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Abstract

Automated machine-reading biocuration systems typically use sentence-by-sentence in-

formation extraction to construct meaning representations for use by curators. This does

not directly reflect the typical discourse structure used by scientists to construct an argu-

ment from the experimental data available within a article, and is therefore less likely to

correspond to representations typically used in biomedical informatics systems (let

alone to the mental models that scientists have). In this study, we develop Natural

Language Processing methods to locate, extract, and classify the individual passages of

text from articles’ Results sections that refer to experimental data. In our domain of inter-

est (molecular biology studies of cancer signal transduction pathways), individual art-

icles may contain as many as 30 small-scale individual experiments describing a variety

of findings, upon which authors base their overall research conclusions. Our system

automatically classifies discourse segments in these texts into seven categories (fact, hy-

pothesis, problem, goal, method, result, implication) with an F-score of 0.68. These seg-

ments describe the essential building blocks of scientific discourse to (i) provide context

for each experiment, (ii) report experimental details and (iii) explain the data’s meaning

in context. We evaluate our system on text passages from articles that were curated in

molecular biology databases (the Pathway Logic Datum repository, the Molecular

Interaction MINT and INTACT databases) linking individual experiments in articles to the

type of assay used (coprecipitation, phosphorylation, translocation etc.). We use super-

vised machine learning techniques on text passages containing unambiguous references

to experiments to obtain baseline F1 scores of 0.59 for MINT, 0.71 for INTACT and 0.63
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for Pathway Logic. Although preliminary, these results support the notion that targeting

information extraction methods to experimental results could provide accurate, auto-

mated methods for biocuration. We also suggest the need for finer-grained curation of

experimental methods used when constructing molecular biology databases

Introduction/related work

The stated goal of the ‘Big Mechanism’ program of the US

Defense Advanced Research Projects Agency (DARPA) is

‘to develop technology to help humanity assemble its

knowledge into causal, explanatory models of complicated

systems’ (http://www.darpa.mil/program/big-mechanism).

The program is split into three technical areas: (i)

‘Reading’ (where information is automatically extracted

from natural language text and tables used in published

articles into a structured data format), (ii) ‘Assembly’

(where the structured information provided by the reading

is organized and prioritized) and (iii) ‘Reasoning’ (where

the assembled information is synthesized into functional

knowledge about the domain of interest, using human-

curated models and/or simulations). Since the program’s

specified domain of investigation is molecular signaling

pathways involved in cancer, this work has clear relevance

to next-generation bioinformatics research. In particular,

‘Reading’ work performed within this program could be of

direct significance to the field of biocuration.

Our work focuses on addressing this grand challenge

using the following strategy: first, we develop models of

the experimental methods and data used to justify inter-

pretations instead of focusing on just the interpretations

themselves (1), and second, we use the typical structures of

biological discourse in articles to identify the textual elem-

ents concerned with observational and interpretive infor-

mation. Our goal is to automate the construction of a

database of experimental findings extracted from experi-

mental research articles concerned with cancer pathways,

in which the experimental status of the contents is expli-

citly recorded.

We next discuss the two principal descriptive dimen-

sions of the work: formal representations of signaling path-

ways and discourse analysis.

Knowledge representation of cellular signaling

pathways

Computational models of biomedical mechanisms are gen-

erally formulated to represent interactions between species

of molecules under a range of different methods, depend-

ing on the type of computation used to describe the

underlying mechanisms. High-level descriptive languages

such as the ‘Systems-Biology Markup Language’ (2),

BioPax (3) or the ‘Biological Expression Language’ (4) pro-

vide a semantic representation of pathways, reactions and

reactants (with encodings for additional information such

as genetic details, post-translational modifications, reac-

tion kinetics etc.). These languages provide interpretable

summaries of pathway mechanisms that can be read by

humans and/or reasoned about by computational know-

ledge representation and reasoning methods. For example,

(5) use ‘perturbation biology’ experiments in cancer cells

to systematically construct cell-type-specific signaling

pathway models in conjunction with centralized pathway

resources to nominate upstream–downstream drug com-

binations to combat drug resistance in melanoma. At a

deeper level of description, executable languages such as

Pathway Logic (PL) (6), Kappa (7), and PySB (8) provide

simulation/reasoning frameworks that can make theoret-

ical predictions about aspects of the state of the system

under different hypothesized conditions (9). These types of

formulations act as the target for reading systems and for

the practice of biocuration generally.

