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SUMMARY

Many hormones, including stress hormones, are intermittently secreted as pulses. The pulsatile location
process, describing times when pulses occur, is a regulator of the entire stress system. Characterizing the
pulse location process is particularly difficult because the pulse locations are latent; only hormone concen-
tration at sampled times is observed. In addition, for stress hormones the process may change both over the
day and relative to common external stimuli. This potentially results in clustering in pulse locations across
subjects. Current approaches to characterizing the pulse location process do not capture subject-to-subject
clustering in locations. Here we show how a Bayesian Cox cluster process may be adapted as a model of
the pulse location process. We show that this novel model of pulse locations is capable of detecting circa-
dian rhythms in pulse locations, clustering of pulse locations between subjects, and identifying exogenous
controllers of pulse events. We integrate our pulse location process into a model of hormone concentration,
the observed data. A spatial birth-and-death Markov chain Monte Carlo algorithm is used for estimation.
We exhibit the strengths of this model on simulated data and adrenocorticotropic and cortisol data collected
to study the stress axis in depressed and non-depressed women.
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1. INTRODUCTION

Regulation of the human stress system is maintained by signaling between the hormones in the
hypothalamic–pituitary–adrenal (HPA) axis (Walker and others, 2010, 2012; Lightman, 2008). The pri-
mary hormones in this axis, adrenocorticotropic hormone (ACTH) and cortisol, are intermittently
secreted in boluses, called pulses (McMaster and others, 2011; Lightman and Conway-Cambell, 2010;
Spiga and others, 2011). Alterations in the hormone secretion patterns have been implicated in many health
conditions, e.g., depression (Carroll and others, 1976; Young and others, 2001, 2004), post-traumatic
stress disorder (Yehuda, 2002), and sleep apnea (Henley and others, 2009). New treatment strategies are
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beginning to focus on pulsatile delivery (Russell and others, 2014; Henley and Lightman, 2014). Thus, it
is clinically important to be able to adequately model the pulse location processes of HPA axis hormones.

To study pulsatile secretion, hormone concentration values are obtained every few minutes for a period
up to 24 h (Figure 1). Although the observed data are hormone concentrations, biologic and clinical interest
is often on the latent pulse locations. In our motivating study ACTH and cortisol time series were generated
from blood samples collected every 10 min for 24 h on 52 women, 26 depressed and 26 healthy controls
(Young and others, 2001). This is a typical design. In the primary analysis the pulse location model was
summarized using a simple frequency count over the period of observation. This may be overly simplistic
for ACTH and cortisol. The pulse locations of these hormones exhibit circadian patterns and potentially
other inhomogeneities over the period of observation (see Figure S1 of supplementary material available at
Biostatistics online). These patterns may differ between groups even when the overall frequencies remain
similar.

Fig. 1. Observed ACTH and cortisol hormone concentration data for one pair of control and depressed subjects (top
panel). Fitted intensity functions for ACTH and cortisol (second panel) with random effects for cluster size and width
and the strict repulsion prior on the cluster locations. The gray lines are the 10% and 90% pointwise credible intervals.
The bottom two panels are the joint posterior distributions of the cluster centers for the controls (top histogram) and
depressed subjects (bottom histogram).
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Models of the pulse location process have generally focused on characterizing the inter-event
distribution within subjects or 24-h circadian rhythms in the location process (Anderson and O’Sullivan,
1993; Keenan and Veldhuis, 1997; Liu and Wang, 2007). We are interested in developing a more gen-
eral model of the pulse location process that is able to characterize circadian rhythms in the pulse loca-
tion model when present, but also is capable of identifying and quantifying temporal clustering of pulse
locations across subjects. The subject-to-subject clustering of the pulse locations is of interest because
various external stimuli (e.g., feeding, light, and sleep cycles) are known to influence cortisol levels
(Greenspan and Gardner, 2004) and are tightly regulated and common across subjects in typical studies
(including our motivating study). More (or less) clustering in pulse locations across subjects may indicate
that the regulation of the hormone is more (or less) sensitive to external stimuli.

Our new model of pulse locations is based on the Cox cluster point process (Cox, 1955;
Møller and Waagepetersen, 2004). Given pulse locations are latent, we embed the pulse location model
into an existing deconvolution model of hormone concentration values. A spatial birth-and-death Markov
chain Monte Carlo (MCMC) algorithm (Preston, 1977; Geyer and Møller, 1994) is used for estimation.

