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Abstract

Background: In a standard two-stage SMART design, the intermediate response to the first-stage intervention is
measured at a fixed time point for all participants. Subsequently, responders and non-responders are re-randomized
and the final outcome of interest is measured at the end of the study. To reduce the side effects and costs
associated with first-stage interventions in a SMART design, we proposed a novel time-varying SMART design in
which individuals are re-randomized to the second-stage interventions as soon as a pre-fixed intermediate response
is observed. With this strategy, the duration of the first-stage intervention will vary.

Methods: We developed a time-varying mixed effects model and a joint model that allows for modeling the
outcomes of interest (intermediate and final) and the random durations of the first-stage interventions simultaneously.
The joint model borrows strength from the survival sub-model in which the duration of the first-stage intervention (i.e.,
time to response to the first-stage intervention) is modeled. We performed a simulation study to evaluate the statistical
properties of these models.

Results: Our simulation results showed that the two modeling approaches were both able to provide good estimations
of the means of the final outcomes of all the embedded interventions in a SMART. However, the joint modeling
approach was more accurate for estimating the coefficients of first-stage interventions and time of the intervention.

Conclusion: We conclude that the joint modeling approach provides more accurate parameter estimates and a higher
estimated coverage probability than the single time-varying mixed effects model, and we recommend the joint model
for analyzing data generated from time-varying SMART designs. In addition, we showed that the proposed time-varying
SMART design is cost-efficient and equally effective in selecting the optimal embedded adaptive intervention as the
standard SMART design.

Keywords: Adaptive interventions, Sequential multiple assignment randomized trial (SMART), Time-varying mixed effects
model (TVMEM), Longitudinal model, Joint model

Background
Sequential, multiple assignment, randomized trial
(SMART) designs and their analysis are being used to
construct high-quality adaptive interventions that can be
individualized by repeatedly adjusting the intervention(s)
over time on the basis of individual progress [1–5]. The
SMART design was pioneered by Murphy, building on
the work of Lavori and Dawson [6, 7]. SMART designs

involve an initial randomization of individuals to differ-
ent intervention options, followed by re-randomization
of some or all of the individuals to another set of avail-
able interventions at the second stage. At subsequent
stages, the probability and type of intervention to which
individuals are re-randomized may depend on the infor-
mation collected from the previous stage(s) (e.g., how
well the patient responded to the previous treatment;
adherence to treatment protocol). Thus, there can be
several adaptive interventions embedded within each
SMART design. This allows for testing the tailoring vari-
ables and the efficacy of the interventions in the same
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trial. There are several practical examples of SMART
studies that have been conducted (e.g., the CATIE trial
[8] for antipsychotic medications in patients with schizo-
phrenia, STAR*D for the treatment of depression, [9, 10]
and phase II trials at MD Anderson for treating cancer
[11]). The goal of these studies is to optimize the long-
term outcomes by incorporating the participant’s charac-
teristics and intermediate outcomes evaluated during the
intervention [12, 13].
An example of a two-stage SMART design is a study

that characterized cognition in nonverbal children with
autism [14]. To improve verbal capacity, participants were
initially randomized to receive either a combination of
behavioral interventions (Joint Attention Symbolic Play
Engagement and Regulation (JASPER) + Enhanced Milieu
Training (EMT)) or an augmented intervention (JASPER
+ EMT+ speech-generating device [SGD]). Children were
assessed for early response versus slow response to the
first-stage treatment at the end of 12 weeks. The
second-stage interventions, administered for an add-
itional 12 weeks, were chosen on the basis of the
response status (only slow responders to JASPER +
EMT were re-randomized to intensified JASPER + EMT
or received the augmented JASPER + EMT + SGD; slow
responders to JASPER + EMT+ SGD received intensified
treatment; all early responders continued on the same
intervention). There were three pre-fixed assessment time
points: at 12 weeks, 24 weeks and 36 weeks (follow-up),
which were the same for all participants in the study.
Compared to multiple, one-stage-at-a-time, randomized
trials, SMART designs provide better ability to compare
the impact of a sequence of treatments, rather than exam-
ining each piece individually. For example, a SMART
allows us to detect possible delayed effects in which an
intervention at a previous stage has an effect that is less
likely to occur unless it is followed by a particular subse-
quent intervention option. The typical modeling approach
for the SMART design as described by Nahum-Shani
et al. includes the indicators of intervention at each stage
as covariates and thus accounts for the delayed effects on
the final response. In order to develop a sequence of best
decision rules for each individual, various statistical learn-
ing methods of estimating the optimal dynamic treatment
regimens have been proposed, among which Q-learning
has been developed for assessing the relative quality of the
intervention options and estimating the optimal (i.e., most
effective) sequence of decision rules with linear regression.
For a two-stage SMART, the Q-learning approach con-
trols for the optimal second-stage intervention option
when assessing the effect of the first-stage intervention,
and reduces the potential bias resulting from unmeasured
causes of both the tailored variables and the primary out-
come. A similar approach for deriving the optimal deci-
sion rules for SMART is A-learning, which is more robust

