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Abstract

Motivation: Recent advances in high-throughput omics technologies have enabled biomedical re-

searchers to collect large-scale genomic data. As a consequence, there has been growing interest

in developing methods to integrate such data to obtain deeper insights regarding the underlying

biological system. A key challenge for integrative studies is the heterogeneity present in the differ-

ent omics data sources, which makes it difficult to discern the coordinated signal of interest from

source-specific noise or extraneous effects.

Results: We introduce a novel method of multi-modal data analysis that is designed for heteroge-

neous data based on non-negative matrix factorization. We provide an algorithm for jointly decom-

posing the data matrices involved that also includes a sparsity option for high-dimensional

settings. The performance of the proposed method is evaluated on synthetic data and on real DNA

methylation, gene expression and miRNA expression data from ovarian cancer samples obtained

from The Cancer Genome Atlas. The results show the presence of common modules across patient

samples linked to cancer-related pathways, as well as previously established ovarian cancer

subtypes.

Availability and implementation: The source code repository is publicly available at https://github.

com/yangzi4/iNMF.

Contact: gmichail@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Technological advances allow biomedical researchers to collect a

wide variety of omics data on a common set of samples. Data reposi-

tories such as The Cancer Genome Atlas (TCGA) provide multiple

types of omics data, thus enabling in-depth investigation of molecular

events at different stages of biology and for different tumor types.

However, the latter task requires developing methods for data integra-

tion, a topic that has received increased attention in the literature.

In genomic studies, the integration of multifaceted data is

becoming increasingly viable and insightful (Gehlenborg et al.,

2010; Imielinski et al., 2012; Jörnsten et al., 2011; Mo et al., 2013).

Cellular signals and processes depend on the coordinated interaction

and communication among a wide variety of biomolecules including

genes, proteins, metabolites and epigenetic regulators. There are

multiple layers in which regulation takes place and therefore mul-

tiple vantage points from which to observe biological activity. A

joint analysis of data on the same set of samples from multiple omics

sources has potential to achieve more perceptive results over separ-

ate analyses, as well as provide a more comprehensive global view

of the biological system.

A key challenge for integration methods is dealing with heteroge-

neous data. Data from different sources are difficult to compare due

to inherent discrepancies. Different genomic variables are measured

and collected in different ways, and they are associated with
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different types of noise and confounding effects. Most importantly,

they represent different aspects of the biological system. The discrep-

ancy among data sources contributes to a useful multifaceted view

of the system, but it also brings forth a new level of complexity that

makes it hard to distinguish the coordinated signal.

There are many integration techniques that deal with the com-

plexity of multiple sources by relying on prior knowledge of the rela-

tionships that connect them. Some procedures seek to map different

experimental data types, such as gene expression (GE), miRNA ex-

pression (ME) and copy number variation to a common space of

known biological pathways or sets (Khatri et al., 2012; Mitrea et

al., 2013 and references therein). Others select features or assign

weights to features based on prior knowledge, possibly using such

information in a linear-based model (Jauhiainen et al., 2012; Jensen

et al., 2007; Stingo et al., 2011) or in a framework for identifying

modules (Li et al., 2012; Srihari and Ragan, 2013). All these

approaches require the consultation of an external resource, such as

signaling pathways or gene interaction networks. While this super-

vised approach is convenient (and sensible in certain respects), it

relies heavily on the external information being valid and represen-

tative, which is not always guaranteed, even in the modern era of

data availability. In addition, relating variables based on previously

established findings can introduce an element of bias and subjectiv-

ity that hinders the discovery of new associations.

In contrast to such supervised approaches, our objective is to de-

velop an integration method that directly leverages the advantage of

multiple data sources to deal with heterogeneity. In multiple data-

sets, the signal of interest is typically common among all sources

(homogeneous), while extraneous effects tend to differ across sour-

ces (heterogeneous). The main principle of our approach is to separ-

ate the homogeneous and heterogeneous effects among the sources

to extract the coordinated signal from extraneous noise. Many exist-

ing integration techniques similarly make the distinction between

common and distinct effects across sources, such as those extending

the Dirichlet mixture model (Lock and Dunson, 2013) and principal

component analysis (PCA, Lock et al., 2013).

Our proposed method extends an integrative non-negative matrix

factorization (NMF) framework (Zhang et al., 2012) via a partitioned

factorization structure that captures homogeneous and heterogeneous

effects. A novel tuning selection procedure allows the model to adapt to

the level of heterogeneity among the datasets. We apply our approach

to an integrated study of ovarian cancer involving three types of gen-

omic variables and discover multi-dimensional modules exhibiting topo-

logical patterns of expression across known cancer-related pathways.