2. METHODS

We first develop the pulse location model and then show how we integrate it with a hormone concentration
model. Table 1 provides notation and definitions for the parameters in the model.

2.1 The pulse location model

2.1.1 Overview and notation. The Cox cluster process is a Poisson process (Cox and Isham, 1984),
which is defined by its intensity function, λ(t), where t is time. The intensity function defines the rate
at which events occur in time. In our case, the latent pulse locations for each subject serve as “the data”
that the Cox cluster process is modeling.

There are two levels defining the intensity function of our Cox cluster process. Level 1 is the sub-
ject level and involves the pulse locations for each subject (see right panel of Figure S2 of supple-
mentary material available at Biostatistics online, the x’s mark pulse locations). Level 2 is the popula-
tion level and is a model of locations where pulses cluster in time across subjects (see right panel of
Figure S2 of supplementary material available at Biostatistics online, �’s mark latent cluster locations).
The Level 1 model conditions on a realization from the Level 2 model, so we first define Level 2 and then
Level 1.

Level 2 (population level): The population cluster locations are modeled as a marked Strauss process
(Strauss, 1975) on time interval T , which is slightly larger than the observation time period to accommo-
date boundary issues. The Strauss process was chosen because it is a repulsive process that reduces the
likelihood that cluster locations occur too close together in time. Strauss processes are defined by a tem-
poral range of repulsion (R), the strength of repulsion (γ ∈ [0, 1]), and a rate parameter β. Strict repulsion
results when γ = 0 and there is no repulsion when γ = 1. The number of clusters generally increases as
β increases. These parameters are user-specified and sensitivity to the choices of these parameters should
be investigated when fitting the data.

Notation: Let z be a realization of cluster locations from the Strauss process Z on T that is common
for all subjects. For subject i , i = 1, . . . , m, each cluster, z ∈ z, is defined by two marks, αi,z and σ 2

i,z ,
which describe the size and spread, respectively, of a Gaussian-shaped contribution to the intensity function
centered at cluster center z. The joint density of z, αi , and σ 2

i is defined in Section 2.1.2. The αi,z and σ 2
i,z are

often modeled as random effects with a mean and variance that is common for all subjects, but additional
restrictions are possible (e.g., a common αz across subjects for each cluster).
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Table 1. Notation

Pulse location model notation

x Set of pulse locations for a population of subjects
xi Set of pulse locations for subject i

Parameters defining the population intensity function λ(t | z)
z Set of cluster centers common to all subjects
αz Expected number of pulses in cluster z
σ 2

z Variance of the pulse locations in cluster z
ε Rate of non-clustered pulse locations/hour

Parameters defining the subject-level intensity function λi (t | z)
αi,z Expected number of pulses in cluster z for subject i ; αi,z = αz/m
εi Rate of non-clustered pulse locations for subject i ; εi = ε/m

Hormone concentration model notation for subject i

Yi (t) Observed hormone concentration at time t

Pulsatile secretion function, S(t)
(μi,k , νi,k) Pulse mass and width for pulse k
xi,k Pulse location for pulse k
Ni (t) Number of pulses to time t
μμ,i , μν,i Mean pulse mass and width, respectively
	i Variance–covariance matrix for the pulse mass and width

Elimination function E(t)
δi/ log(2) Half-life

Baseline concentration, B(t)
Nκ,i Number of knots in b-spline
ξi Set of Nκ,i knot locations
βs,i Set of b-spline coefficients

Model error
εi j Model error for log hormone concentration at time ti j

σ 2
e,i Model error variance

Level 1 (subject level): For subject i, i = 1, . . . , m, the set of latent pulse locations, xi , is a realization
of a Cox cluster process Xi on T . The Xi are driven by random subject-specific intensity functions,
which we now derive. For each z ∈ z, let Xi,z be an inhomogeneous Poisson process with random intensity
function λi,z(x | z, αi,z, σ

2
i,z) = αi,zφ(x; z, σ 2

i,z), where φ(x; z, σ 2
i,z) is the density of a Gaussian distribu-

tion with mean z and variance σ 2
i,z . The expected number of pulse secretion events in Xi,z is by definition∫

T λi,z(x | z, αi,z, σ
2
i,z) dx . Thus, except at the boundaries, αi,z is the expected number of pulses in clus-

ter z for subject i . Pulses not associated with a population cluster are also allowed. Let this process
Xi,∅ be modeled as an independent homogeneous Poisson process with random time-constant inten-
sity function εi . Then, by the superposition principle (Cox and Isham, 1984), the pulse location pro-
cess for subject i , Xi , is the union of the clustered and non-clustered processes across population clus-
ter centers (i.e., Xi = ⋃

z∈z Xi,z ∪ Xi,∅) with random intensity function, λi (x | z,αi , σ
2
i , εi ) = ∑

z∈z λi,z(x |
z, αi,z, σ

2
i,z) + εi = ∑

z∈z αi,zφ(x; z, σ 2
i,z) + εi .
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2.1.2 Defining the density of the pulse location model. Here we develop the density of the Cox process
for a population of subjects to (1) show how to combine information across subjects and (2) develop other
constraints necessary for estimation.