However, automated curation methods that directly

populate these types of representations focus primarily on

the articles’ explicit findings or conclusions and largely

overlook the underlying experimental evidence used to

construct pathway representations (1). Often, these prop-

ositions are derived with little or no information about

how they were ascertained experimentally. In practice, sci-

entists pay a lot of attention to the derivation of a propos-

ition before accepting it as fact. We therefore attempt to

construct a well-founded reading methodology for molecu-

lar biology articles that automatically extracts not only

such conceptual propositions that are based on experi-

ments, but widens the focus of the extraction process to

identify relevant experimental text, classify the type of ex-

periment being performed and extract information relevant

to both the experimental procedures/observations and their

interpretations. Our view is motivated by previous work in

building knowledge representations of data derived from

the design of experiments that generated them. This ap-

proach, called ‘Knowledge Engineering from Experimental

Design’ (KEfED, 10) attempts to construct data structures

for experiments based on dependency relationships
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between the values of parameters and their accompanying

measurements. Within KEfED, these dependency relation-

ships are derived from the structure of the experimental

protocol used to generate them.

The interaction between observation and interpretation

has been previously formulated in cyclic models of scien-

tific reasoning (see 11, 12). This methodology has formed

the basis for the development of completely automated ro-

botic systems that are capable of formulating scientific ex-

periments, performing them and then interpreting their

results to propose new experiments (13). Ultimately, this

degree of automation is the aspiration goal of programs

like Big Mechanisms: to develop computationally scalable

methods to understand complex phenomena.

Natural language processing studies of discourse

analysis

Related work on discourse analysis of biological text has

focused on different levels of textual granularity, represent-

ing different views on the key discourse moves contained

within a text. Different approaches are used to identify as-

sertions from text, either manually, automatically, or semi-

automatically. Very often, these require discourse parsing

as a first step. Marcu (14) automatically identifies

Rhetorical Structure Theory relations (15) between elem-

entary discourse units (edu’s). More recent systems at-

tempting the same task include (16) and (17). The work of

Teufel (18) focuses on finding so-called argumentative

zones, which are defined as a (group of) sentences that

have the same rhetorical goal. Teufel (18) identify six such

zones, such as those defining ‘own’ vs. ‘other’ work; stating

the background of a piece of work, or its results. Mizuta

and Collier (19) identify similar though finer-grained zones

in biological texts. Biber and Jones (20) define a collection

of biological Discourse Units, and the respective Discourse

Unit Type by various linguistic markers.

Using the XIP dependency parser (21, 22) aimed at de-

tecting rhetorical metadiscourse functions that are attached

to propositions in biology articles. The status of a propos-

ition may be, e.g. that of a substantially new finding; the

author may want to state that a particular solution is not

known; a statement may serve as background knowledge;

it may be a contradiction, hypothesis, or a new research

tendency. A further body of work on event extraction iden-

tifies a ‘bio-event’, namely a representation of important

facts and findings (e.g. 23) that exists at the level of a sen-

tence or a few sentences. The CoreSC Ontology developed

by Liakata et al. (24) defines a set of sentence-level classes

that describe scientific investigations. In earlier work (e.g.

25, 26) we proposed a third level of granularity, that of

discourse segments, which roughly corresponds to a clause.

Using manual annotation methods, a taxonomy was identi-

fied to define the main discourse segments in biological

text that correlated with grammatical and semantic

markers such as verb form, tense, and modality markers.

All three methods (bio-events, core-sc and discourse seg-

ment type) were compared and found to be compatible, yet

subtly different; see Liakata et al., (27) for a side-by-side

comparison.

Applying discourse analysis to a biomedical

research narrative

In our previous work, we noted that different research do-

mains typically follow different narrative structures based

on the procedural structure of their experimental protocols

(1, 10, 28–30). Typically, articles in molecular biology

construct their argument based on a number (as high as

20–40) individual small-scale experiments involving small

numbers of assays with generally minimally differing de-

sign (1). In contrast, neuroanatomical studies describe a

smaller number of representative sample cases from a set

of experiments conforming to a single, relatively simple de-

sign. This is because data analysis is much more time con-

suming to perform than standardized biochemical assays

(10, 28). By way of further contrast, studies of vaccines

with non-human primates involve complex protocols with

a relatively small number of individual cases due to the

high value of individual experimental subjects (30).

This motivates the underlying purpose of our study, and

the basis of our information extraction strategy for the Big

Mechanisms program: to distinguish between statements

concerned with (i) experimental methodology and findings,

(ii) interpretative assertions based on those findings and

(iii) contextual statements that motivate the need for the

experiment in the broader narrative of the article as a

whole (31).