to model misspecification than Q-learning for consistent
estimation of the optimal treatment regime [15]. Zhao
et al. introduced the two learning methods of BOWL and
SOWL, [16] which are based on directly maximizing over
all dynamic treatment regimens (DTRs) a nonparametric
estimator of the expected long-term outcome. As an alter-
native to the above learning approaches, Zhang et al. [17]
proposed a robust estimation of the optimal dynamic
treatment regimens for sequential treatment decisions,
which maximizes a doubly robust augmented inverse
probability weighted estimator for the population mean
outcome over a restricted class of regimes. All these ap-
proaches model the outcomes of interest as dependent
variables, and for the predictor variables, they model the
main and interacting effects of the intervention options at
each stage and the baseline individual characteristics. The
amount of time an intervention is administered, however,
is not explicitly modeled, although it can be used as a
covariate in these regressions.
There are examples of SMART designs in which a par-

ticipant is assessed at several pre-fixed time points during
the first-stage treatment and once he/she meets an assigned
criterion for response status, he/she is re-randomized to
the second stage of treatment. Such a SMART design has
been applied to develop a dynamic treatment regime for
individuals with alcohol dependence using the medication
naltrexone [2, 18, 19]. At the beginning of the study,
patients were randomized to either a stringent or a lenient
criterion for early non-response. Initially, all patients
received naltrexone. Starting at the end of the second week,
patients who showed early response were assessed weekly
for eight weeks, and those who met the assigned criterion
for non-response were assigned to the second stage
randomization in that week; whereas the responders were
re-randomized at week eight. Another example of using a
SMART design to evaluate multiple, fixed time points is
the study of pharmacological and behavioral treatments for
children with ADHD, where children were assessed
monthly for response or non-response [19–23]. In addition,
Lu et al. [19] developed repeated-measures piecewise mar-
ginal models for comparing embedded treatments in such
SMART designs with multiple evaluations at fixed time
points. In these studies, subjects were assessed at fixed time
points; thus, the time of treatment takes values along a
finite set of time points.
Although, SMART designs with outcome assessments

at fixed time points exist, there are advantages to admin-
istering a drug as soon as an individual achieves an
intermediate response. For example, the smoking cessa-
tion drugs varenicline and bupropion can increase the
risk of psychological side effects such as unusual changes
in behavior, hostility, agitation, depressed mood and
suicidal thoughts [24–26]. In addition, varenicline costs
approximately $300 per month. Therefore, allowing the
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duration of treatment to vary among participants for
one or more stages of the study may reduce the side
effects and costs associated with the interventions. For
such time-varying SMART designs, the duration of
treatment plays an important role in decision making,
and including it in the analysis may increase the power
of the study and better serve our goal of analysis. To fur-
ther extend the assignment strategies discussed in the
above examples and utilize the information contained in
the treatment duration, in this paper, we proposed a
novel time-varying SMART design, which enables us to
more efficiently assign different intervention options as
soon as an individual achieves a set of intermediate re-
sponse goals. Therefore, the time of treatment is a con-
tinuous random variable for each individual that can
take any value on a subset of the positive real line, and is
treated as an endogenous variable. The existing statis-
tical methods are inappropriate for analyzing data
obtained from such a time-varying SMART design.
Therefore, to fully utilize the potential of this type of
time-varying SMART design in making more efficient
decisions, we also proposed two analytic approaches that
can be used to analyze data from such a time-varying
SMART design. The first approach is a linear mixed
model with time-varying fixed effects [27, 28], which is
in fact a piecewise linear model. The second approach
incorporates a joint modeling method in which a sur-
vival model is fitted jointly with the linear mixed model
[29]. We performed simulations to evaluate the statis-
tical properties of both methods. Our simulation results
showed that both methods estimated the expected final
outcome for each embedded adaptive intervention in
such design accurately, but the joint-modeling method
provided better estimates for certain parameters in the
model.