Combining Level 1 densities for all subjects: As developed above, let Xi be the subject level Cox cluster
process on T driven by random intensity function λi (x; ·), where “·” = [z, {αi,z, σi,z}z∈z, εi ]. Conditioned
on λi (x; ·), the density of the (latent) pulse locations for subject i has the form

π [xi | λi (x; ·)] ∝ exp

{
−

∫
T

λi (s; ·) ds

} ∏
x∈xi

λi (x; ·), (2.1)

where (2.1) is defined with respect to the measure of a unit-rate Poisson process instead of the standard
Lebesgue measure (Cox and Isham, 1984; Møller and Waagepetersen, 2004).

Given that the Level 1 processes are independent across subjects conditioned on λi (x; ·), the joint
density of the pulse locations for all m subjects is the product of the subject-level densities from (2.1):

m∏
i=1

π [xi |λi (x; ·)] ∝
m∏

i=1

exp

{
−

∫
T

λi (s; ·) ds

} ∏
x∈xi

λi (x; ·)

= exp

{
−

∫
T

m∑
i=1

λi (s; ·) ds

}
m∏

i=1

∏
x∈xi

λi (x; ·),

where
m∑

i=1

λi (x; ·) =
m∑

i=1

{∑
z∈z

αi,zφ(x; z, σ 2
i,z) + εi

}

≡
∑
z∈z

αzφ(x; z, σ 2
z ) + ε

and αz = ∑m
i=1 αi,z, σ 2

z = σ 2
i,z , and ε = ∑m

i=1 εi .

The identifiable parameters are αz , σ 2
z , and ε because each subject contributes only a small number of

pulses to each cluster and a small number of non-clustered pulses. In other words, the population intensity
function is better defined than the subject-level intensity functions. To move between the population and
subject models, we further assume that both αi,z and εi are equivalent for all subjects. Thus, αi,z = αz/m
and εi = ε/m, and with these assumptions the subject-level intensity function is a scaling of the population-
level intensity function (λi (x; ·) = ∑

z∈z(αz/m)φ(x; z, σ 2
z ) + ε/m).

2.2 Integrating the pulse location model with the hormone concentration model

2.2.1 Deconvolution model of hormone concentration. We use an existing deconvolution model
(Veldhuis and Johnson, 1992; Johnson, 2003, 2007; Carlson and others, 2009); however, integration with
other hormone concentration models (Keenan and others, 1998; O’Sullivan and O’Sullivan, 1988) is also
plausible.

As in Johnson (2007), let Yi j be the observed hormone concentration for subject i at time ti j , where
i = 1, . . . , m and j = 1, . . . , ni . The times of observations are generally similar for all subjects and so to
simplify notation we use ti j = t j for all i . The convolution model for hormone concentration for subject i
at time t j is as follows:

log{Yi (t j ) + 1} = log

{
Bi (t j ) +

∫ t j

0
Si (u)Ei (t j − u) du

}
+ εi j , (2.2)
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where Bi (t) is a slowly changing baseline component representing non-pulsatile hormone secretion and
Si (t) is the pulsatile secretion rate function. By Ei (t) is denoted the hormone elimination function, and
εi j ∼ N (0, σ 2

e,i ) is the model error at time t j consisting of both biological and technical components. Each
of these components also depends on a set of parameters whose notation is shown in Table 1 but has been
suppressed here for brevity. We model hormone concentration on the log scale because hormone concen-
trations are positive and the error structure is likely multiplicative on the natural scale (Rodbard and others,
1970). The one is added to aid in model fitting.

