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Abstract

Motivation: The contig orientation problem, which we formally define as the MAX-DIR problem,

has at times been addressed cursorily and at times using various heuristics. In setting forth a

linear-time reduction from the MAX-CUT problem to the MAX-DIR problem, we prove the latter is

NP-complete. We compare the relative performance of a novel greedy approach with several other

heuristic solutions.

Results: Our results suggest that our greedy heuristic algorithm not only works well but also out-

performs the other algorithms due to the nature of scaffold graphs. Our results also demonstrate a

novel method for identifying inverted repeats and inversion variants, both of which contradict the

basic single-orientation assumption. Such inversions have previously been noted as being difficult

to detect and are directly involved in the genetic mechanisms of several diseases.

Availability and implementation: http://bioresearch.byu.edu/scaffoldscaffolder.

Contact: paulmbodily@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Accurate and efficient genome assembly algorithms are essential to

unlocking solutions to challenges posed by genetic disease.

Insufficient molecular sampling and repetitive regions in the DNA

prevent full chromosomal assembly from next-generation sequenc-

ing reads, causing assembly algorithms to produce a large set of par-

tially reconstructed chromosomes termed contigs. Contigs must be

oriented and positioned to reconstruct full chromosomes using

paired-read data to infer positional and orientational relationships

between contigs. We define a scaffolding of two contigs as the rela-

tive positioning and orientation of contigs weighted by the multipli-

city of supporting paired reads.

The problem of scaffolding is often modeled as a graph where

vertices are contigs and weighted edges indicate scaffoldings of con-

tigs. The goal in scaffolding is to find a Hamiltonian path that in-

corporates each non-repeat contig sequence once. As a subtask of

scaffolding, the contig orientation problem describes the challenge

of assigning each contig a single orientation (as per the single-

orientation assumption) so as to minimize conflicting orientation

evidence. More specifically, the goal is to remove the minimum

number of edges from the scaffold graph, so that the remaining

subgraph suggests a single consistent orientation of all vertices (Pop

et al., 2004). Solving the contig orientation problem is one step to

reducing erroneous linking evidence in the scaffold data.

The contig orientation problem has been equated to the weighted

MAX-CUT problem (Dayarian et al., 2010), the bipartite graph

problem (Pop et al., 2004) and the odd cycle transferal problem

(Donmez and Brudno, 2013). Solutions have included energy cost

minimization (Dayarian et al., 2010), a fixed-parameter algorithm

(Donmez and Brudno, 2013), mixed integer programming (Salmela

et al., 2011), depth-first search (Nijkamp et al., 2010) and greedy bi-

partite graph coloring (Pop et al., 2004). Several solutions to the

more general problem of scaffolding do not explicitly solve the con-

tig orientation problem but provide implicit contig orientation
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solutions as a result of completing walks through the scaffold graph

(Batzoglou et al., 2002; Butler et al., 2008; Li et al., 2010; Zerbino

and Birney, 2008).

Formal bidirected graph notation [as first laid out by Edmonds and

Johnson (1970)] has a long history in both computer science and bio-

informatics research (Edmonds and Johnson, 1970; Jackson and

Aluru, 2008; Medvedev et al., 2007; Myers, 2005) but has rarely been

employed to represent scaffold graphs (Salmela et al., 2011).

Commonly used is a notation in which directed nodes are depicted

using some sort of biterminal distinction: one node terminal represents

the biological 5
0
-end of the contig sequence and the other terminal rep-

resents the 3
0-end (Nijkamp et al., 2010; Pop et al., 2004; Zerbino and

Birney, 2008). Edges are then connected between the terminals or ends

of a node. In this notation, a valid reconstruction or walk through a

node requires entering and exiting the node via opposite terminals. The

bidirected graph paradigm when applied to scaffold graphs enables

new approaches to scaffolding problems, as will be shown.

Research on the MAX-CUT problem has yielded a number of

effective approximation algorithms including a min-max cut

algorithm (Ding et al., 2001), a randomized linear-time 1/2-

approximation (Sahni and Gonzalez, 1976) and branch-and-bound

methods (Rendl et al., 2010). Goemans and Williamson (1994) pre-

sent what is commonly accepted as the best MAX-CUT approxima-

tion algorithm (a 0.878-approximation) by randomly rounding the

solution to a nonlinear-programming relaxation. Khot et al. (2007)

demonstrate that if the unique games conjecture is true, the

Goemans–Williamson algorithm is the best possible approximation

algorithm for MAX-CUT.

