusted to account for the
different degree of relatedness.
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Figure 2. Comparison of PADRE versus
ERSA Accuracy in Simulated Data by De-
gree of Relationships
(A) The observed accuracy in the pedigree
predictions increases as additional first-
and second-degree relatives are added.
(B) Power of PADRE and ERSA alone to
detect simulated relationships as addi-
tional first- and second-degree relatives
were added to the pedigree. The ERSA re-
sults fluctuate slightly because additional
pairwise estimates are added as more indi-
viduals are included, as described with the
generation of the simulations.
Finally, PADRE evaluates all pairs of possible pedigrees identified

by PRIMUS for each network to identify the model that minimizes

the CL-AIC of the two networks:

AICminðNet1;Net2Þ ¼ min
x˛Net1

y˛Net2

4%N%9

1%i%Net1n

1%j%Net2n

AIC1i2jðx; y jNÞ: (Equation 6)
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For each pair of family networks, PADRE

reports the pair of founders, their degree of

relatedness, and the two pedigrees from

the model specified by the AICmin. In a

separate output file, PADRE provides the

degree of relatedness between each pair

of samples in the model specified by the

AICmin.

PADRE takes, as a command line option,

the maximum degree of relatedness

PRIMUS uses to reconstruct and then

adjusts the range of ERSA predictions to

test all relationships greater than the

maximum degree of relatedness in

PRIMUS. By default, the maximum degree

of relatedness is three, and PADRE thus

considers all fourth- through ninth-degree

relationships in ERSA.

Simulations
We simulated pedigrees to evaluate the ac-

curacy and relative benefit of using PADRE

to detect distant relationships. We used

two identical 13-person, three-generation

pedigree structures and connected a

founder in each pedigree by varying the

number of generations to their recent

common ancestor. Figure 1 illustrates a

simulated pedigree in which founders A2

and B2 are ninth-degree relatives. To test

the full range of predictions beyond the

third degree, we generated versions of the

pedigree in which individuals A2 and B2

are fourth- through ninth-degree relatives.

For each of these versions of simulated

pedigree structures, we created 100

different sets of genotypes by using the
method described in Morrison.19 We randomly selected haplo-

types with ~1 M SNPs from among the unrelated HapMap320

CEU (Utah residents with ancestry from northern and western Eu-

rope from the CEPH collection) samples and assigned them to the

all founders (individuals with red symbols in Figure 1). The unre-

lated set of CEU samples was determined by running ERSA (v.2.1)

on all the HapMap3 CEU samples and then running the

IMUS algorithm within PRIMUS21 to identify the maximum unre-

lated set of individuals. We then used Morrison’s recombination



simulation software to propagate the founder genotypes through

the pedigree. This method simulates recombination events as a

homogeneous Poisson process by using the genetic map provided

with the HapMap3 data, disregarding the centromere. Genotypes

were removed for all individuals not included in either of the

13-person pedigrees. IBD estimates were calculated with PLINK

v.1.922

plink --file
�
data file root name

	
--genome --maf 0:05

--geno 0:1 --out
�
data file root name

	
;

and all simulated pedigrees were reconstructed with PRIMUS

(v.1.8):

run PRIMUS:pl --p
�
data file root name

	
:genome:

We obtained ERSA (v.2.1) results for each simulation as described

below.

To test improvements in relationship predictions by PADRE as

the size and density of genotyped individuals increased, we first

used PRIMUS, ERSA, and PADRE to analyze individuals A6 and

B6 in each simulated pedigree (Figure 1). We repeated the analyses

iteratively, including genotypes of an additional randomly

selected first- or second-degree relative of A6 and B6 in each itera-

tion.We then performed a final analysis using all 13 individuals in

each pedigree (see Figure 1).
Runtime
We evaluated PADRE runtime on a machine with Intel Xeon CPU

E5-2670 v.2 at 2.50 GHz with 14 GB of memory, subtracting the

time needed to load the ERSA likelihood files. The number of com-

parisons is the number of pairwise likelihoods that were looked up

during the PADRE analysis and is the single best estimate of run-

time. Each comparison is conducted at the lowest level of five

nested for loops: (1) for each pair of networks, (2) for each pair of

possiblepedigreeswithin thenetworks, (3) for eachpair of founders

between each of the pedigrees in different networks, (4) for degrees

of relatedness between the fourth and ninth degrees, and (5) for

each pair of non-missing individuals between the two pedigrees.