We do this by combining our KEfED model with the

clause-level taxonomy defined by De Waard and Pander

Maat (32) that classifies each clause as belonging to one of

seven: (i) Facts, (ii) Hypotheses, (iii) Problems, (iv) Goals,

(v) Methods, (vi) Results and (vii) Implications, which

mostly occur in a prespecified order. If we look at the typ-

ical narrative structure of a molecular biology article, au-

thors typically write passages to construct a scientific

argument, based on their experiments and use epistemic

segments to provide the necessary discourse structure. This

discourse structure is highly variable in general, but within

the results sections of articles, the following archetypal ex-

ample is illustrative of how an author may present their

findings. Authors may first introduce a new semantic
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context for their experiments by describing ‘problem’

elements found in other work, or stating facts, results or

implications from previous articles (identifiable by cit-

ations). They may describe the underlying goal (or hypoth-

esis) of their experimental work, and to this point in the

text, have mostly discussed interpretive concepts at the

level of the conceptual model. Next, they turn to a descrip-

tion of their experimental experiences: the methods used to

perform the experiment, which will usually include values

of specific parameters that were set in the study design to

contextualize the data findings. This is typically following

by results, in which a combination of values of parameters,

measurements, and immediate interpretive assertions may

be given. After this—after showing the experimental mo-

tivation for their conceptual statements— the interpret-

ations and conclusions generally appear: these are the

global inferences that exist at the level of the overall con-

ceptual framework/model, which we call here the experi-

ment’s implications). De Waard (33) provides a more

detailed description of the ‘realm transitions’ between con-

ceptual model and physical experiment, and Tallis et al.

(30) provide a discussion of the cyclic reasoning process

between observations and interpretations in relation to the

KEfED approach.

Figure 1 shows a typical text passage from a scientific

research article (34) from the PL corpus describing results

from coprecipitation experiments designed to show how

specific molecules compete in binding reactions. The figure

shows a single paragraph where the authors provide some

context by citing their previous work, stating some facts,

and then providing a hypothesis. The authors then provide

a very brief placeholder for the methods used (supported

by the text of figure legends, not shown). They then de-

scribe results of five separate experiments in quick succes-

sion where each experiment is labeled by the each listed

subfigure (2B, 2C, 2E, 3A, 3B). It is important to note that

in this case, each of these subfigures denotes a separate ex-

periment with quite different designs and data (involving

the use of concentration gradients, time series or sophisti-

cated use of the immunoprecipitation methodology).

Finally, the author provides a unifying explanation of these

results with an implication statement. Note that it is im-

portant to distinguish between the description of results in

this article (denoted by the presence of an internal link to a

figure) and the description of results from other studies

(denoted by the presence of an external link expressed as

citations).

Previous work: BioCreative, protein–protein

interactions, MINT, and INTACT

Automatically extracting aspects of experimental descrip-

tions the basis of the community-wide BioCreative 2 (BC2)

and 3 (BC3) competitions. These included evaluations on

various aspects of protein–protein interactions (35, 36),

including article detection, interaction pair extraction,

interaction method extraction (IMS) and (D) retrieval of

‘interaction sentences’. Two BC2 teams and eight BC3

teams addressed the IMS subtask, where the aim was to ex-

tract the correct ontology code describing the interaction

detection method (from the standard PSI-MI2.5 vocabu-

lary, see (37)). The results were compared with manually

curated codes for each article under various conditions

(exact- and parent-match or micro-/macro-averages) across

the 2 years. High-performing systems on this task included

the Ontogene system’s approach in BC2 (38; F1 score ¼
0.65) and efforts in BC3 (36; F1 score ¼ 0.55). It is import-

ant to note that the curation workflow of the BioCreative

challenges centered first on the analysis of interpretive text

describing interactions and only secondarily dealt with text

on experimental evidence (see Figure 1 from (35)). Since

the MINT database has been subsumed by the INTACT

project (39), we repeated the key analysis from BC2 and

BC3 with a focus detecting the experimental type derived

from text found in the results section with both MINT and

INTACT data.

Figure 1. A typical passage from a primary research article describing experimental results (34) with added annotations describing discourse seg-

ment types, internal links to figures and external links to cited references.
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Materials and methods

The goals of the experimental work in this article are as

follows. First, we intend to automatically detect the differ-

ent types of discourse segments within passages from art-

icles’ Results sections so that we might prioritize the most

relevant text pertaining to different aspects of the narra-

tive. Second, we seek to identify the type of experiment

that is being referred to in the sentences describing results.