The NP-completeness of the contig orientation problem has not

hitherto been formally proven. We provide such a proof, demon-

strating the many-one polynomial-time equivalence of the contig

orientation and weighted MAX-CUT problems. We present a novel

greedy solution and demonstrate its effectiveness compared with

several MAX-CUT solutions.

1.1 Contig orientation problem defined
We provide a novel formulation of the contig orientation problem

using bidirected graph constructs as a prerequisite to outlining the

proof of equivalence with MAX-CUT. A bidirected graph is formally

defined as an undirected multigraph G with a set of vertices V and a

set of bidirected edges E (Edmonds and Johnson, 1970). A bidirected

edge e is a five-tuple ðvi;oi; vj;oj;wÞ consisting of two vertices, vi and

vj, the weight of the edge, w, and two endpoint orientations, oi and oj,

one with respect to each vertex. An endpoint orientation may be

either positive or negative, defining e as either positive-incident or

negative-incident to the corresponding endpoint.

In the graphical representation of a bidirected edge e, we repre-

sent positive-incidence with an arrow pointing out of the vertex and

negative-incidence with an arrow pointing in toward the vertex. We

thus say that e is directed if it is positive-incident to one endpoint

and negative-incident to the other; introverted if positive-incident to

both endpoints and extraverted if negative-incident to both end-

points. A directed graph is a special case of a bidirected graph in

which all edges are directed edges.

A valid (v1,vk)-walk is a sequence v1,e1, . . . ; vk�1; ek�1,vk where

ei is an edge incident to vi and viþ 1 and for all 2� i�k – 1, ei�1 and

ei have opposite endpoint orientations incident to vi (Fig. 1a and b).

Each valid walk through a vertex vi represents a possible scaffold re-

construction for contig ci. The contig orientation solution allows for

a contig to be included multiple times or in multiple reconstructions

while maintaining a consistent orientation (e.g. repetitive sequence).

We thus define a bidirected scaffold graph for a set of contigs C

and a set of weighted scaffoldings F as a bidirected graph G ¼(V,E)

in which vertex vi 2 V represents contig ci 2 C and a weighted bidir-

ected edge e¼ðvi;oi; vj;oj;wÞ represents the scaffolding f 2 F of con-

tigs ci and cj, weighted by the number of supporting paired reads.

The endpoint orientations, oi and oj, are determined by the relative

orientation of the forward strands of ci and cj in f—if the forward

strands of ci and cj are oriented in the same direction, then e is a dir-

ected edge that is positive-incident to the vertex representing the up-

stream contig; if the forward strands are oriented away from one

another (i.e. 50-ends are proximal), then e is an extraverted edge and

if the forward strands are oriented toward one another (i.e. 30-ends

are proximal), then e is an introverted edge.

The 50–30 directionality of a DNA molecule must ultimately be

consistent along the entire length of the sequence. This means that

introverted and extraverted edges, both of which represent intern-

ally inconsistent 50–30 directionality of the forward strand, violate a

biological constraint. As per this definition, only directed edges are

considered valid in the final scaffold reconstruction. A graph which

retains the most weight in directed edges will retain the most intern-

ally consistent supporting evidence.

Directed edges can be formed from introverted and extraverted

edges by reversing one of the edge’s endpoint orientations. This is es-

sentially what is accomplished when we consider inclusion of the

opposite strand of a contig in place of the strand currently being

considered for inclusion: all endpoint orientations adjacent to the

contig are reversed (Fig. 1c).

The notion of contig orientation is used to more simply refer to

which contig strands (relative to the initial forward strands) are

being considered in a scaffolding. Thus, in our graph, we will say

that for any vertex vi 2 V, we can arbitrarily select between the for-

ward-orientation assignment vþi and the reverse-orientation assign-

ment v�i . We will refer to this selection as the contig-orientation

assignment of ci or vertex-orientation assignment for vi.

Furthermore, we refer to a contig-orientation assignment for all con-

tigs in C (or vertices in G) as a contig-orientation assignment of C

(or vertex-orientation assignment of G). We will refer to a vertex vi

with possible vertex-orientation assignments vþi and v�i as an orient-

able vertex. As the forward strand cþi of each assembled contig ci is

arbitrarily given as input, each corresponding vertex vi is initially

assumed to be assigned the vertex-orientation vþi .