The pulse secretion rate function is defined as

Si (t) =
Ni (t)∑
k=1

p(t − xk;μ, ν),

with t ∈ (0, T ]. The function p(t − x;μ, ν) is the pulse shape function and is assumed Gaussian in shape,
i.e., p(t − x;μ, ν) = μ exp{(−1/2ν2)(t − x)2}/√2πν2 (Johnson, 2003, 2007; Carlson and others, 2009).
Each pulse is defined by a location, x , a mass μ, and a duration ν. The number of pulses up to time t for
subject i is denoted as Ni (t) and is modeled by the counting process derived from the Cox process pulse
location model (Section 2.1).

To integrate the pulse location and secretion models, we extend the Cox pulse location process to be
a marked process (Cox and Isham, 1984). Thus, for the subject-level process Xi the marked Cox process
includes both the population level parameters in the Cox process and the pulse mass and width parameters
(and their priors).

The hormone elimination function is modeled as a single exponential decay, i.e., Ei (t − u) = e−δi (t−u),

where δi is the decay rate for subject i and δi/ log(2) is the half-life. For this application, the baseline
concentration function, Bi (t), is modeled by a b-spline as described in Johnson (2007) and defined by
b-spline basis coefficients βs,i and corresponding knot locations ξ s,i ; however, a constant baseline could
also be used when appropriate.

2.3 Parameter priors

2.3.1 Prior factorization. The priors for a population of subjects factor as follows:

m∏
i=1

π(xi |z,α, σ 2, ε)

︸ ︷︷ ︸
1a

π(z|β, γ, R)︸ ︷︷ ︸
1b

∏
z∈z

π(αz|μα, σ 2
α )π(μα)π(σ 2

z |μσ , σ 2
σ )π(μσ )π(ε)

︸ ︷︷ ︸
1c

×
m∏

i=1

[
Ni (T )∏
k=1

π((μi,k, νi,k)
′ | μμ,i , μν,i , 	i )

]
π(μμ,iμν,i )π(	i )︸ ︷︷ ︸

2

π(βs,i , ξ s,i , δi , σ
2
e,i )︸ ︷︷ ︸

3

.

In this factorization, (1) and (2) are the components defining the marked Cox process for the pulse
location model. (1a) and (1b) are the Cox process developed in Section 2.1 and (1c) are the prior distri-
butions for the parameters in the Cox process. The parameters in (1b and c) are the new features that
are characterized using this approach. (2) defines the priors on the parameters in the pulsatile secre-
tion function (the marks of the Cox process); (3) defines the priors on the other hormone concentration
parameters (baseline, half-life, and model error). Together (2) and (3) defined the deconvolution model for
concentration.
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2.3.2 Priors for parameters defining the Cox cluster process (1c). We implemented two models for the
Cox cluster process. In the first model, the priors on the expected number of pulses in each cluster in the
population, αz , and the variance of the pulse locations in each cluster, σ 2

z , vary from cluster to cluster and
are defined hierarchically as follows:

∏
z∈z

π(log αz|μα, σ 2
α )π(μα), where log αz ∼ N (μα, σ 2

α );μα ∼ N (mα, v2
α),

∏
z∈z

π(log σ 2
z |μσ , σ 2

σ )π(μσ ), where log σ 2
z ∼ N (μσ , σ 2

σ );μσ ∼ N (mσ , v2
σ ).

Values for σ 2
α and σ 2

σ could also be estimated and have corresponding priors, but for this work are fixed
and set to reflect that there is similarity in the expected number and spread across clusters.

In the second model, the expected number of points in each cluster and the variance of each cluster
were common across clusters (i.e., αz = α and σ 2

z = σ ) and were defined as follows:

π(log α|mα, v2
α), where log α ∼ N (mα, v2

α),

π(log σ 2|mσ , v2
σ ), where log σ 2 ∼ N (mσ , v2

σ ),

and mα, v2
α and mσ , v2

σ are set by the user. When ε was estimated, the prior was log ε ∼ N (με, σ
2
ε ). The

specific values chosen for these parameters can be found in Section 3.2. We used the same priors for (2)
and (3) as in previous work (Johnson, 2007). For brevity, the exact prior distributions and values of the
parameters in (2) and (3) can be found in Table S1 of supplementary material available at Biostatistics
online.

3. ESTIMATION

We developed a spatial birth-and-death MCMC (SBDMCMC) algorithm to estimate our posterior dis-
tribution. Convergence of this sampler follows from arguments similar to Geyer and Møller (1994) and
Stephens (2000). Implementation details are provided in Section 3.2. The steps of the algorithm are pro-
vided in Section 1 of supplementary material available at Biostatistics online.