Both of these intermediate results support the development

of automated machine reading systems that thoroughly

analyze all aspects of experimental research articles in this

domain.

The PL datum repository

The PL group is based at SRI International in Menlo Park

CA and is a performer in the Big Mechanisms program.

The system comprises an approach to modeling cellular

signaling pathways based on ‘rewriting logic’ (6). The PL

database is populated by the human curation of observable

findings from each experimental article (where each entry

is called a ‘datum’). Expert biocurators have also defined a

broad classification of the different types of molecular bio-

logical assays used in the experiments annotated in the

data set (documented online at http://pl.csl.sri.com/

CurationNotebook/). Since this database is centered on the

same distinction between interpretations and observations

forming the core of our methodology, we based our initial

information extraction work on this data. In total, the PL

database contains �2000 articles of which 76 have been

designated part of the open-access subset in the Pubmed

Central (PMC) online library. These 76 articles provide the

natural language data for the experimental work described

here.

Open access articles from the MINT and INTACT

databases

The ‘Molecular Interaction’ (MINT) database is based on

experimentally verified protein–protein interactions mined

from the scientific literature by expert curators (40, 41).

The full MINT dataset can be freely downloaded from

http://mint.bio.uniroma2.it/mint/download.do. Within this

collection, we were interested in the curator-driven annota-

tion of experimental type denoted by Protein Standards

Initiative Molecular Interaction XML Format (‘PSI-MI’)

format that provides codes pertaining to the experimental

types used to detect MINTs (see http://www.psidev.info/

index.php?q¼node/60). At present, MINT contains data

from 5554 articles. We downloaded information describ-

ing human protein–protein interaction experiments from

2808 of them. Of these articles, we identified 175 articles

that were in the open-access PMC subset, which we then

used in the work described here. We downloaded the full

database of annotations from the INTACT repository

(which includes all of MINT with changes in the transla-

tion of the data, http://www.ebi.ac.uk/intact/downloads).

This consisted of 32 678 interaction reports from 14 009

published articles, of which 1063 are available as open ac-

cess. In both cases, the starting point that enabled our clas-

sification analysis was the specific sub-figure associated

with each experiment being annotated.

Data acquisition and preprocessing

The raw textual data for processing was extracted from

the relevant articles in the Open Access Subset of PMC

with the ‘nxml2txt’ tool (https://github.com/spyysalo/

nxml2txt) as part of the UimaBioC core library (42).

UimaBioC converts the bibliographic annotations present

in the XML-formatted articles from PMC (formatting,

section-based headers, hyperlinks etc.) into readable anno-

tations in the BioC format for subsequent processing and

reuse. As a parallel thread, we applied the REACH system

from the Computational Language Understanding Lab at

the University of Arizona, which employs a pattern-based

entity and event tagger for these articles (43). We extracted

the text of the results sections of the abovementioned 76

articles as training data for the subsequent task of classify-

ing discourse segments.

Text annotation

Our definition of discourse segment type broadly follows

that in (32), and we maintain an online annotation manual

to track notes. Initially, we used the BioScholar digital li-

brary system (44) to manually annotate passages of text

pertaining to individual experiments based on their dis-

course segment types. This in-house software stores anno-

tations based on overlays constructed over the rendered

pages of PDF files (thus making the annotation task rela-

tively intuitive for biological curators). We manually cura-

ted the text of results sections based on the precise sub-

figure the text was referring to (e.g. ‘1A’, ‘1B’ etc.) and

then assigned an epistemic type label (such as hypothesis,

fact etc.) to each chunk. This provided a core set of texts to

provide an initial data set, which we then augmented.

Given the set of 76 open access articles provided by PL, we

extracted the results sections from these articles, split the

sentences into clauses using parsing tools from the NLTk

Python toolkit (45), and had annotators manually assign

each clause one of the seven discourse segment label types
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or the label ‘none’ (in cases when a clause was a subject

header).