The variability in the comparisons per second is due to vari-

ability in the other PADRE calculations. PRIMUS reconstruction

was unable to complete for all family networks when it was run

on the European ancestry dataset using third-degree relation-

ships as a cutoff because some family networks resulted in

too many possible pedigree structures consistent with the

genetic dataset. The results of these runtime comparisons are

shown in Table S1.
Extended Pedigree Samples
We analyzed Affymetrix 6.0 SNP microarray data on 169 individ-

uals from three previously described extended pedigrees with

predominantly northern European ancestry.16 The three pedi-

grees were validated as described in Huff et al.,16 are composed

of 24, 30, and 115 genotyped individuals, and included a total

of 7,266 previously described relationships between pairs of

individuals.
HapMap3 CEU Samples
Using 165 CEU individuals from HapMap3 release 220 obtained

from the HapMap website (see Web Resources), we reconstructed

pedigree structures in this dataset with PRIMUS as described below

by using the default settings. We applied a Bonferroni correction
The A
when detecting initial relationships between family networks

identified in PRIMUS of p ¼ 5.5 3 10�6 (0.05/9,074 founder-to-

founder relationships).
Pedigree Reconstruction with PRIMUS
PRIMUS uses genome-wide IBD estimates to identify families and

reconstruct all possible pedigrees that fit the genetic data by using

relationships as distant as third-degree relatives. We used the pre-

PRIMUS IBD pipeline5 to generate genome-wide average IBD esti-

mates between all samples in each pedigree and used PRIMUS

(v.1.8) to reconstruct pedigrees. The command line options used

were ‘‘--file [data_file_root_name] and --genome.’’ Due to the sparse

number of individuals genotyped in the three European ancestry

pedigrees and in many of the simulations which lead to long

runtimes in PRIMUS, we applied a relatedness threshold of second

degree in PRIMUS to both datasets by adding the command line

option ‘‘--degree_rel_cutoff 2.’’ We used the default relatedness

cutoff of third-degree relatives for the HapMap3 CEU dataset.20
Distant Relationships Prediction with ERSA
We applied the IBD detection pipeline described by Glusman

et al.17 by first phasing all genetic data with Beagle (v.3.3.2)11 by

using the phasing pipeline provided on the GERMLINE website

(see Web Resources). We analyzed the phased data in GERMLINE

(v.1.4.0)23 for each chromosome with the following command:

germline --homoz --err het 1 --err hom 2 --map
½data root name chrN�:map --min m 2:5 <
½data root name chrN options�:txt

We analyzed the GERMLINE output files with ERSA (v.2.1) to

calculate the likelihood of each possible pairwise relationship

(from the first through 39th degrees) among all samples in the da-

taset. We controlled for potential false-positive IBD segments by

masking genomic regions from the 1000 Genomes Project24

CEU samples with greater than a 4-fold excess of pairwise IBD

(mask_region_threshold ¼ 4) as previously described:17

ersa --segment files ¼ �
sample data germline:match files

	
--

model output file model likelihoods:txt --output file ¼
ersa results --
confidence level 0:999 --mask common shared regions true --
control files ¼ �

CEU germline:match files
	

Results

To evaluate the improvements in relationship prediction,

we ran PADRE on 600 simulated pedigrees, each with ten

different patterns of genotyped individuals, and compared

the accuracy of the resulting pairwise relationship predic-

tions (see Subjects and Methods). Figure 2A shows that

PADRE and ERSA alone exhibited the same accuracy

when the individuals had no other first- or second-degree

relatives in the pedigree. However, as additional genotyped

individuals were included in the pedigrees, PADRE accu-

rately predicted up to 56% more of the simulated relation-

ships. In addition to higher relationship prediction accu-

racy, Figure 2A demonstrates that PADRE predicted

relationships that are undetectable by methods that

consider only pairwise genetic data. For example, PADRE
merican Journal of Human Genetics 99, 154–162, July 7, 2016 157



Figure 3. PADRE and ERSA Prediction
Accuracy on Simulated Pedigrees Where
All Individuals Have Been Genotyped
PADRE more accurately predicts fifth-
through tenth-degree relationships rela-
tive to ERSA and frequently identifies
11th- through 13th-degree relatives who
were undetectable in ERSA.
detected over 50% of 13th-degree relationships, although

95% of 13th-degree relatives share no genetic material

through their most recent common ancestors (in humans).

PADRE provided a substantial increase in power by

correctly detecting up to 83% of seventh- through 13th-de-

gree relationships in our simulations (Figure 2B).