2 Methods

2.1 NMF
NMF is a powerful tool for data reduction and exploration that has

seen popular use in analyzing high-throughput genomic data

(Brunet et al., 2004; Devarajan, 2008; Tamayo et al., 2007). The

method is related to PCA, except that it employs the constraint of

non-negativity in lieu of orthogonality. As a result, NMF solutions

are less uniquely defined but are more interpretable.

Given non-negative data matrix XN�M, NMF finds a non-nega-

tive factorization WH of rank D that best approximates X, typically

in terms of the Frobenius norm (Lee and Seung, 1999):

minW;H jjX�WHjj2F
s:t: W�0;H�0:

While Euclidean distance assumes a Gaussian distribution of values,

alternative formulations of NMF using Bregman divergences have

been proposed (Sra and Dhillon, 2005). Bregman divergences, which

bear a strong connection with exponential families (Banerjee et al.,

2005), emcompass a wide range of distributional assumptions (e.g.

Poisson, Exponential and probabilistic distributions). Although we

use Euclidean distance in the formulation of our method later, alter-

native loss functions may be accommodated via adjustments to the

algorithm.

The factor HD�M contains the basic components of the data,

while the elements of WN�D can be thought of as latent factors asso-

ciated with these components. Thus, each observation (row of X) is

approximated by a linear combination of components (rows of H)

with weights given by each row of W. The full data are explained by

a sum of additive parts. In biological contexts, this is intuitive be-

cause biological entities and mechanisms can be naturally described

with a signal that is either present or absent.

Because of the constraint of non-negativity of the approximation

elements, solutions to NMF are only unique up to scalings and rota-

tions. Specifically, scaling and rotating the columns of W and rows

of H appropriately will not alter the overall matrix product WH.

For this reason, what is of interest in practice is not the values of the

matrix elements, but their relative magnitudes in each column of W

or row of H.

At its core, NMF views the data from a different vantage point

(the origin) than orthogonality-based approaches (center of mass)

such as PCA, partial least squares regression and canonical correl-

ation analysis. Besides being more intuitive, this also offers certain

advantages such as the ability to capture context-dependent patterns

(Devarajan, 2008). Meanwhile, for our purposes, the flexibility of

the factorization is also convenient for dealing with heterogeneous

data.

2.2 Joint NMF
Joint NMF (jNMF) was developed as an extension to NMF for inte-

grating multiple datasets with a common set of observations (Zhang

et al., 2012). For K data matrices ðX1ÞN�M1
; . . . ; ðXKÞN�MK

, the for-

mal problem is:

min
W;H1;...;HK

XK

k¼1

jjXk �WHkjj2F

s:t: W�0;Hk�0;k ¼ 1; . . . ;K;

with WN�D; ðHkÞD�Mk
producing K rank D approximations. The

method can be described as multiple NMF problems subject to a

shared factor matrix. Other decomposition-based integration meth-

ods have been proposed, including multiple canonical correlation

analysis (Witten et al., 2009), multi-block partial least squares (Li

et al., 2012) and Joint and Individual Variation Explained (Lock

et al., 2013). Such approaches use the orthogonality constraint,

whereas jNMF and our proposed method employ non-negativity.

The method was shown to be able to detect coordinated activity

across multiple genomic variables in the form of multi-dimensional

modules. The exact definition of modules slightly differs across stud-

ies (Jin and Lee, 2015; Li et al., 2012; Roy et al., 2013), but their

general purpose is to group variables based on common function or

association. This serves as a useful preliminary step to reduce the

dimensionality of the problem. Multi-dimensional modules capture

common signals across multiple sources of data (Fig. 1a). In jNMF,

as well as in our method, each module represents a biclustering of

both observations and variables, which can be visualized as a block

in the data matrix after appropriate rotation.

A limitation of jNMF is that it is not methodologically different

from standard NMF. In fact, it is easy to show that the problems are
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equivalent by setting ~X ¼ ðX1; . . . ;XKÞ and ~H ¼ ðH1; . . . ;HKÞ. As a

consequence, the optimization step of jNMF does not distinguish be-

tween different variable sources when integrating, which is problem-

atic for heterogeneous data.

The toy example in Figure 1 illustrates this. The heatmaps

(Fig. 1a) depict two scenarios of a three-source integration problem.