Machine learning discourse segment types

We developed a machine learning system for automatically

assigning discourse segment types to the statements derived

from research articles. As a baseline, we configured a

Support Vector Machine (SVM) in a seven-way classifier

(i.e. a combination of seven one-vs.-all classifiers) de-

signed to label each clause based on our seven discourse

segment types (namely, ‘fact’, ‘hypothesis’, ‘problem’,

‘goal’, ‘method’, ‘result’ and ‘implication’). To train the

classifier, we used the previously described manually

annotated training examples. The clauses were then rep-

resented as feature vectors based on the following scheme:

(i) ‘Part-of-speech tags’: We applied the Stanford POS tag-

ger (46) to the clauses and added the part of speech tags

to the feature vector. (ii) ‘Verbs and adverbs’: Based on

the POS tags, we added all the verbs and adverbs from the

clause to the feature vector. These words are generally in-

dicative of the statement type. (iii) ‘Figure reference or a

citation’: If the clause contained a pointer to a figure in

the article, or a citation, we added this information its

feature vector since this usually indicates that the state-

ment should be classified is a ‘result’. (iv) ‘Lexicon’: We

created a small list of words and phrases indicative of the

statement classification and added the presence (or ab-

sence) of these phrases in the clause to the feature vector.

For example, if a statement contained ‘possible’, the state-

ment would typically be classified as a ‘hypothesis’, while

if the statement contained ‘data not shown’, the statement

would likely be a ‘result’.

Additionally, we observed that discourse segments in re-

sults sections often followed a sequence approximating (i)

fact/hypothesis/problem, (ii) goal, (iii) method, (iv) result

and (v) implication. We therefore trained a Conditional

Random Field (CRF) (47) and compared its performance

to the SVM classifier, expecting an improvement since the

CRF is also sensitive to patterns in label ordering. For this,

we used part of speech tags, the identities of verbs and ad-

verbs, presence of figure references and citations, and

hand-crafted lexicon features. For example, words like

‘demonstrate’ and ‘suggest’ indicate implication, and

phrases like ‘data not shown’ indicate results that indicate

specific discourse types. The choice of features was based

on standard feature engineering practices to identify the

most salient. Small-scale experiments with larger lexicons

did not improve performance and validated this selection

of restricted feature set. Beyond this, we did not perform

an exhaustive comparative study of the contribution of dif-

ferent feature sets to performance.

Automatic partitioning of experiment descriptions

To create a database of experiment descriptions, we first

need to assemble all the text’s statements about each ex-

periment. Our core assumption is that each figure corres-

ponds to one experiment, and within it each sub-figure to

its sub-experiment variations. In a small manual evaluation

of how figures relate to different experiments, we found

that only 2 experiments from 128 separate experiments in

over 10 articles involved more than one Figure. In total,

76% of all sub-figures referred to distinct experiments

(based on whether a different experimental subject was

processed under a different protocol), and the types of ex-

periments within a single figure were usually closely

related.

Fortunately, the linkage between figures and experi-

ments within the training data is contained in the manually

curated data sets from INTACT, MINT and PL (who gen-

erate their data according to their own internal standards,

see http://pl.csl.sri.com/CurationNotebook/index.html and

http://www.imexconsortium.org/curation). We simply

adopted this data as a Gold Standard consistent with

standard practice when professionally curated data are

available.

Automatic classification of experiment types

Each of the PL Datum entries has been previously anno-

tated by expert curators with (i) the subfigure from which

it originated and (ii) the type of experiment performed

under the PL annotation scheme (see http://pl.csl.sri.com/

CurationNotebook/pages/Assays.html). There are 33 sep-

arate ‘assay types’ used to denote different high-level

classes of frame representation, including coprecipitation

(denoted by the code: ‘copptby’), phosphoryation (‘phos’),

colocalization (‘colocwith’), acetylation, sumoylation,

ubiquitination (‘ubiq’), cellular location (‘locatedin’) and

others. These annotations denote a complex classification

of the type of knowledge being generated by each of the

annotated experiments and correspond in more depth to

the combination of multiple steps described in the text

describing the methods used in the context of each sub-

figure.

In contrast, the articles downloaded from the open-

access dataset of either the MINT or INTACT database

use PSI-MI 2.5 codes, which somewhat overlap the experi-

mental type codes used in the PL database, especially those

pertaining to ‘coimmunoprecipitation’ as a core method-

ology. These articles offer a more in-depth view of experi-

mental designs pertaining to studies of protein–protein

interactions and binding but ignore other functional as-

pects of molecular biology that are captured in PL. In both
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cases, we applied machine learning systems that could

automatically predict the type of experiment from the rele-

vant text extracted from the results section and figure

legend.

We used a simple heuristic to match text passages from

the body of research articles to sub-figures (simply based

on matching paragraphs as a whole to the sub-figures ref-

erenced in them). This was problematic since there can be

multiple figure references within a passage and each figure

reference could be classified as a different experiment type.