1.1.1 MAX-DIR problem

We formally state the corresponding decision problem as follows:

MAX-DIR¼ {(G,k) j G is a bidirected graph with orientable ver-

tices, and there exists a vertex-orientation assignment for G result-

ing in a subgraph containing at least k directed edges}

Depending on whether the preferred bias is toward more evi-

dence or more edges, the weighted and unweighted versions of this

problem (respectively) become important. In the following equiva-

lence proof of the MAX-DIR and MAX-CUT decision problems, we

will consider the unweighted version and assume that the weighted

Fig. 1. Walks in bidirected graphs. (a) A valid walk enters and exits a node

through opposite edge-orientations. (b) An invalid walk enters and exits a

node through identical edge-orientations. (c) Reversing all edge-orientations

adjacent to a node results in the same valid and invalid walks
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version is readily deducible from the unweighted. The example in

Figures 2 and 3 demonstrates the weighted versions of each

problem.

1.2 Proof of equivalence with MAX-CUT
The proof that MAX-DIR is NP-complete is useful because it signals

that a heuristic will likely be required to solve an instance of the

contig orientation problem (i.e. the MAX-DIR problem) on any rea-

sonably large input. Because MAX-CUT is NP-complete and MAX-

DIR 2 NP, it follows immediately that MAX-DIR � P
m MAX-CUT.

The many-one equivalence in polynomial time is useful because it

allows us to reduce any MAX-DIR problem to a MAX-CUT prob-

lem and then solve it using existing MAX-CUT heuristics (see

Supplementary Materials for details of reduction). Thus, rather than

‘reinventing the wheel’ to solve instances of the MAX-DIR problem,

one could reasonably apply existing MAX-CUT heuristics to obtain

MAX-DIR solutions.

1.2.1 MAX-DIR is NP-complete

Proof:To prove this statement, we must demonstrate that

1. MAX-DIR 2 NP and

2. 8L 2 NP, L� P
m MAX-DIR.

We prove that MAX-DIR is in NP by noting that given a vertex-

orientation assignment to a bidirected graph with orientable vertices

and an integer k, we can check in polynomial time whether the as-

signment yields k directed edges.

To prove that 8L 2 NP, L� P
m MAX-DIR, we must show that

some other NP-complete problem is many-one reducible in polyno-

mial time to MAX-DIR. We demonstrate that MAX-CUT has such

a reduction to MAX-DIR.

Recall that the decision problem corresponding to the MAX-

CUT problem is as follows:

MAX� CUT ¼ fðM;kÞ jM is a multigraph with a cut of size kg

where a multigraph M¼ (V,E) is a graph allowing multiple edges be-

tween two nodes and a cut in a graph is a partition of V into two dis-

tinct subsets S and T. The size of the cut is the number of edges e 2 E

which have an endpoint in S and an endpoint in T.

We will describe a polynomial-time-bounded construction that

maps an instance (M,k) of MAX-CUT to some bidirected graph

with orientable vertices G and positive integer k such that M has a

cut of size at least k if and only if G has a vertex-orientation assign-

ment yielding k directed edges. Let V and E be the vertex and edge

sets of M and let V 0 and E0 be the vertex and edge sets of G which

Fig. 2. Fig. 2. An instance of the MAX-CUT problem shown with the reduction

to MAX-DIR

Fig. 3. A possible cut of the graph in Figure 2a and the corresponding vertex-

orientation assignment for the bidirected graph in Figure 2b. Both the weight

of the cut and the sum weight of the directed edges are the same. In the sub-

graph of nodes and directed edges resulting from the vertex-orientation as-

signment, each contig in any valid walk will be consistently oriented
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we will create. The construction of G from M consists of the follow-

ing steps (Fig. 2):

1. Let V 0 ¼V.

2. For each edge e 2 E linking vertices vi,vj 2 V, we create a bidir-

ected edge e0 linking vi
0 and vj

0 (in V 0) where e is negative-

incident to both vi
0 and vj

0.

Clearly the construction takes polynomial time.

First we show that if M has a cut of size k, then G has a vertex-

orientation assignment yielding k directed edges (Fig. 3). If M has a

cut of size k, then there is a partition of V into two distinct subsets S

and T such that there are k edges which have an endpoint in S and

an endpoint in T. By partitioning V 0 into the same subsets, S and T,

and assigning forward-orientation to all vertices in S and reverse-

orientation to all vertices in T, k bidirected edges (those analogous

to the cut edges of M) are rendered directed edges. All others remain

either introverted or extraverted edges. It follows from the same line

of reasoning that if G has a vertex-orientation assignment yielding k

directed edges, then M has a cut of size k.

This completes the proof that MAX-DIR is NP-complete.

2 Systems and methods

Results were collected for nine different algorithms on six different

datasets using multiple assessment criteria.