Figure 2 displays the ERSA and PADRE results for simu-

lated pedigrees as large as 20 individuals, and Figure 3 sum-

marizes the results for the simulated pedigrees with all 26

individuals. PADRE predicted the exact degree of relation-

ship for 20% additional fourth- through ninth-degree rela-

tionships, relative to ERSA alone. For 10th- through 13th

-degree relationships, ERSA accurately predicted only 4%

of relationships to within one degree. In comparison,

PADRE accurately predicted 59% of the simulated 10th-

through 13th-degree relationships to within one degree,
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even though approximately 71% of

such relatives share no DNA segments

that are IBD (additional comparative

data are shown in Figure S3). This

can be accomplished because genetic

relationships across pedigree foun-

ders propagate through pedigrees, al-

lowing for multiple pairwise compar-

isons, which improves accuracy and

results in accurate estimates of distant genealogical rela-

tionships even in pairs of descendants who inherited no

genomic segments in common. Thus, by utilizing the pair-

wise sharing across all members of both pedigrees, PADRE

is frequently able to predict very distant genealogical rela-

tionships between deeply genotyped pedigrees that are un-

detectable from single pairwise genetic comparisons.

We also analyzed Affymetrix 6.0 microarray data

from 169 individuals in three previously described

extended pedigrees with predominantly northern Euro-

pean ancestry.16 The three pedigrees were composed of

24, 30, and 115 genotyped individuals and included a total

of 7,266 pairs of related individuals. As expected, ERSA and

PADRE attained the same accuracy for pairs of individuals

with no genotyped first- or second-degree relatives. How-

ever, when we considered pairs of individuals who had
Figure 4. Percentage of Relationships
Correctly Predicted by PADRE to
Within 5 One Degree in Real Pedigrees
of European Ancestry and Simulated
Pedigrees
Relationship detection accuracy was
broadly consistent between the real and
simulated pedigrees. Because the real pedi-
grees included two or fewer first- or sec-
ond-degree relatives, PADRE’s estimated
relationship detection accuracy for pedi-
grees with three or more sampled relatives
is based solely on simulated data.



Figure 5. A Graph of PADRE-Estimated Relationships among the CEU Samples with a Bonferroni-Adjusted Threshold of a ¼ 0.05/
9,090 ¼ 5.5 3 10�6

Each node corresponds to a PRIMUS reconstructed network number, and an edge between nodes indicates a significant relationship
predicted by PADRE using pairwise relationship likelihoods obtained by ERSA. The number next to each edge indicates the degree of
relationship connecting a founder in the reconstructed pedigree of each network. This type of network graph is the standard output
of PADRE.
two first- or second-degree relatives, we observed a substan-

tial improvement in accuracy with PADRE (Figure 4),

whereas ERSA’s accuracy rate was unchanged. PADRE

correctly predicted 39% (95% confidence interval: 38%

to 40%) of the 10th-degree relationships within one degree

of relatedness when the individuals had two first- or sec-

ond-degree relatives in the pedigree, in comparison to

23% (95% confidence interval: 22% to 24%) for ERSA

alone. In addition, PADRE was able to detect 9% of the

11th-degree relationships, whereas ERSA did not detect

any. The relationship prediction accuracy in this dataset

increased as the number of first- and second-degree rela-

tives in the pedigree increased, broadly matching the

improvement we observed in our simulations (Figure 4).

Effects of Bonferroni correction on relationship estimation

accuracy in these data are shown in Figure S4.
The A
We previously reconstructed 51 separate pedigrees

within the HapMap3 CEU dataset.20 These pedigrees

contain between two and six individuals. PADRE identified

relationships between 40 pairs of pedigrees consisting of

594 pairs of individuals via previously unknown fourth-

through ninth-degree relationships (Figure 5). Figure 6 il-

lustrates one example in which PADRE predicts relation-

ships connecting founders from four previously described

CEU pedigrees.

We have demonstrated through simulated and actual

data that PADRE can leverage pedigree reconstruction

results from PRIMUS and distant pairwise relationship pre-

dictions from ERSA to improve both the sensitivity and ac-

curacy of distant relationship estimation. The power to

detect relationships more distant than ninth-degree rela-

tives was dependent on the number of generations in the
merican Journal of Human Genetics 99, 154–162, July 7, 2016 159



Figure 6. An Example of Four Distantly
Related HapMap3 CEU Pedigrees with Re-
lationships Predicted by PADRE
Although the trios and the full-sibling rela-
tionship between NA12813 and NA07045
have been previously reported, PADRE is
able to identify statistically significant rela-
tionships connecting these distantly
related pedigrees. The related pairs of foun-
ders are marked with the dotted lines, and
the degree of relationship is labeled next to
the line.
pedigrees with genotype data. For instance, PADRE de-

tected up to 13th-degree relationships in the simulated ped-

igrees with three generations of genotype data and the

founders of the pedigrees (A2 and B2, Figure 1). As the

depth of the pedigrees connected by PADRE increases, so

will the distance of relationships that PADRE will be able

to predict. Relationship estimation accuracy in PADRE

improved as the number of genotyped individuals within

each pedigree increased (Figures 2 and 4) and was most ac-

curate when all individuals within a pedigree were geno-

typed (Figure 3).