Within the PL dataset, of the available 372 passages, we

identified 114 passages that contained more than one basic

code, which we removed from the classification experi-

ments. We used a training set based on 258 passages and

evaluated performance based on mean accuracy and

weighted F1 measures from 5-fold cross validation with 24

different target classes. We repeated this process for art-

icles from the MINT database and of the 359 passages we

found from experimental text referring to figures, 136 of

these passages were discarded due to referring to multiple

types of experiments. For MINT, we used 223 passages

(¼359�136) with 9 classes (‘pull down’, ‘anti tag

coimmunoprecipitation’, ‘anti bait coimmunoprecipita-

tion’, ‘x-ray crystallography’, ‘fluorescence microscopy’,

‘coimmunoprecipitation’, ‘two hybrid’, ‘surface plasmon

resonance’, ‘imaging technique’). The INTACT database

provided a more extensive set of PSI-MI 2.5 interaction

methods annotations linked to subfigures. We restricted

the classification task to the top 5, 10 and 15 most frequent

experimental codes (mirroring the approach used in (38)).

We ran classification experiments on all available data fol-

lowing the same simplified method of selecting paragraphs

with well-defined figure references to establish baseline

performance for this classification task.

Additionally, to examine the utility of using only text

from the figure caption, we developed simple patterns to

identify well-defined sub-figure caption sentences that

begin with a single letter in parentheses (‘(A). . .’ etc.) as

text to be processed by our classifier and compared this to

our methods based on text in the narrative. We applied as

baseline a simple term-based classifier, using terms identi-

fied for each class by tf.idf (term frequency/inverse docu-

ment frequency) scores, in a 5-fold cross validation.

Results

Linking experiments to figures

A key element of this work is the linkage between individ-

ual subfigures and their underlying experiments. This link-

age arises from core design decisions in both the PL and

MINT data sets, and we performed a small-scale manual

evaluation as a part of this study. To consider the question

of how text describing figures in results sections should be

evaluated as originating from separate experiments, we

examined 10 articles from the PL corpus and judged

whether experiments from two figures referred to the same

experiment based on whether the data shown were derived

from the same underlying experimental subjects undergo-

ing to the same protocol. These 10 articles contained 50

figures and 213 subfigures. We evaluated that there were

128 separate experiments performed and that the number

of subfigures per experiment ranged from 1 to 23. In only

two cases from this sample set did a single experiment in-

volve more than one figure (both of these cases arose from

the same article). 76% (98/128) of experiments delineated

in this way were reported in only one subfigure and 88%

(113/128) were reported in either one or two subfigures.

This is a small sample intended only to act as justification

for the methodology we have adopted and would benefit

from a larger scale biocuration effort.

Machine classification of discourse segment type

Our annotated dataset for statement types included 20 art-

icles, containing 3600 clauses. We used 200 of the clauses

as a held-out test set to measure the performance of our

classifier on unseen data. We trained our statement classi-

fier on the remaining data. Table 1 summarizes ground

truth, predictions, precision, recall and F1 scores on the

test set for our CRF system (also see Supplementary

Materials).

We found that discourse segment type classification per-

formed well for ‘results’ statements, at an F1 score of 0.78.

Other discourse segment types were detected with varying

levels of accuracy depending on the annotation frequency

for each one in the corpus. At present, our sample size is

not large enough to detect the rarer discourse segment tags

such as ‘problem’, ‘fact’ or ‘hypothesis’ (which is not sur-

prising since these statements are much rarer than descrip-

tions of methods or results in ‘Results’ sections).

In this study, our focus was centered on unpacking the

discourse structure used by authors in Results sections to

narrate over their experimental findings as a sequence of

well-defined discourse types. We expect that the discourse

structure of other sections will include more problem, fact,

and hypothesis statements, and used in various orders, thus

less likely to conform to the structured order we were

studying in results sections. We present a confusion matrix

for this analysis in Table 2.

The primary confounding classification mistake in

classifying statements as ‘fact’ discourse segment types is

that they are mistaken for ‘result’ statements. Given that

the distinguishing feature between facts and results is
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based on the information source that they are each

derived from (facts are presented without attribution to a

source, but results are derived from measurements of the

referenced experiments), this is hardly surprising.

Similarly, confusion between results and implications had

an impact of classification performance between those

types as well.