Though several published scaffolding algorithms address the

contig orientation problem (Donmez and Brudno, 2013; Pop et al.,

2004), none provide sufficient metadata to easily recover their exact

contig orientation solution. We thus measure the relative perform-

ance of two novel MAX-DIR heuristics (Greedy and RandEdge) and

seven other MAX-CUT heuristics as applied to instances of the con-

tig orientation problem:

1. Greedy: Our novel greedy heuristic (see Algorithm 1).

2. RandEdge: Considers edges in a random order and greedily as-

signs an orientation to adjacent contigs that is consistent with

previous orientation assignments (similar to Algorithm 1 except

edge e at line 5 is random).

3. BiqMac: A Branch-and-Bound heuristic algorithm for solving

weighted MAX-CUT problems which uses SDP relaxation and a

relative bound precision criterion (Rendl et al., 2010).

4. LPSolve: lp_solve, a mixed integer linear programming heuristic

used by MIP Scaffolder (Salmela et al., 2011).

5. SCIP: A linear-optimization Branch-and-Bound MAX-CUT

solver (Achterberg, 2007).

6. GLPK: GNU Linear Programming Kit, a linear/mixed integer

programming solver (Makhorin, 2001).

7. SDP: A dual-scaling interior-point algorithm for solving sparse

semidefinite MAX-CUT programs (Benson et al., 2000).

8. Sahni: A 1/2-approximation algorithm for MAX-CUT, which

adds vertices in random order to maximize the weight of the cut

(Sahni and Gonzalez, 1976).

9. Random: randomly orients contigs, retaining edges consistent

with assigned orientations (averaged over ten iterations).

Algorithm 1. MAX-DIR GREEDY HEURISTIC

Input: Weighted bidirected graph, G, and min edge weight,

wmin

1: Create a forest, F

2: For each vertex vi 2 G, add tree ti to F containing vi

3: Create a set S of all edges in G with weight we>wmin

4: while S is not empty do

5: Remove an edge e with maximum weight from S

6: if e connects two different trees, t1 and t2, then

7: add e to F, combining t1 and t2 into one tree

8: if e is not a directed edge then

9: for all vertices v2 in t2 do

10: Flip orientation assignment of v2

11: else if e is a directed edge then

12: add e to F

13: else

14: discard e

15: return F, a weighted directed subgraph

The algorithms were assessed on six scaffold graphs: two syn-

thetic genome scaffold graphs and four real scaffold graphs (see

Supplementary Material for details). ScaffoldScaffolder (Bodily et

al., 2012) was used to generate scaffold graphs.

1. Synthetic Genome (w/o Errors): A 1.25 Mb diploid genome was

synthesized from the zebra finch using HapMaker (Okuda et al.,

2013). The following were generated using ART v1.3.1 (Huang

et al., 2012): a set of 250 bp reads; a 4 kb paired-end library and

a 20 kb paired-end library. Newbler 2.6 was used to assemble

contigs. Only 4 kb libraries were used in scaffolding.

2. Synthetic Genome (w/ Errors): Using the 1.25 Mb genome refer-

ence, a 200-bp paired-read library was generated from ART.

Contig assembly was performed using Newbler.

3. Raspberry Genome: Contigs for the Rubus idaeus cultivar heri-

tage genome were assembled by Newbler using reads from a

combination of Illumina HiSeq and 454 sequencing technolo-

gies. HiSeq reads were used for scaffolding.

4. Strawberry Genome: Contigs were assembled for Fragaria vesca

using Newbler on eleven 454 runs. Two 3-kb paired-end libra-

ries were used to scaffold.

5. Oyster Genome: Contigs for the Pacific oyster Crassostrea gigas

were assembled using SOAPdenovo2 (Luo et al., 2012). Paired

Illumina reads from 170 bp inserts were used to scaffold.

6. Human Genome: Contigs for HapMap individual NA19240

chromosome X were assembled using SOAPdenovo2. Paired

Illumina reads from 550 bp inserts were used to scaffold.

Solutions were assessed on five metrics: the total count of edges

retained; the total weight of edges retained; the total count of edges

excluded; the total weight of edges excluded and (for real datasets)

the computation time required. A contig orientation solution does

not produce linear scaffolds. Thus, our evaluative metrics do not in-

clude typical scaffold evaluation metrics such as scaffold N50.

3 Algorithm

We developed a greedy heuristic algorithm to solve the weighted

MAX-DIR problem (see Algorithm 1). As a heavier-weighted edge

generally reflects greater confidence for the scaffolding which it rep-

resents, such an edge is likely to be valid, and therefore included in

the optimal solution. Thus a greedy algorithm, which maximally

favors heavier-weighted edges, approximates an ideal solution for

the contig orientation problem.