In Scenario 1, three modules are easily distinguishable in all sources

as blocks, which associate different subsets of variables with the

common observation groups. Scenario 2 contains the same data, ex-

cept with added noise (generated as discussed in Section 3.1). In par-

ticular, the additional block structures that are misaligned with the

underlying modules represent confounding effects that vary from

source to source.

Figure 1b plots (in low-dimensional space) the data and the cor-

responding solutions of jNMF and our proposed method (iNMF).

Both methods clearly distinguish the signal when the signal is clean

(Scenario 1), but jNMF is less robust to heterogeneous noise across

the sources (Scenario 2). While jNMF is very effective for detecting

homogeneous effects, its factorization structure WHk leaves no

room for heterogeneous approximations. As a result, jNMF is sensi-

tive to random noise and confounding effects, because they typically

differ in structure across sources. We seek to remedy this via ex-

panding the factorization structure.

2.3 Integrative NMF
Our proposed method, integrative NMF (iNMF), leverages the ad-

vantage of multiple data sources to gain robustness to heterogeneous

perturbations. While jNMF considers homogeneous effects WHk,

iNMF additionally considers heterogeneous effects VkHk. Formally,

for non-negative observationally-linked datasets X1; . . . ;XK as

defined previously, the optimization problem is the following:

min
W;H1 ;...;HK ;

V1 ;...;VK

XK

k¼1

jjXk � ðW þVkÞHkjj2F þ k
XK

k¼1

jjVkHkjj2F

s:t: W�0;Hk�0;Vk�0;k ¼ 1; . . . ;K:

To retain identifiability, we penalize the Frobenius norm of the

heterogeneous effects VkHk, as WHk can always be expressed in

terms of VkHk but not vice-versa. Rewriting

VkHk ¼ ðW þ VkÞHk �WHk, we see that the objective function is

simply a partitioned version of the jNMF objective, which penalizes

Xk �WHk.

The idea of combining homogeneous and heterogeneous parts

across sources is reminiscent of the one-way analysis of variance

model, in which the total variation is explained by joint and individ-

ual effects across groups: yi ¼ lþ aj þ �ij. However, while the ana-

lysis of variance common effect l is estimated to be the sample

mean, the iNMF homogeneous effect W is actually the element-wise

minimum of the approximated latent factors W þ Vk, since Vk�0.

For this reason, W;Vk cannot be directly used to infer the level of

joint and individual effects among the sources, since W will be over-

estimated (and Vk underestimated) when parts of the individual ef-

fects are homogeneous. Thus, it is more appropriate to refer to

W;Vk as approximations of the true joint and individual effects ra-

ther than their estimates.

Interestingly, restricting W�0;Vk�0 is methodologically

equivalent to restricting W þVk�0;Vk�0. In the latter, the

approximated common factor W represents the element-wise max-

imum of W þ Vk, rather than the element-wise minimum.

Therefore, imposing non-negativity on Vk does not lead to bias

issues but instead a particular perspective on the joint effects. It is

also possible to allow for both positive and negative values for Vk if

we set W ¼ meanðVkÞ, for instance.

The parameter k can be viewed as the homogeneity parameter,

since larger values induce smaller VkHk. When datasets from mul-

tiple sources contain homogeneous elements, performing separate

analyses (k¼0) sacrifices power; when datasets contain heteroge-

neous elements, a purely joint analysis (k ¼ þ1) is sensitive to ex-

traneous noise. Real data consists of a mixture of homogeneous and

heterogeneous elements, and likewise iNMF functions as a mixture

of jNMF and NMF.

2.4 Algorithm
The classical algorithm for NMF was introduced by Lee and Seung

(2001) and consists of simple multiplicative updates derived from

auxiliary functions. Over the years, new approaches based on gradi-

ent descent and alternating least squares have been proposed (Berry

et al., 2007; Lin, 2007), which offer faster convergence and better

convergence guarantees. However, these alternatives generally in-

volve an explicit projection step to ensure non-negativity of solu-

tions, whereas with multiplicative updates non-negativity is

Fig. 1. (a) An example of multi-dimensional modules across three different data sources. Three modules are distinguishable in Scenario 1 as strong associations

between subsets of variables across sources and a common subset of observations. Scenario 2 contains the same data with added random noise and confound-

ing effects. (b) Low-dimensional representations of the data (X2), jNMF approximations (W) and iNMF approximations (W). The modules are clearly detected by

both methods in Scenario 1 but only by iNMF in Scenario 2 (Color version of this figure is available at Bioinformatics online.)
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implicitly guaranteed. We base our algorithm for iNMF on the ori-

ginal method of Lee and Seung (2001), as it provides a more natural

and flexible foundation from which to develop extensions.