Machine classification of experiment type

Table 3 shows data pertaining to ground truth, predictions,

precision, recall and F1 scores for classification of experi-

mental passages referenced in two databases with two dif-

ferent classification schemes (see supplemental data for

performance across different classifiers). The analysis shows

generally good performance with an overall weighted F1

score of 0.63 for PL. The best performance with the

INTACT dataset was given by the text from well-defined

figure captions (see ‘Materials and Methods’ section above)

was a F1 score of 0.71 for 581 experiments. Given that

these results are the product of simple generic features with-

out any tailored specialization for our specific tasks, we ex-

pect that future work will be able to improve considerably

upon this baseline. We were concerned that these data were

dominated by the presence of a single very frequent type

(such as MI:0019, ‘coimmunoprecipitation’), which would

skew performance. We therefore computed a baseline F1

score for the situation where all experiments were classified

as being of the same (i.e. most frequent) type. In all cases,

performance of our tools exceeded this baseline.

Table 1. Number of ground truth assertions and predictions associated with precision, recall and F1 scores for discourse seg-

ment type classification based on CRF analysis.

Statement type Ground truth Prediction Correct predictions Precision Recall F1

Problem 2 2 0 0.00 0.00 0.00

Fact 53 30 14 0.47 0.26 0.34

Hypothesis 36 17 12 0.71 0.33 0.45

Goal 30 26 18 0.69 0.60 0.64

Method 98 90 66 0.73 0.67 0.70

Result 182 216 147 0.68 0.81 0.74

Implication 44 64 31 0.48 0.70 0.57

Weighted F1 0.63

Table 2. Confusion matrix for discourse segment type classification

Predicted values

Counts Problem Fact Hypothesis Goal Method Result Implication

Ground truth values Problem 0 0 0 0 0 2 0 2

Fact 1 14 2 2 2 26 6 53

Hypothesis 0 2 12 5 3 6 8 36

Goal 0 0 0 18 9 2 1 30

Method 0 4 0 1 66 26 1 98

Result 1 7 2 0 8 147 17 182

Implication 0 3 1 0 2 7 31 44

2 30 17 26 90 216 64

Table 3. Summary table of number of experimental cases,

baseline F1 scores and experimental F1 scores for experi-

ment type classification from PL, MINT and INTACT datasets

No.

experiments

Baseline

F1-score

F1-

score

PL, all data, narrative 258 0.07 0.63

INTACT, top 5 leaf categories,

narrative

1160 0.13 0.44

INTACT, top 5 merged categories,

narrative

1290 0.29 0.54

INTACT, top 10 merged categories,

narrative

1507 0.26 0.50

INTACT, top 5 merged categories,

captions

581 0.42 0.71

INTACT, top 10 merged categories,

captions

662 0.34 0.67

MINT, top 7 categories, narrative 221 0.24 0.58
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The confusion matrix for the best performing system

(INTACT data, top five merged categories, classification

based on figure caption text) is shown in Table 4. This

shows the strong influence of the most likely experimental

category as a source of inaccurate predictions. This is con-

sistent with how common coimmunoprecipitation experi-

ments are in the literature to detect MINTs.

Discussion/conclusions

A core concept underlying our work is that primary re-

search publications contain conclusions typically based on

a discrete number of experiments that are described in de-

tail as ‘results’. Within many curated bioinformatics sys-

tems (such as the Gene Ontology, 48), these experiments

and their data play only a supporting role as ‘evidence’ for

interpretive claims that form the primary focus of the re-

source (see 49 for evidence codes of GO, or (49) for the

evidence representation of the BioPax representation).

We have begun work to automate the process of ex-

tracting experimental observations from articles based on

subdividing the text of articles into relatively compact dis-

course elements pertaining to a single experiment. Our pre-

liminary results show some success in using simple

supervised machine learning to classify these discourse

elements by experimental type, allowing one to distinguish

different types of assertion from the experimental narra-

tive. This lays the groundwork for targeted, structured in-

formation extraction systems based on multi-sentence

extraction in the future.

We observed, while annotating documents with dis-

course types that authors use a recurring sequence, con-

sisting of only a few sentences within a paragraph, to

present new data and construct an argument. Typically,

they provide background knowledge, state hypotheses,

introduce goals and methods, describe results and then

postulate implications within the text of the results sec-

tion. In our experiments, we were therefore not surprised

to find that sequence classifiers using CRFs performed bet-

ter than other methods such as SVMs or a simple tf.idf-

weighted term-matching baseline. This suggests that there

are implicit cycles of scientific reasoning in the text that

permit authors to incorporate experimental evidence for

claims into the narrative argument of a study. CRF tech-

niques have been a mainstay technique for sequence label-

ing work for 15 years but are now being superseded by

deep learning methods that require less painstaking feature

engineering analysis (51). We therefore expect to be able

to outperform this early work with neural network meth-

ods that are able to discover optimal feature sets

automatically.