This algorithm starts by making each vertex in the graph its own

tree and then adds edges which combine distinct trees to form larger

trees. In combining trees ti and tj via edge e, we flip vertex orienta-

tions for all vertices in tj when needed, so that e is always directed.
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Edges are considered in order of decreasing weight. Any edge e link-

ing vertices vi and vj within the same tree ti is added if and only if,

given the current vertex-orientation assignment of vi and vj in ti, e is

a directed edge. Additionally, we define a minimum edge weight

threshold, wmin, to avoid the risk of determining contig orientation

based on erroneous edges with very low support. We ensure that the

final subgraph contains solely directed edges by only adding directed

edges and ensuring that directed edges remain directed as a result of

vertex orientation changes. In cases where two conflicting edges

have significant but marginally different weights, there is the danger

of discarding biologically significant information. Such cases repre-

sent violations of the single-orientation assumption. We consider

two such scenarios and their implications below in Section 5.

4 Implementation

A summary of the total retained edge weight and edge count is

shown in Figure 4a and b, respectively (complete results are avail-

able in Supplementary Material).

In the synthetic genome graphs, the Greedy and RandEdge algo-

rithms performed best of the compared solutions. The Greedy heuris-

tic retained the greatest number of edges and the greatest total edge

weight. We believe that the superior performance of the Greedy and

RandEdge algorithms is because these algorithms are designed to

greedily include each edge as it is considered, without any concern for

solutions that are excluded by its inclusion. Heuristic algorithms gen-

erally employ a heuristic function to determine (with some degree of

caution) whether or not to include any given edge. In a scaffold graph,

the greedy addition of edges (whether considered randomly or

ordered by weight) often performs well because most edges are valid

and should be included. Therefore, the majority of the supportive

evidence should be internally consistent with relatively few spurious

edges requiring exclusion.

In many real-world instances of NP-complete problems, the triv-

ial solution is often the wrong solution, thus creating a need for

more complex heuristics which bypass the trivial solution. A scaf-

fold graph is quite sparse (i.e. average in- and out-edge degrees are

between 1 and 2) and linear by nature, thus rendering the contig

orientation problem far more simple than would require a complex

heuristic solution. In such a graph, a local optimum will often be

part of the global optimum. This serves as a reminder that simply

because the complexity of a biological problem can be classified by

theoretical computer science does not imply that existing solutions

for that class of problem are well-suited to the particular biological

application. Domain-specific knowledge is critical to developing al-

gorithms that will work faster and better than existing heuristics.

The Greedy algorithm also outperformed the other algorithms in

the scaffold graphs from real datasets. In the raspberry genome

graph, the Greedy algorithm retained 17% more total edge weight

than the next best algorithm (BiqMac). Likewise in the strawberry,

oyster and human graphs, the Greedy algorithm reported margins of

6% and 7%, respectively, above competitors.

On the real datasets, the RandEdge algorithm retained between

13% and 16% less overall weight than the Greedy approach.

Despite its average performance, RandEdge is notably faster than al-

gorithms with similar results (see Supplementary Material).

The discrepancy between the Greedy and RandEdge algorithms

on real data is largely explained by Figures 4b and 5. The relative de-

crease in edge weight retention by RandEdge is mirrored in a relative

decrease in the number of edges retained. We also find that

RandEdge is generally including lighter edges and conversely exclud-

ing heavier ones than the Greedy algorithm is. Thus biasing toward

the heavy edges not only results in more weight retained but also in

Fig. 4. Comparative performance of weighted MAX-DIR solutions. In all graphs, the greedy algorithm retained the most total edge support. In general the Greedy

algorithm also retained the most edges. The second chart also demonstrates that the RandEdge algorithm’s failure to retain as much total weight as the Greedy

algorithm on the real datasets comes (at least in part) as a result of retaining fewer edges. Missing data reflects a failure of the particular algorithm to provide a

valid solution for the given dataset
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more total edges retained. We might expect this result given that the

heavy edges are more likely to represent the set of internally consist-

ent edges in the scaffold graph.

Figure 5 also confirms that the greedy algorithm is correctly

removing the erroneous edges. Regardless of the overall average

weight (i.e. sequencing depth) for a real dataset, the weights of

spurious edges tend to maintain a consistent distribution clustered

close to 0. The average weights of included and excluded edges,

however, vary as a function of the overall average edge weight per

dataset. Thus, the penalty for adding erroneous edges in place of

valid edges grows larger with an increase in overall average

edge weight. (Note in Fig. 4a that though the average retained

edge weight increases as a function of the overall edge weight aver-

age per dataset, it is most largely affected by the choice of

algorithm.)