We note that PADRE assumes absence of consanguinity

and thus does not look for distant relationships

within the reconstructed pedigree structures identified

by PRIMUS. However, these types of relationships can

be detected in other ways, for example, by using ISCA25

and ERSA (v.2) to evaluate regions of the genome

that are shared IBD on both chromosomes (IBD2) be-

tween founders within a pedigree. Although PADRE can

connect a single pedigree, and even a single founder, to

multiple other pedigrees, the algorithm is currently

limited to establishing a maximum of one distant rela-

tionship between founders of any given pair of pedigrees.

Allowing for multiple relationships between founders of

a pair of pedigrees will require modeling of indepen-

dently inherited shared segments to prevent confound-

ing and is a direction of work for future releases of

PADRE.
Discussion

PADRE has several important and immediate applications

in human genetic analysis, especially in large case-control

studies. PADRE can detect cryptic fourth- through 13th-de-

gree relationships, even in small datasets, as shown in our

analysis of the CEU data (Figures 5 and 6). By identifying

and appropriately modeling these relationships, studies

can avoid findings biased by relatedness26 and in some
160 The American Journal of Human Genetics 99, 154–162, July 7, 2016
cases might be able to leverage famil-

ial relationships to improve power.27

This is particularly important for de-

tecting relatively high-penetrance

risk alleles segregating in distantly

related pedigrees.

Existing prediction algorithms for detecting distant pair-

wise relationships use the number and size of shared IBD

segments between two individuals to estimate their degree

of relatedness.16,28 However, as the degree of relatedness

increases, the number of shared segments drops to zero.

Most 11th-degree human relatives share no segments of

their autosomal DNA IBD;16 therefore, their degree of

relatedness cannot be estimated by existing pairwise com-

parison programs. In some scenarios, PADRE can leverage

reconstructed pedigrees to identify genealogical relation-

ships between individuals who are genetically unrelated,

i.e., share no portion of their genome IBD through their

most recent common ancestors.

PADRE runtime increases combinatorially depending on

the number of family networks, the number of possible

pedigrees within each family network, the number of

founders in each of the pedigrees, and the number of

non-missing individuals in each pedigree structure in the

PRIMUS results. These numbers are difficult to predict prior

to running PRIMUS and depend heavily on how densely

the pedigrees have been sampled (Figure S5). For some da-

tasets, it will be necessary to use a closer relatedness cutoff

for the PRIMUS reconstruction in order to limit the num-

ber of possible pedigrees generated. This adjustment will

in turn improve the runtime of PADRE. We have employed

this technique with the European ancestry pedigrees due

to the sparse sampling of individuals. Table S1 and accom-

panying text provides additional information on runtimes

and computational limitations of PADRE.

There has been a resurgence of interest in large and

deeply genotyped pedigrees in the search for genetic heri-

tability of complex disease traits. Pedigrees have become

especially relevant in the detection of rare variant effects

on diseases because pedigrees are well-suited for the study

of rare variation.9 Under the hypothesis that multiple rare

and common variants contribute to complex disease,

projects such as the Alzheimer’s Disease Sequencing Proj-

ect, the San Antonio Mexican American Family Studies,

and the Jackson Heart Study have all undertaken deep



whole-genome sequencing of members of clinically ascer-

tained pedigrees. Projects such as these could particularly

benefit directly from verification and detection of distant

relatedness in PADRE.

PADRE leverages genome-wide average IBD sharing, as

well as the size and distribution of shared IBD segments,

to achieve a substantial improvement in accuracy over ex-

isting methods. PADRE has immediate relevance to a host

of applications within genetics, allowing investigators to

more accurately estimate cryptic relatedness, verify very

distant relationships, and maximize power in analytic

design. PADRE is freely available for academic use (see

Web Resources).

Data Access

Access to PADRE input data for the extended pedigrees has

been made publicly available. The ERSA-derived shared

segments (as described in Huff et al. 201116) as well as

the PRIMUS-derived pedigree likelihoods for the extended

pedigree samples are available on the PADRE website (see

Web Resources).
Supplemental Data

Supplemental Data include five figures and one table and can be

found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2016.05.020.
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