Beginning with random positive initializations, we perform the

following element-wise updates at each iteration until convergence:

Wij  Wij

ð
X

k

XkHT
k Þij

ð
X

k

ðW þ VkÞHkHT
k Þij

ðHkÞij  ðHkÞij
ððW þVkÞTXkÞij

ððW þ VkÞTðW þ VkÞHk þ kVT
k VkHkÞij

ðVkÞij  ðVkÞij
ðXkHT

k Þij
ððW þVkÞHkHT

k þ kVkHkHT
k Þij

:

Since the iNMF objective function is non-convex, one should per-

form many repetitions and choose the minimizer of the objective

function as the final solution. The proof of monotonicity of the ob-

jective function under these updates is provided in Supplementary

Section S1.

2.5 Sparse formulation
Although NMF naturally gives rise to parsimonious solutions (Lee

and Seung, 1999), sparsity can be further induced via penalization.

We adopt a method similar to the one used in Mankad and

Michailidis (2013), which applies the L1-norm to elements of Hk.

This produces a slightly different objective function:

XK

k¼1

jjXk � ðW þ VkÞHkjj2F þ k
XK

k¼1

jjVkHkjj2F þ ks

XK

k¼1

jjHkjj1;

and algorithm:

Wij  Wij

ð
X

k

XkHT
k Þij

ð
X

k

ðW þVkÞHkHT
k Þij

ðHkÞij  ðHkÞij
ððW þ VkÞTXkÞij

ððW þ VkÞTðW þ VkÞHk þ kVT
k VkHkÞij þ ks

ðVkÞij  ðVkÞij
ðXkHT

k Þij
ððW þ VkÞHkHT

k þ kVkHkHT
k Þij

:

A similar sparsity formulation involving the same penalization term

can be derived for jNMF.

2.6 Tuning selection
As with other sparse NMF formulations (Gao and Church, 2005;

Kim and Park, 2007; Mankad and Michailidis, 2013), the sparsity

parameter ks is best left to be chosen manually to adjust for inter-

pretability, although too large of a choice leads to degenerate solu-

tions. For selecting the number of modules D, a common method is

to use a consensus-based approach (Brunet et al., 2004), which de-

termines the credibility of each tuning choice based on the stability

of the corresponding solutions. From basic intuition, given the most

appropriate ranks Dk; k ¼ 1; . . . ;K for individual datasets, the inte-

grated rank should lie somewhere between maxkDk and
P

kDk.

However, it is sometimes preferable to choose a smaller rank for a

simpler representation consisting of the top D modules.

Although a consensus-based strategy may be used for the homo-

geneity parameter k, the nature of the iNMF framework allows a sim-

pler procedure. To separate the homogeneous and heterogeneous

parts, we rely on measuring the level of heterogeneity across the sour-

ces. We do this by comparing the objective values of jNMF, which

represent complete homogeneity, and separate NMFs (sNMF), which

represent complete heterogeneity.

Given a decreasing sequence of k, the procedure is as follows:

1. Perform jNMF and sNMF on the datasets and store the

unsquared residual quantities:

RJ ¼
X

k

jjXk �WðJÞH
ðJÞ
k jjF;RS ¼

X

k

jjXk �W
ðSÞ
k H

ðSÞ
k jjF :

2. For each k in the decreasing sequence:

a. Perform iNMF with homogeneity parameter k and store:

R
ðkÞ
I ¼

X

k

jjXk �WðI;kÞH
ðI;kÞ
k jjF:

b. If R
ðkÞ
I � RJ > 2ðRJ �RSÞ, then stop and select the previous k.

By selecting the smallest k for which the threshold is not exceeded,

we seek to attribute as much of the data as possible to heterogeneous

effects (VkHk) before overfitting. Here, overfitting is detected when

the difference between the iNMF and jNMF residuals, R
ðkÞ
I � RJ, be-

comes significantly large, as typically we would expect jNMF to de-

tect some of the joint signal. More discussion on this procedure can

be found in Supplementary Section S2.