The superior performance of the greedy heuristic algorithm is

thus likely due to this key observation about the nature of scaffold

graphs—heavily weighted retained edges not only contribute more

to total edge support than do lowly weighted edges; they are more

likely to be part of the optimal solution. The greedy algorithm thus

maximally favors edges which are likely to belong in the optimal so-

lution, which helps to explain why it retains far more edge weight

(and many more edges) than other solutions.

5 Discussion

We noted a peculiarity in the subgraph produced using our Greedy

heuristic on the synthetic genome without errors—the two excluded

edges were both adjacent to contig 591. We also noted that contig

591 has an average sequence depth (a value indicative of the number

of nucleotides contributing to the assembly at a given locus) of

roughly twice the normal diploid depth, making it a likely candidate

for being a two-copy repeat. We used BLAST (Altschul et al., 1997)

to find where contig 591 aligned to the known reference. We dis-

covered that it aligned perfectly at two locations and that the two

matching sequences were inversions (see Supplementary Material).

This case illustrates that if repeats are not screened, they can pre-

sent exceptions to the contig-orientation problem and more specific-

ally to the single-orientation assumption. The single-orientation

assumption will hold only if the contig represents a sequence which

repeats in the same orientation in a scaffold (e.g. tandem repeats).

Inverted repeats, like contig 591, represent identical sequences

with opposite orientations from two distinct places in a scaffold

(Fig. 6a). Among their several biological roles, inverted repeats are

used to detect the boundaries of transposons (Rio and Rubin, 1988)

and are instrumental in transcriptional regulation (Muskens et al.,

2000). Assigning a single orientation to such a contig prevents a viable

scaffold reconstruction from occurring, prematurely fragmenting the

assembly. This scenario can be resolved prior to assigning contig-

orientations by special handling or screening of repeat contigs (Li et

al., 2010; Pop et al., 2004). This example shows that in addition to

removing erroneous linkages from a scaffold graph, the contig orien-

tation assignment will remove any viable biological scenario that is an

exception to the single-orientation assumption. Thus, if the erroneous

linkages can be filtered via other means (e.g. minimum support

threshold and next-generation error correction), the contig orientation

assignment can be used to identify (via exclusion) biologically viable

exceptions to the single-orientation assumption.

One other such exception is the case of inverted haplotypes. Many

genomes exist as diploid or polyploid organisms, meaning there are

two or more versions (termed haplotypes) of the genome in each cell.

An inverted haplotype is a sequence, which is identical but oppositely

oriented at corresponding locations on analogous chromosomes

(Fig. 6b). Such inversions are often biologically significant and have

been specifically shown to be associated at times with mental retard-

ation, microdeletion syndrome, renal cysts and diabetes syndrome,

epilepsy, schizophrenia and autism (Antonacci et al., 2009; Zody et

al., 2008). Most assembly algorithms have not been specifically de-

signed for diploid genome assembly and assume that where multiple

haplotypes do exist, they can be readily merged to form a single ‘refer-

ence’ sequence. In doing so, inverted haplotype differences are meta-

phorically ‘swept under the rug’, which is perhaps why biologists

have lamented that ‘unlike other types of structural variation, little is

known about inversion variants within normal individuals because

such events are typically balanced and are difficult to detect and ana-

lyze by standard molecular approaches’ (Antonacci et al., 2009).

Just as a contig orientation solution is able to identify inverted

repeats, it is also able to identify inverted haplotypes. We developed

a module in ScaffoldScaffolder to automatically generate a detailed

report of potential inverted repeats and inverted haplotypes. In the

module, candidates are internally identified as any contig (i) having

at least two connecting edges from at least one end and (ii) which is

connected to two or more excluded edges. The candidates can be

classified as inverted repeats or inverted haplotypes based on the lo-

cation of each candidate contig in a probability density function of

contig coverage. A special case is a monocontig inversion candidate,

which requires that each of two adjacent contigs be linked via edges

from both ends of the candidate.