To compare the power and cost efficiency of the time-
varying SMART design to those of an analogous standard
SMART design, we simulated two trials with identical
sample sizes and intervention effects using (a) the time-
varying SMART design and (b) the standard SMART
design. These simulations showed that the time-varying
SMART design is cost-efficient and has power similar to
that of the standard SMART design in selecting the opti-
mal embedded adaptive intervention.

Methods
Proposed time-varying SMART design
Figures 1 and 2 illustrate the proposed time-varying
designs. Both two-stage time-varying SMARTs were de-
signed to provide data regarding how the intensity and
combination of two types of interventions might be
adapted to a subject’s progress in a cost- and time-
efficient manner.
In the first example (see Fig. 1), suppose medication

(M) and behavioral intervention (B) are two initial inter-
vention options for individuals who are heavy smokers
(e.g., those who smoke more than or equal to 25 ciga-
rettes per day). The number of cigarettes a subject
smokes per day is the outcome of interest and is mea-
sured at the beginning of the study, at several intermedi-
ate time points and at the end of the study. Let Y0

denote the number of cigarettes a subject smoked per
day at the beginning of the study (t = 0). Subjects are
randomly assigned to the medication or the behavioral
interventions at the beginning of the study. Monitoring
the outcome of interest begins at a pre-fixed time point
(e.g. one week after the initial randomization and is
denoted as t00) after the initial intervention is imple-
mented, and t10 denotes the time point at which those
who did not respond to a first-stage intervention are re-

Fig. 1 Example of time-varying two-stage SMART design with equal probability allocation: each participant is randomized twice
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randomized. A subject is considered a responder to the
first-stage intervention if there is a significant decrease
in the number of cigarettes he/she smoked per day (e.g.,
the decrease in the number of cigarettes smoked per day
is above a pre-fixed threshold, C) at an intermediate
time point T1, before t10. Thus, T1 is a random variable
of time and varies among responders. A subject is classi-
fied as a non-responder if the decrease in the number of
cigarettes he or she smoked per day by t10 is below C.
Therefore, all the non-responders are given the first-
stage intervention for a fixed time period of t10 (e.g., the
first month of initial interventions), which can be seen
as the right-censored time point. Let Y1 denote the num-
ber of cigarettes smoked per day at the end of the first-
stage intervention.
An indicator variable δ is defined as δ = I(T1 < t10),

where I(⋅) is the indicator function that takes the value
1 if T1 < t10 (i.e., if the subject is a responder) and the
value 0 if T1 ≥ t10 (i.e., if the subject is a non-
responder). A responder is re-randomized either to
continue with the first-stage intervention (M or B) or
to receive the first-stage intervention at a reduced
intensity (M- or B-); whereas a non-responder is re-
randomized to receive the first-stage option at an
increased intensity (M+ or B+) or augmented with the
other type of intervention (i.e., adding a behavioral
intervention for those who started with medication or
adding medication for those who started with a behav-
ioral intervention). We let all the subjects in this design
stay on their second-stage interventions for a fixed time
period, Δt (e.g., one month). Therefore, for a subject
whose first-stage intervention time is T1, the total study
time is T1 + Δt, which we denote as T2. For each par-
ticipant, Y2 is the final measurement of the number of
cigarettes smoked per day at T2; see Fig. 1).

The design illustrated in Fig. 2 is similar to that in
Fig. 1 except that all the responders continue with their
first-stage intervention options (i.e., each responder
receives the same intervention after the response time
point T1) in the second stage (see Fig. 2).
The adaptive interventions that are embedded within

the two SMART designs in Figs. 1 and 2 are listed in
Additional file 1: Tables S1 and S2.