3 Results

3.1 Simulation study
We compare jNMF and iNMF based on their abilities to identify the

structure of the true modules, which amounts to identifying the cor-

rect biclusters of observations and variables. We generated data

based on a joint block diagonal structure representing the modules

(or joint effects) of interest. We then perturbed the data using three

different methods, as follows. To simulate heterogeneous effects

from extraneous factors, we randomly add blocks with probability

rh to the base structures. These blocks are aligned with the columns

of the modules but not their rows so as to be heterogeneous with re-

spect to variable sources. To simulate random noise, we applied two

types of error (scattered and uniform) independently to each data

cell. Scattered error switches each entry value between zero and

nonzero with probability rs, while uniform error adds a random

Unifð�ru;ruÞ variable to the entry and takes the absolute magni-

tude. Further details on the data generation process can be found in

Supplementary Section S3. The final generated data matrices resem-

ble those in the bottom row of Figure 1a.

The Frobenius norm error of the approximation is not useful

here as a performance measure, since the goal is to identify the true

modules rather than to approximate the data. Instead, we measure

the level of signal detected relative to noise by considering the matri-

ces WHk, which represent the approximated homogeneous effects.

For each dataset Xk, the module detection score S is defined as:

S ¼ ðlsignal � lnoiseÞþ=lsignal;

where lsignal; lnoise are the averages of the values of WHk that lie in-

side and outside of the true modules, respectively. This score is in-

variant to rotations and scalings of W;Hk, and it measures how well

observations and variables are grouped according to the true mod-

ules. We take the average score S over all K data sources as the final

module detection score.
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We compared the performance of jNMF and iNMF (200 repeti-

tions used in each) under four different data scenarios: baseline (i),

large number of modules (ii), large size of modules (iii) and large

number of datasets (iv). Figure 2 plots the average ratios between

the iNMF and jNMF detection scores. Under high levels of scattered

and heterogeneous error, iNMF significantly outperforms jNMF in

identifying the true modules. Higher levels of uniform error do not

seem to lead to significant differences. The two methods are only

comparable under homogeneous and noise-free settings. This adap-

tivity of iNMF allows for robustness to heterogeneous noise.

3.2 Data preparation and preprocessing
We conduct a joint analysis of genetic and epigenetic variables to

study biomarkers associated with ovarian cancer. The data were

downloaded from TCGA on August 28, 2014, from the platforms

Illumina 27K [DNA methylation (DM)], Agilent G4502A-07-2,

Agilent G4502A-07-3 (GE) and Agilent H-miRNA 8x15K v2 (ME).

All variables were Level 3 processed. The full data consist of 15 661

DM, 14 821 GE and 799 ME variables from a common set of 592

ovarian cancer samples.

Variables with missing observations were omitted. Variance sta-

bilization and non-negativity transformations were applied as follows.

GE data were randomly truncated at �4þ � and 4� � where �

� i:i:d:Unifð0;10�3Þ and then shifted þ4 units. This is equivalent to

applying the function f ðxÞ ¼ minfmaxfx;�4þ � g; 4� � g þ 4 to

each entry. Random truncations serve to prevent data singularity

issues. ME data were log 2 transformed, truncated at 2þ � and

6� � with the same method and shifted �2 units. Each dataset

(DM, GE and ME) was then normalized according to its within-

source standard deviation. Other normalization strategies are dis-

cussed in Supplementary Section S4. Next, we removed DM variables

with means below the 15th percentile, and then DM and GE variables

with variances below the 15th percentile, which produced the final

datasets described above. This filtering procedure is similar to the one

used in Zhang et al. (2011).

3.3 Module discovery and validation
We performed the sparse versions of jNMF and iNMF (200 repeti-

tions each) on the post-processed TCGA data with k ¼ 0:1 (as

chosen by our selection procedure) for a range of sparsity parameter

choices ks ¼ 10�4;10�3;0:01; 0:1; 1. We first evaluated the validity

of the findings based on concordance with reference DM, GE and

ME variables clusters from relevant literature. These reference clus-

ters consist of either two or four groups of variables each, and so we

chose D¼2, 4 to allow for appropriate comparisons. Our own em-

pirical variable clusters were computed from the factor matrices Hk.

We normalized each row of Hk by its mean and assigned each vari-

able to a cluster 1; . . . ;D based on the maximum in each column.

Our first two reference clusters were derived from an integrative

study of ovarian cancer by Bell et al. (2011) using DM, GE, ME and

DNA copy number variation data from TCGA. Consensus NMF

(csNMF) clustering established four disease subtypes based on

prominent gene markers in each cluster. These four groups of genes,

and their associated DM variables (information provided by

TCGA), comprised our reference GE and DM clusters. Another inte-

grated analysis by Creighton et al. (2012) identified sets of miRNAs

significantly associated with better or worse survival rates for ovar-

ian cancer patients. We used these two groups of variables as our

ME reference. A full list of these reference clusters is provided in

Supplementary Section S5.