We tested our new predictive module on both synthetic and real

data. We first synthesized a diploid genome (heterozygosity

rate�0.2%) containing an inverted haplotype from the zebra finch

chromosome 25. We generated error-free reads for assembly with

Newbler, and a graph was created using ScaffoldScaffolder. Using

our greedy heuristic algorithm, we assigned orientations to the con-

tigs which resulted in a subgraph which excluded 12 edges. The

Fig. 5. Average weight of included/excluded edges. Although the average

weights of included/excluded edges vary as a function of the overall average

edge weight, the weight of edges excluded by the Greedy algorithm remains

close to 0. This suggests that the Greedy algorithm is excluding primarily er-

roneous edges

Fig. 6. Violations of the single-orientation assumption. (a) In an inverted re-

peat, a sequence (contig A) is included in the reconstruction twice in opposite

orientations. (b) In a polyploid genome, an inverted haplotype is a sequence

(contig B) included in opposite orientations on different haplotypes
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potential inversion report listed three inversions (two with sequenc-

ing depth to suggest inverted repeats). We verified that all three in-

versions were accurate using BLAST and verified that the (non-

repeat) inverted haplotype aligned at the expected location in the

reference haplotype sequences (see Supplementary Material).

To confirm our ability to predict inverted haplotypes in real

data, we identified a 18.7 kb inverted haplotype (HsInv0393) from

the Human Polymorphic Inversion DataBase (Martı́nez-Fundichely

et al., 2014) that has been found to be heterozygous in human

HapMap individual NA19240 (Aguado et al., 2014). From this indi-

vidual, we assembled paired Illumina reads mapping to a 64 kb seg-

ment of chromosome X in the region of HsInv0393. We created a

small graph of the assembled region with ScaffoldScaffolder using

the same paired reads. The greedy heuristic algorithm assigned con-

tig orientations, excluding two well-supported edges. The algorithm

identified a 9.4 kb inversion, contig 3, that when mapped to the

hg19 reference aligned in the region defined for HsInv0393. In add-

ition, the two 4.65 kb contigs scaffolded on either side of this inver-

sion (contigs 2 and 4) were also identified as inverted repeats. This

arrangement in the scaffold graph (summarized in Fig. 7) suggests

not only that contig 3 is inverted but that possibly some or all of

contigs 2 and 4 are also part of the inversion (hence why many in-

version breakpoints are reported as ranges). We observe that distin-

guishing between an inverted haplotype and a non-inverted

sequence flanked by inverted repeats is impossible by this approach

without pairs that span beyond the inverted repeats (which in the

case of NA19240 were unavailable).

Ongoing development and testing will help to assess the efficacy of

this inversion detection method on a larger scale. However, both the

theory and our small tests confirm that edges which are excluded in

solving the contig orientation problem are suggestive of inverted repeats

and inverted haplotypes in de novo assemblies, particularly when such

sequences are adjacent to multiple or heavily supported excluded edges.

The contig orientation problem, which we have formally framed

as the MAX-DIR problem, has at times been addressed (somewhat

apologetically) only cursorily and at times using various heuristics. In

setting forth a linear-time reduction from the MAX-CUT problem

to the MAX-DIR problem, we have proven that the latter is NP-

complete. We have compared the relative performance of our novel

greedy approach with several other heuristic solutions. Our results

suggest that the greedy heuristic algorithm not only works well, but

outperforms the other algorithms due to the nature of scaffold graphs.

In such graphs, heavier-weighted edges are more likely to be valid and

therefore included in the optimal solution. A greedy algorithm, which

maximally favors such edges, approximates an ideal solution. One un-

anticipated outcome of this study has been the discovery of a novel

method for identifying inverted repeats and inversion variants, both

of which contradict the basic single-orientation assumption. Such in-

versions have previously been noted as being difficult to detect and

are directly involved in the genetic mechanisms of several diseases.

Thus, this method, which we have implemented as a module of

ScaffoldScaffolder, has the potential to assist in the automated discov-

ery of biologically significant features in de novo genome assembly.

Funding

This research was supported in part by NIH grant R01 HG005692.

Conflict of Interest: none declared.

References

Achterberg,T. (2007) Constraint Integer Programming. Citeseer, Ph.D. thesis,

TU Berlin, July 2007.

Aguado,C. et al. (2014) Validation and genotyping of multiple human poly-

morphic inversions mediated by inverted repeats reveals a high degree of re-

currence. PLoS Genet., 10, e1004208.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Antonacci,F. et al. (2009) Characterization of six human disease-associated in-

version polymorphisms. Hum. Mol. Genet., 18, 2555–2566.

Batzoglou,S. et al. (2002) ARACHNE: a whole-genome shotgun assembler.

Genome Res., 12, 177–189.

Benson,S.J. et al. (2000) Solving large-scale sparse semidefinite programs for

combinatorial optimization. SIAM J. Optimization, 10, 443–461.

Bodily,P.M. et al. (2012) ScaffoldScaffolder: an aggressive scaffold finishing

algorithm. In: Arabnia,H.R. and Tran,Q.-N. (eds), Proceedings of the 2012

International Conference on Bioinformatics & Computational Biology.