3.1 The simulated data

We simulated data to impose either strong (σ 2
z = 0.1 h2) or weak (σ 2

z = 0.5 h2) clustering of pulse locations
across subjects. The number of pulses for each individual for each cluster was modeled as a Bernoulli with
a success probability of 0.8. Thus, the expected number of pulses in each population cluster, αz , was 20.8.
The underlying cluster center process, z, was simulated as a multiscale Strauss process (Penttinen, 1984);
i.e., π(z) ∝ βC

∏2
l=1 γ

sl (z)
l , where sl = ∑

zq ,z′
q∈z(‖zq − zq ′ ‖ < Rl). We set γ1 = 0 and R1 = 0.6 h, γ2 = 0.1

and R2 = 1.5 h, and β = 8. In a third simulation, we simulated pulse locations using a renewal process,
which resulted in no clustering in pulse locations across subjects. Figure 2 shows representative pulse
location intensity functions for the three simulations. When generating data with clustered pulse locations,
100 sets of 26 subjects’ pulse locations were simulated. When generating from the renewal process, 20 sets
of 26 subjects’ pulse locations were simulated. Hormone concentration profiles were generated using the
deconvolution model (Equation (2.2)) with sampling every 10 min for 24 h. Information on the pulse and
hormone-specific parameters can be found in Section 2 of supplementary material available at Biostatistics
online.
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(b) (c)(a)

Fig. 2. Simulated and fitted intensity function for a randomly selected simulation for each model: (a) Strong clustering,
(b) Weaker clustering, and (c) No clustering. Each simulated dataset had 26 subjects. The top panel represents the true
intensity function (solid line) and the estimated intensity function (dashed line). The gray lines are the 10% and 90%
pointwise credible intervals. The height of the peaks is αz . The width of the peaks is σ 2

z . The peak center locations
make up z. The second panel shows the posterior distributions of the estimated cluster centers.

3.2 Implementation and summarization for simulated and experimental data

The prior on the cluster locations imposed strict repulsion between cluster locations (γ = 0, β = 2,
R = 0.6 h, no clusters could be within 36 min of each other). This increased the chance of identifying
distinct cluster regions rather than slight deviations from the Gaussian assumption. These parameters were
chosen to correspond to the expected number of pulses over the period of observation for each subject
based on previous clinical knowledge. Another approach to choosing R is to assume no repulsion and
visually assess the distance between distinct clustering regions. We investigated sensitivity to the repul-
sion assumption by also fitting a no-repulsion model (γ = 1). The sensitivity to the rate parameter in the
cluster center prior was investigated by doubling β and halving it. The shape of the intensity function was
not dependent on β; however, when there was no repulsion and β was much larger than truth, clusters were
occasionally modeled by two smaller clusters closer in time. In practice it may be useful to set β lower
than might be expected.

When fitting the simulated data, we assumed that cluster parameters were common across clusters
(i.e., αz = α and σ 2

z = σ 2, model 2 described in Section 2.3.2). The prior on log α was set to a mean of
log(0.8 × 26) with a variance of 100 log pulses2 and the prior mean of log σ 2 was −2.3 with a variance of
10 log hours2. When fitting the experimental data, we fitted a variety of models where αz and σ 2

z varied
from cluster to cluster (model 1 in Section 2.3.2) and where αz and σ 2

z were common across clusters (model
2 in Section 2.3.2). The priors on the means of the cluster size and spread were as above. The variances
of log αz and log σ 2 were set to 1.0 and 0.5, respectively, and not estimated. In addition, we fitted models
where the non-clustered process rate parameter, ε, was fixed and estimated. The prior mean for ε was set at
1.1 pulses/24 h with a variance of 10 when ε was estimated. The values in these priors were chosen based
on visual assessment of previous analyses. In general, there is limited sensitivity to the priors when they
are vague. One exception is if the mean of the prior on log σ 2 is quite large compared with the distance
between the clusters. This makes it more likely that extremely large variances may be simulated early in
the algorithm and quick convergence of the MCMC algorithm becomes questionable.

Parameters were initialized based on the estimates from the primary analyses of these data
(Young and others, 2001). In addition, subjects were initialized to have one randomly located pulse for
each subject, and the Cox cluster model was initialized to have one randomly located cluster. The starting
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value of the variance of the pulse locations in each cluster in the Cox process (σ 2) was sometimes impor-
tant. When the starting value of the variance is high (e.g., larger than the typical distance between clusters),
σ 2 often becomes extremely large, making it difficult to identify the cluster centers. We recommend start-
ing the variance at a small value (e.g., 0.05–0.25 h2) allowing for convergence from below and did this for
both the simulations and the experimental data fits. Model fit was assessed graphically by generating a
sample from the posterior predictive distribution and plotting the mean and 80% credible interval with the
observed hormone concentration data.