We assessed concordance between our empirical results and the

reference using two metrics, the Gini impurity index (Hastie et al.,

2009) and the cluster purity Kim and Park (2008). The Gini index

for empirical cluster i is defined as:

Ii ¼
XD

d¼1

p̂d;ið1� p̂d;iÞ;

where p̂d;i is the proportion of elements in empirical cluster i belong-

ing to reference cluster d. For each data source, we compute this

quantity for each empirical cluster i ¼ 1; . . . ;D and take the average

as the impurity score I. The cluster purity is defined as:

P ¼ 1

n

XD

i¼1

max
1�d�D

nðd; iÞ;

where n is the total number of members in all empirical clusters and

n(d, i) is the number of members of empirical cluster i belonging to

reference cluster d. I measures the level of disagreement within each

empirical cluster, and P measures the level of agreement between the

empirical and reference clusters.

For each of these statistics, we simulated null distributions (1000

samples) by randomizing cluster assignments. Table 1 compares the

impurity and purity scores with respect to all three reference clus-

ters, applied to modules obtained by jNMF and iNMF (as well as

from the null distribution) for a range of sparsity parameter choices.

We see that the iNMF clusters are generally more concordant with

established findings as well as more stable, as evidenced by the

scores corresponding to the GE reference. This reflects iNMFs abil-

ity to more clearly distinguish the joint signals in the midst of hetero-

geneous confounders that are likely present among the DM, GE and

ME variables.

The second step of our validation involves assessing the observa-

tional clusters generated by our modules (using the results for

k ¼ 0:1;D ¼ 4). Similar to before, we partitioned our 592 observa-

tions into four groups based on the maximum value within each row

of the column-mean normalized W matrix. We compared these clus-

ters with results from Bell et al. (2011) [results obtained from

Verhaak et al. (2013)] and Hofree et al. (2013) who analyzed

Fig. 2. Average ratios (iNMF:jNMF) of detection performance (S) over 25 trials

(with standard errors) under four data and module dimensions, with three

types of perturbations (uniform, scattered, heterogeneous). The leftmost

common point in each subplot represents the error scenario

ru ¼ rs ¼ rh ¼ 0:01, while each trajectory represents raising the level of a sin-

gle type of error. (a) Two sources of 40� 40, four modules of 8� 8; (b) two

sources of 80�80, eight modules of 8� 8; (c) two sources of 72� 72, four

modules of 16�16 and (d) four sources of 40�40, four modules of 8�8

(Color version of this figure is available at Bioinformatics online.)
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samples overlapping with ours. The first group used csNMF cluster-

ing, while the second applied a network-regularized NMF

(netNMF) based on networks from public databases. Concordance

tables are presented in Table 2.

Our empirical clusters largely coincide with those of csNMF,

indicating that the underlying true signal among DM, GE and ME

variables is strong. However, there are some discrepancies, particu-

larly among the modules (I) and (M). This suggests that the samples

from these modules contain higher levels of heterogeneous

noise. Because iNMF is able to adjust to this type of noise, its clus-

ters are likely a more accurate reflection of the true clusters.

Meanwhile, there is not as strong concordance between iNMF and

netNMF clusters, which is likely due to the influence of external net-

work information in the latter method. While the incorporation of

such information brings in new perspectives, the reliability of

the procedure is heavily dependent on the accuracy and relevance

of the information. In addition, tuning selection is a delicate

issue, as it is difficult to determine where exactly the underlying

truth lies between what are suggested by observed patterns and prior

input.

Although relying on external information can be useful in guid-

ing the analysis, there are a few disadvantages. One is that such in-

formation may be unreliable. Although public databases are

becoming increasingly extensive and well-curated, their results are

nevertheless aggregated from many studies with different designs

and objectives and are thus prone to accumulated errors and over-

simplification. Incorporating additional information can be mislead-

ing if the information is messy or incongruous with the research

question, as demonstrated in our validation step with observational

clusters.

Furthermore, when the procedure is supervised, findings

will naturally tend toward the reference. This is somewhat favor-

able, since results that largely deviate from well-established

findings are less credible. However, for the purpose of discovery,

there is limited utility in selecting new candidates based solely on

existing results. It is less subjective to withhold external information

until after the analysis. We address both of these concerns by per-

forming integration independently of enrichment, thereby allowing

our module discovery step to be data-driven rather than input-

driven.