CSREA Press, Las Vegas, Nevada, USA, pp. 385–390.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shot-

gun microreads. Genome Res., 18, 810–820.

Dayarian,A. et al. (2010) SOPRA: scaffolding algorithm for paired reads via

statistical optimization. BMC Bioinformatics, 11, 345.

Ding,C.H. et al. (2001) A min-max cut algorithm for graph partitioning and

data clustering. In: Cercone,N. et al. (eds), Proceedings of the IEEE

International Conference on Data Mining, 2001. IEEE, Los Alamitos, CA,

USA, pp. 107–114.

Donmez,N. and Brudno,M. (2013) SCARPA: scaffolding reads with practical

algorithms. Bioinformatics, 29, 428–434.

Edmonds,J. and Johnson,E.L. (1970) Matching: a well-solved class of integer lin-

ear programs. In: Combinatorial Structures and Their Applications. Citeseer.

Goemans,M.X. and Williamson,D.P. (1994) 879-approximation algorithms

for MAX CUT and MAX 2SAT. In: Proceedings of the Twenty-Sixth

Annual ACM Symposium on Theory of Computing. ACM, New York, NY,

USA, pp. 422–431.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Jackson,B.G. and Aluru,S. (2008) Parallel construction of bidirected string

graphs for genome assembly. In: Proceedings of the Thirty-Seventh

International Conference on Parallel Processing, 2008. IEEE, Portland, OR,

USA, pp. 346–353.

Khot,S. et al. (2007) Optimal inapproximability results for MAX-CUT and

other 2-variable CSPs? SIAM J. Comput., 37, 319–357.

Li,R. et al. (2010) De novo assembly of human genomes with massively paral-

lel short read sequencing. Genome Res., 20, 265–272.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. Gigascience, 1, 18.

Makhorin,A. (2001) GNU linear programming kit. Moscow Aviation

Institute, Moscow, Russia, p. 38.

Martı́nez-Fundichely,A. et al. (2014) Invfest, a database integrating informa-

tion of polymorphic inversions in the human genome. Nucleic Acids Res.,

42, D1027–D1032.

Medvedev,P.et al. (2007) Computability of models for sequence assembly. In:

Algorithms in Bioinformatics. Springer, Berlin Heidelberg, pp. 289–301.

Muskens,M.W.M. et al. (2000) Role of inverted DNA repeats in transcriptional

and post-transcriptional gene silencing. Plant Mol. Biol., 43, 243–260.

Fig. 7. Scaffold graph of heterozygous HsInv0393 inversion in NA19240. Black

arrows are contigs, pointing 50–30 . Solid lines are putative scaffoldings

weighted by paired evidence. Dotted lines are scaffoldings which were

excluded by the greedy heuristic. Contig 3 is a potential inversion. Because

contigs 2 and 4 are inverted repeats, the exact breakpoints of an inverted

haplotype are undetectable

ScaffoldScaffolder 23

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv548/-/DC1


Myers,E.W. (2005) The fragment assembly string graph. Bioinformatics,

21(Suppl 2), ii79–ii85.

Nijkamp,J. et al (2010) Integrating genome assemblies with MAIA.

Bioinformatics, 26, i433–i439.

Okuda,N. et al. (2013) HapMaker: synthetic haplotype generator. In:

Arabnia,H.R. and Tran,Q.-N. (eds), Proceedings of the 2013 International

Conference on Bioinformatics & Computational Biology. CSREA Press,

Las Vegas, Nevada, USA, pp. 370–374.

Pop,M. et al. (2004) Hierarchical scaffolding with Bambus. Genome Res., 14,

149–159.

Rendl,F. et al. (2010) Solving Max-Cut to optimality by intersecting semidefin-

ite and polyhedral relaxations. Math. Program., 121, 307–335.

Rio,D.C. and Rubin,G.M. (1988) Identification and purification of a Drosophila

protein that binds to the terminal 31-base-pair inverted repeats of the P trans-

posable element. Proc. Natl Acad. Sci. USA, 85, 8929–8933.

Sahni,S. and Gonzalez,T. (1976) P-complete approximation problems.

J. ACM, 23, 555–565.

Salmela,L. et al. (2011) Fast scaffolding with small independent mixed integer

programs. Bioinformatics, 27, 3259–3265.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using De Bruijn graphs. Genome Res., 18, 821–829.

Zody,M.C. et al. (2008) Evolutionary toggling of the MAPT 17q21. 31 inver-

sion region. Nat. Genet., 40, 1076–1083.

24 P.M.Bodily et al.