For the simulated data, one chain of 150 000 iterations was run for each of the 100 sets of data. For
the experimental data, one chain of 225 000 iterations was run for each model estimated. The first 20 000
iterations of each chain were treated as burn-in and discarded. Thereafter, every 50th iteration was saved
and used for summarizing the posterior distributions. We assessed convergence and mixing visually using
trace plots of the draws (see Figure S4 of supplementary material available at Biostatistics online). Each
simulation took ∼16 h to run on a single 2.93 GHz processor. Run times increased the more parameters
that varied across clusters.

4. RESULTS

4.1 Simulation

The bias and coverage of the individual parameters in the Cox process were small under strong clustering
(Table 2) and the estimates of the individual cluster centers were unbiased [average bias of −0.09 h (SD =
0.1), data not shown]. The slight biases in the parameters resulted in an upward bias in the expected number
of pulses over the day (Table 2). The false-positive and -negative rates for finding individual pulse locations
were both 8%. When the clustering was weaker, the parameters were unbiased with the exception of the
number of clusters, which was biased high. The estimates of the individual cluster centers were unbiased
[average bias of −0.07 h (SD = 0.1), data not shown] and the bias in the expected number of pulses over the
day was similar to the strong clustering model. This suggests that the additional clusters estimated partially

Table 2. Estimation properties of intensity function parameters for simulated data assuming strict repulsion
in the cluster locations and common cluster parameters. Values are medians and interquartile ranges.

Coverage was obtained using 95% equal-tails credible intervals

Truth PM Width 95% CI Bias of PM Coverage of
Parameter (IQR) (IQR) (IQR) (IQR) 95% CI

Strong clustering
Exp. number of pulses 10.1 (9.8, 10.8) 11.9 (10.9, 12.9) 3.1 (2.9, 3.3) 1.6 (1.1, 2.2) 39
Number of clusters (C) 13 (12, 14) 13 (12, 14) 3 (3, 4) 0 (0, 1) 99
Number of pulses/cluster (α) 0.80 0.88 (0.85, 0.92) 0.31 (0.29, 0.33) 0.08 (0.05, 0.12) 85
σ 2 (hours2) 0.10 0.10 (0.09, 0.12) 0.07 (0.06, 0.07) 0.00 (−0.01, 0.02) 91

Weaker clustering
Exp. number of pulses 10.0 (9.4, 10.9) 11.1 (10.2, 12) 3.0 (2.7, 3.1) 0.94 (0.6, 1.3) 80
Number of clusters (C) 12 (11, 13) 14 (13, 14) 8 (7, 9) 2 (1, 3) 96
Number of pulses/cluster (α) 0.80 0.80 (0.72, 0.88) 0.53 (0.44, 0.77) 0.00 (−0.08, 0.08) 100
σ 2 (hours2) 0.50 0.46 (0.39, 0.78) 0.94 (0.56, 6.20) −0.04 (−0.11, 0.29) 88

No clustering
Exp. number of pulses 14 (13,14) 14.4 (14.2, 14.6) 3.3 (3.3, 3.4) 0.55 (0.46, 0.77) –
Number of clusters (C) – 13 (13, 13) 7 (7, 7) – –
Number of pulses/cluster (α) – 1.4 (1.3, 1.5) 6.2 (4.5, 8.5) – –
σ 2 (hours2) – 14.5 (11.2, 17.4) 3380 (1979, 6516) – –

PM, posterior median; IQR, interquartile; CI, credible interval; Exp., expected.
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in the boundary regions. The fits of the intensity functions were good for both models (Figure 2). The
results for the individual-level parameters can be found in Table S2 of supplementary material available
at Biostatistics online. The results were similar under a no-repulsion model of the cluster centers (see
Table S3 of supplementary material available at Biostatistics online).

We assessed the models’ ability to differentiate between strong and weak clustering. These two models
only differed in the cluster variance parameter. The posterior distributions were nearly completely separated
in all 100 simulations, with the posteriors for the strong clustering simulations concentrating around higher
values in every case.