3.4 Follow-up module analysis
Current methods of attaching biological relevance to discovered

modules frequently involve enrichment according to either pathways

gathered from various gene or interaction databases or experimental

results (Jin and Lee, 2015; Li et al., 2012; Roy et al., 2013; Zhang

et al., 2012). In such studies, the number of modules being con-

sidered is very high, which is suitable for associating with large col-

lections of biological pathways and interactions. In contrast, our

study deals with substantially fewer modules, which represent

broader effects that are more appropriately associated with disease

subtypes. Our analysis will span multiple cancer-related pathways

extracted from BioCarta and relevant literature. Based on the distri-

bution of module expression among these pathways, we will observe

topological patterns of genomic expression and connect them with

ovarian cancer subtypes.

For the rest of this section, we will focus on the modules dis-

covered by iNMF at ks ¼ 0:01, as they appear to be most concord-

ant with the reference variable clusters, in particular the GE cluster

that is associated with four subtypes of ovarian cancer: immunor-

eactive, proliferative, differentiated and mesenchymal (Bell et al.,

2011). These subtypes were defined based on high expression of

gene markers associated with responsiveness to antigens (I), prolifer-

ation (P), cell differentiation (D) and stromal cell development (M).

As in our validation step, we assigned genes to modules (I/P/D/

M) based on the maximum value within each column of the normal-

ized Hk matrix. Thus, membership to a module means that a gene is

most highly expressed in that module relative to other modules.

Figure 3 shows the distribution of the modules across multiple can-

cer-related processes, which include DNA repair (top right), cell

cycle regulation (bottom), cell survival and proliferation (left) and

cell migration (top left). Visualization was performed with

Cytoscape (Cline et al., 2007).

The DNA repair pathway begins with the Rad9/Hus1/Rad1 and

Rad50/Mre11/NBS1 complexes, which sense DNA damage. The sig-

nal is transduced via the protein kinases ATM and ATR to check-

point regulators p53, Chk1 and Chk2 that delay cell cycle

progression, as well as to inducers of homologous repair BRCA1,

BRCA2 and Rad51 (Houtgraaf et al., 2006; Yoshida and Miki,

2004). Cell cycle progression is managed by CDK2-activated

CDC45 (initiates DNA replication), transcription factors E2F (acti-

vate S phase progression) and CDK1 (promotes G2-M transition).

Also, Rb1 is a tumor suppressor involved in regulating many cellular

processes, including G1-S transition, proliferation and differenti-

ation (Giacinti and Giordano, 2006).

In the PI3-Kinase pathway, growth factors activate PI3K, of

which p110 is a catalytic subunit and directly opposes PTEN in

phosphorylating PIP2 into the lipid messenger PIP3. PIP3 recruits the

kinase AKT, which begins a variety of signaling cascades that lead

to growth, survival and proliferation. AKT inhibits proapoptotic

Table 1. Impurity (I) and purity (P) scores (in percentages) of empir-

ical clusters obtained from jNMF and iNMF with respect to three

reference clusters

I P

DM GE ME DM GE ME

Null clusters Mean 61 58 44 49 50 65

SD 4 7 2 5 8 1

ks ¼ 1 jNMF 57 42 42 58 69 65

iNMF 52 33 35 58 77 76

ks ¼ 0:1 jNMF 64 12 44 58 92 65

iNMF 46 22 41 67 85 68

ks ¼ 0:01 jNMF 61 40 44 50 69 65

iNMF 53 18 16 58 85 91

ks ¼ 10�3 jNMF 64 12 42 50 92 65

iNMF 62 32 39 58 77 71

ks ¼ 10�4 jNMF 58 32 42 50 77 65

iNMF 55 32 37 58 77 74

Shading indicates significantly (� 2 SD) higher concordance compared

with both the alternative method and the null distribution.