Studies of argumentation structure in biomedical art-

icles used a very similar annotation scheme to our dis-

course labeling method as part of the CRAFT full-text

annotation effort (52). This could potentially provide ex-

tensive additional training data for subsequent work (al-

though these annotations were based on Mouse genetics

studies, a different target domain from the cancer pathway

articles of interest to our work).

We previously argued in a position article that rather

than focusing efforts only on the complexities of extracting

semantically structured interpretive events from text, it

may be more tractable and reliable to focus on extracting

the data and observations directly gathered from experi-

ments (1). We here describe preliminary results that instan-

tiate and test this strategy.

Within this article, we simplified the issue of delineat-

ing the passages pertaining to specific experiments by

considering entire paragraphs as the source of data used

by classifiers. Naturally, a finer-grained delineation of the

narrative pertaining to individual experiments warrants

deeper investigation and could be a valuable area of study

in its own right. We previously examined this question in

a different field of biomedicine (neuroanatomy, 53).

From this, we expect each separate experimental (sub)do-

main to use different narrative approaches to explain and

unpack their results. Thus, heuristic methods used to

frame a machine-reading approach in the field of molecu-

lar biology should not be applied generally across other

domains.

The most common type of experimental evidence avail-

able in our training corpus pertains to coimmunoprecipita-

tion studies: a staple of studies into MINTs and how

molecules bind to each other. The MINT databases com-

plete list of codes derived from the PSI-MI 2.5 controlled

vocabulary defined 93 possible types of binding assay (50),

of which we use a subset in our studies here. This provides

a rich working space for modeling and investigating the

substructure of different experiments of this type, since the

way that assertions would be constructed from data would

depend on way any given protocol is parameterized and

structured. The INTACT dataset increased the quantity of

Table 4. Confusion matrix for experiment type classification

Gold/

prediction

MI:0018 MI:0019 MI:0096 MI:0416 MI:0663

MI:0018 25 29 3 0 0 57

MI:0019 0 321 9 0 2 332

MI:0096 1 53 71 0 0 125

MI:0416 0 26 0 4 4 34

MI:0663 0 20 0 3 10 33

26 449 83 7 16
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data available for this classification task. Of particular

interest is the reliable performance improvement we

observed based on using only the text from the figure cap-

tion to denote the type of experiment. This text is easier to

extract and identify than delineating the exact span of rele-

vant text in the narrative of a article. Our results suggest

that the figure caption might act as a more accurate and

more practical predictor for experimental type than narra-

tive text in the results sections of articles. How we repre-

sent experimental evidence in bioinformatics infrastructure

is an open research question (54). Being able to detect ex-

perimental type reliably could accelerate curation and as-

sist more sophisticated representations of evidence to

support claims in databases.

Ontology support for different modeling approaches to

experimental design has been addressed by multiple efforts

including the Open Biomedical Ontology’s ‘Ontology of

Biomedical Investigation’ (55) and the Biological Assay

Ontology (56) as well as multiple ‘Minimum Information’

checklist representations (57). A confounding issue of lev-

eraging these representations into a text mining biocura-

tion toolset is the underlying inherent multilevel

complexity of describing scientific protocols, which may

be alleviated by developing templates under a methodology

such as KEfED (30) that could also refer to grounded,

standardized ontological terms where necessary.

In this article, we present the initial stages of develop-

ing a strategic idea, designed to promote a machine read-

ing method for biocuration that examines the

experimental context in detail. Even interpretive claims

about mechanisms must themselves be derived from a

chain of reasoning driven by experimental evidence at

every stage, and our work is concerned with deepening the

structured representation of evidence that may be ex-

tracted from the text of primary research articles. This

work is intended to support the efforts of other machine

reading groups by indicating passages that contain ex-

tracted data that have assumed to be ‘facts’ but were actu-

ally written as ‘hypotheses’ by the original authors. Our

work represents and extracts such evidence at a much

finer granularity than is currently supported computation-

ally. We continue to seek general principles that could be

applied across different domains based on general prac-

tices of describing experimental results and reduced to

practice easily and straightforwardly through the use of

standard machine learning tools.
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