Assuming a clustering model when the data were not clustered resulted in an essentially flat estimated
intensity function (Figure 2). The posterior of the locations of the cluster centers was uniform over the
period of observation (bottom panel of Figure 2(c)). The posterior distributions of the number of events in
a cluster and the variance of the clusters often covered implausibly large values (e.g., interquartile ranges
containing values that were longer than the period of observation). These findings show that assuming
clustering when fitting does not induce clustering when it is not present. Further, the estimated intensity
function provides an expected number of pulses that are consistent with truth, and the fits have low false-
positive (8%) and -negative (1%) rates.

4.2 Example: ACTH and Cortisol in depression

4.2.1 Differences in depressed and non-depressed. The posterior distributions for the parameters
defining a depressed and non-depressed groups pulse locations model largely overlapped, indicating the
parameters defining the intensity functions for the depressed and non-depressed groups were similar
(Table 3). Visually both depressed and non-depressed groups exhibited an increase in the number of
pulses per hour during the early morning hours (Figure 1). For ACTH, there was some visual clustering in
the depressed subjects. A more diffuse intensity pattern was seen in the non-depressed. For Cortisol, the
depressed and non-depressed subjects had essentially identical patterns in the estimated intensity function.
(Figure 1).

4.2.2 Differences in ACTH and cortisol patterns. The parameters defining the intensity functions were
similar for ACTH and cortisol, with the exception of the mean of the cluster widths (log μσ 2 ; Table 3).
The posterior distributions for the mean cluster widths were nearly separate for ACTH and cortisol. The
posterior for cortisol concentrated around a smaller cluster width (posterior medians: −2.3 log hours2 for
cortisol vs. −0.7 and −1.1 log hours2 for ACTH controls and depressed, respectively). The average cluster
width for cortisol was more consistent with strong clustering in pulse times across subjects. For cortisol,
pulses for each subject were more likely to occur around 10 am and approximately every 2 h afterwards
(Figure 1). For ACTH, the average cluster width was more consistent with a weak to no-clustering model.
Both ACTH and cortisol exhibited circadian rhythms in the intensity function with more events occurring
per hour in the early morning hours. For ACTH, peak intensities were ∼3 events/hour/subject in the early
morning surge and fell to ∼0.25 events/hour/subject in the evening period. For cortisol, peak intensities
were also in the early morning surge (4.5 events/hour/subject) and fell to 2 events/hour/subject in the
evening hours.

4.2.3 Sensitivity analyses. We fitted models where the cluster parameters were (1) common across clus-
ters (Model 2 in Section 2.3.2) and (2) varied from cluster to cluster (Model 1 in Section 2.3.2) to investi-
gate the necessity of less versus more flexibility in the cluster-specific features. We also investigated strict
repulsion and no repulsion in the cluster center prior.

All of the models fitted resulted in a similar shape of the intensity function defining the pulse location
model (see Figure S5 of supplementary material available at Biostatistics online). However, the parameters
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Table 3. Summary of posterior distributions of parameters in the Cox cluster process for ACTH and
cortisol for control and depressed subjects assuming strict repulsion and allowing cluster parameters to

vary across clusters

Pulse location model parameters

ACTH Cortisol

Control Depressed Control Depressed

Parameter PM 95% CI PM 95% CI PM 95% CI PM 95% CI

Expected number of
†Pulse events 21.3 (17.2, 25.8) 26.6 (21.8, 32.2) 31.9 (27.0, 37.7) 30.4 (25.8, 35.5)
Number of clusters (C) 13.3 (10, 16) 14.4 (12, 17) 12.7 (12, 14) 12.7 (12, 15)
‡log μα 3.2 (2.4, 4.0) 3.5 (2.9, 4.2) 3.9 (3.3, 4.5) 3.9 (3.3, 4.5)
§log μσ 2 −0.7 (−1.7, 0.5) −1.1 (−1.8,−0.3) −2.3 (−2.9,−1.9) −2.3 (−2.7,−1.8)

Individual-level hormone concentration and pulse parameters

ACTH Cortisol

Control Depressed Control Depressed

Parameter MPM SE MPM SE MPM SE MPM SE

Number of pulses 22.6 0.5 27.8 0.5 32.4 0.7 31.5 0.7
¶μμ 3.0 0.3 2.8 0.3 5.2 0.4 5.1 0.5
‖δ/ log(2) 19.5 1.5 19.1 1.3 23.8 1.5 28.3 1.9

PM, posterior mean; CI, equal-tails credible interval; MPM, mean of the posterior means; SE, standard error of the posterior means.
†Events per subject per day.
‡Log of the mean # of secretion events per cluster.
§Log of the mean of the variances of the clusters.
¶Mean pulse mass.
‖Half-life.

defining the intensity functions differed. The overall expected number of pulses per day per subject for
cortisol ranged from 29.5 (SD = 2) to 45.4 (SD = 3) pulses/day/subject. Further inspection of the estimated
pulse locations revealed that the models differed in the number of Gaussian components used to model
each pulse rather than an increase in biologically independent pulse events. Pulses being modeled with
more than one Gaussian component were more frequent for models with restrictions on αz and σ 2

z (e.g.,
the same α and σ 2 for all clusters).