Table 2. Overlap in membership between observational clusters

(a) csNMF (b) netNMF

I P D M 1 2 3 4

I 65 23 11 14 I 12 23 0 14

P 2 105 16 6 P 15 47 0 9

D 19 11 76 9 D 4 34 1 5

M 22 2 34 83 M 39 18 1 3

Our results from iNMF are concordant with (a) csNMF clusters (498 sam-

ples) but not with (b) netNMF clusters (225 samples). Shading indicates max-

ima in both rows and columns.
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BAD and growth-inhibiting TSC, as well as activates MCM2, which

degrades the cell cycle regulator p53. Phosphorylation of FOXO by

AKT retains it in the cytoplasm and prevents its transcriptional acti-

vation of cell cycle regulation (via p21) and apoptosis (via FASLG),

thus promoting proliferation and survival (Chalhoub and Baker,

2009). Lastly, transmembrane integrin signals activate FAK and

SHC, which initiate cell migratory pathways involved in directional

migration and random motility, respectively (Yamada and Araki,

2001). Both of these pathways are inhibited by PTEN via

dephosphorylation.

By viewing the collection of pathways in light of the module

memberships, we see several interesting patterns and connections.

Members of module (I) are the most common and are mainly distrib-

uted among the DNA repair and cell cycle regulation pathways. This

may represent a baseline biomarker signature that is persistent through-

out a cell’s life cycle. Members of module (P) are associated, appropri-

ately, with proliferation and survival pathways. Genes in module (D)

are more dispersed and participate in a number of processes including

checkpoint regulation, survival and cell migration. Finally, genes in

module (M) seem to be involved in upstream regulation of cell migra-

tion as well as tumor suppression, indicating late stages of tumor

development.

It is important to note that our discovered modules do not neces-

sarily equate to subtypes of observations or variables. Although the

modules can certainly be used to characterize subtypes as we have

shown, there is not necessarily a one-to-one correspondence be-

tween the two. For instance, in our above analysis (Fig. 3), module

(I) was most highly expressed among many variables, but the distri-

bution of the other modules (P/D/M) may reveal alternative ways to

subtype these variables. The modules discovered here describe gen-

omic and observational patterns that additively construct the

observed data most efficiently. In this sense, they represent the

underlying latent mechanisms that give rise to both observation and

variable subtypes but not necessarily the subtypes themselves.

4 Conclusion

As data collection technologies improve and data repositories ex-

pand, the quality and accessibility of data from multiple biological

sources will continue to grow. As a result, the combined perspectives

from internal signatures (e.g. genes, proteins and metabolites) as

well as external information (e.g. clinical status, patient history and

environmental factors) are contributing to an increasingly rich and

complex model of the biological system. However, the abundance

and diversity of data is accompanied by the problem of heterogen-

eity, both in the nature of data sources and in the data collection

processes. It is important for strategies of data integration to evolve

alongside these new challenges.

We have introduced a novel method of data integration based on

a classical matrix decomposition technique. Our method was

applied to an integrative study of ovarian cancer, in which we dis-

covered multi-dimensional modules consistent with previously es-

tablished variable-based subtypes as well as observational clusters.

These modules express notable topological patterns among cancer-

related pathways, suggesting a connection with underlying bio-

marker signatures associated with disease subtypes.

The key merits of our approach are as follows. As with jNMF,

iNMF is able to detect coordinated signals across multiple datasets.

However, iNMF is also equipped to deal with issues arising from het-

erogeneous data. With its more flexible factorization structure, iNMF

is able to adapt to the level of disparity between the datasets, to ex-

tract the joint signal of interest from heterogeneous confounders. To

Fig. 3. Module memberships of genes (from iNMF) arranged according to pathways derived from BioCarta and relevant literature and include processes of DNA

repair (top right), cell cycle regulation (bottom), cell survival and proliferation (left) and cell migration (top left) (Color version of this figure is available at

Bioinformatics online.)
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distinguish between common patterns spanning multiple sources and

distinct patterns unique to individual sources is the first step for de-

veloping a proper integration procedure.

The basic framework of iNMF leaves room for further regular-

ization beyond sparsity. One possibility is to consider relationships

between individual variables from the same data source (gene-gene

interactions) or from different sources (miRNA-gene or DM-gene

regulations) (Li and Li, 2008; Zhang et al., 2011). Another ap-

proach is to induce adherence to known biological networks or ob-

servational relations by means of network statistics. The main

challenges are adapting the penalties to the NMF framework and

finding effective strategies for tuning selection.

Although our analysis examined several types of genomic vari-

ables, our results capture only a snapshot of cancer biology. For fu-

ture investigations, it may be fruitful to explore more types of

genomic data, such as DNA copy number variation and mutation

status or even clinical information. It may also be worthwhile to ex-

pand the analysis to multiple types of cancers. With the right tools,

having a wider selection of data sources will only help in under-

standing complex disease mechanisms.
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