As expected, the mean number of clusters, C , was higher for the no-repulsion priors (see Table S4 of
supplementary material available at Biostatistics online). There were also slightly fewer pulses per cluster,
μα , and a slightly narrower spread of the pulses in a cluster, μσ . These patterns held for both hormones
and for both groups of subjects. Visual assessment of the intensity functions and posterior distributions of
cluster locations indicated that the additional clusters were modeling slight deviations from the assumed
normal distribution shape of the clusters. Thus, the strict repulsion prior was more useful for identifying
distinct regions of clustering.

5. DISCUSSION

We developed a new more flexible model of the latent pulse location process governing pulsatile hormone
data. Although we focused on Cox cluster processes, other Cox processes (e.g., log Gaussian Cox pro-
cesses) should produce similar results. This approach is unique in that it is flexible enough to capture both
circadian changes and strong-to-weak clustering in pulse release times in the population.

A strength of our approach is that it integrates the latent pulse-generating process with the deconvolution
model. This approach incorporates estimation uncertainty of all parameters in the estimation of all other
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parameters. One challenge in jointly modeling the pulse location and hormone concentration processes is
that the deconvolution model (Equation (2.2)) does not restrict a pulse to be modeled by only one secretion
event. While this is advantageous in that any shape and size pulse can be accurately modeled, it presents
an identifiability challenge when estimating the pulse location model. Careful investigation of the subject
pulse locations and the intensity function is necessary to examine whether differences in patterns are more
likely due to changes in the intensity versus just differences in the number of events used to model each
pulse.

It is possible to impose a firm time constraint between pulses by changing the distribution of the number
of events in a cluster from a Poisson to a Bernoulli. The intensity function would be an independent cluster
model (Lawson and Denison, 2002). This approach is being investigated in future work.

We uncovered a common temporal component in the pulse location times where subjects often have
pulses at similar clock times, particularly in cortisol. This pattern has not been previously characterized.
We interpret these results as evidence of the existence of one or more external regulators such as feeding
or waking, which were common across subjects by the study protocol. A competing explanation may be
that subjects are just tightly regulated in their inter-pulse intervals, although this explanation requires a
mechanism to coordinate pulse times, not just frequencies. We investigated the plausibility of this second
explanation via simulation. We simulated hormone release patterns on 25 subjects. Each subject had the
same first pulse location and subsequent locations were generated using a common inter-pulse interval
distribution with a mean and variance similar to the original analysis of these data (Young and others,
2001). Within 2 h, the pulse locations quickly disperse in clock time, and thus lack the visual clustering
evident in simulated pulse locations from our Cox model (data not shown), and in the real data. This brief
exercise provides further support to our interpretation that clustering in the locations indicates an influence
of external factors on the pulse regulator.

Previous analyses of the pulse location model were performed in Liu and Wang (2007). Their inten-
sity function for ACTH were similar; however, their intensity function for cortisol was smoother and had
limited evidence of clustering in pulse locations compared with ours. There were several differences in
the hormone concentration models that could explain this difference. Of importance, our model incorpo-
rates a changing baseline for cortisol, while the previous analysis assumes a constant baseline. Ignoring
the circadian baseline pattern may result in additional pulses being added to achieve the correct hormone
level. This could disrupt the clustering signaling because additional pulses may be added in more random
locations.

We fitted each group and hormone separately. Gains in posterior precision of the parameters of interest
may be possible by modeling both groups together in a single model. This is because parameters that are
similar across groups could be estimated by all available data. Implementation of this extension is being
investigated as future work.

We have presented a new approach to modeling pulsatile hormone data that is capable of characterizing
complex temporal and clustering patterns in the pulse locations. This new approach uncovered previously
unseen patterns in cortisol secretion that may be informative as biomedical investigators consider future
hypotheses and treatments involving the stress axis.

6. SOFTWARE

Software in the form of C code, together with a sample dataset and documentation is available as Supple-
mentary Material.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxv046/-/DC1
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