Analytic approach
Let A1 and A2 be the indicators of the first- and second-
stage intervention options, respectively. For each indi-
vidual, we observe the data (Y0, A1,T1,Y1, A2,Y2,T2, δ).
The outcomes of interest are the longitudinal measure-
ments Y0,Y1, and Y2, which are fitted with a linear mixed
model, assuming they share the same random intercepts
at the subject level. Because the intervention options
and their durations change over time in this design, we
first proposed a straightforward time-varying mixed ef-
fects model (TVMEM) to analyze the outcomes. In this
approach, the duration of time a treatment is adminis-
tered is used as a covariate in the model. Such an ap-
proach is better than the approaches that ignore the
time component of the intervention (i.e., the duration of
the intervention influences its effect). However, the time
duration is a random variable and one may gain statis-
tical efficiency by treating it as a dependent variable in
the modeling. Therefore, we also proposed a joint-
modeling approach that simultaneously postulates a
linear mixed effects model for the longitudinal measure-
ments Y = (Y0,Y1,Y2) and a Cox model for the survival
time T1. In particular, we fit a survival submodel for T1

jointly with the previously mentioned TVMEM that will
efficiently extract the information contained in T1.

Fig. 2 Example of time-varying two-stage SMART design with unequal probability allocation: only non-responders are re-randomized in the
second stage
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Analytic models
Time-varying mixed effects model of Y = (Y0, Y1, Y2)
A linear TVMEM is fitted to the longitudinal outcomes,
with interventions and their interactions and durations
included as predictors. For each individual i in the study,
we have

Y iðtÞ ¼ miðtÞ þ εiðtÞ ¼ ZiηðtÞ þ XiðtÞβðtÞ þ bi þ εiðtÞ
¼ ZiηðtÞ þ β0ðtÞ þ β1ðtÞA1iðtÞ þ β2ðtÞA2iðtÞ
þβ3ðtÞt þ β4ðtÞA1iðtÞ⋅A2iðtÞ þ bi þ εiðtÞ

ð1Þ
where mi(t) is the unobserved true value of the longitudinal
outcome at time point t, and bi is the subject-level random
effects and is assumed to be normally distributed with a
mean of zero and variance of σb

2; Zi is a vector of the base-
line covariates (e.g., age, sex, comorbidities, etc.) with a cor-
responding vector of the regression coefficients η(t); Xi(t) is
the vector of the first-stage and second-stage intervention
options, their interactions, and duration of intervention
with a corresponding vector of the regression coefficients
β(t). Finally, εi(t) is the error term at time t and is assumed
to be normally distributed and independent of bi.
In our study design, we consider three time points at

which the outcomes of interest are measured: t = 0, T1i

and T2i, where T1i and T2i are the respective time points
at which individual i completes the first- and second-
stage interventions. Therefore, A1i(t) takes the value of
A1i at times T1i and T2i and is equal to 0 at t = 0, and
A2i(t) takes the value of A2i at T2i and is equal to 0 at
time points 0, and T1i. In this way, η(t) and β(t) are
piecewise linear fixed coefficients; therefore, model (1) at
the three time points is equivalent to the following three
linear mixed-effects submodels:

Y 0i ¼ Y i 0ð Þ ¼ mi 0ð Þ þ εi 0ð Þ
¼ Ziη 0ð Þ þ XT

i 0ð Þβ 0ð Þ þ bi þ εi 0ð Þ
¼ Ziη0 þ β00 þ bi þ ε0i ð2Þ

Y 1i ¼ Y ðT 1iÞi ¼ miðT 1iÞ þ εiðT 1iÞ
¼ ZiηðT1iÞ þ XT

i ðT 1iÞ β ðT 1iÞ þ bi þ εiðT 1iÞ
¼ Ziη1 þ β01 þ β11A1i þ β31T 1i þ bi þ ε1i

ð3Þ
and

Y 2i ¼ Y i T 2ið Þ ¼ miT 2i þ εi T 2ið Þ
¼ Ziη T 2ið Þ þ XT

i T 2ið Þβ T2ið Þ þ bi þ εi T 2ið Þ
¼ Ziη2 þ β02 þ β12A1i þ β2A2i þ β32T 2i

þ β4A1i⋅A2i þ bi þ ε2i
¼ Ziη2 þ β02 þ β12A1i þ β22A2Ri þ β23A2NRi

þ β32T 2i þ β41A1i⋅A2Ri þ β42A1i⋅A2NRi

þ bi þ ε2i ð4Þ
where in equations (2) through (4), Y0i, Y1i and Y2i are
the outcome values at time 0, T1i and T2i, respectively;

A1i is the indicator of the first-stage intervention op-
tions (−1 for M and +1 for B), A2i = (A2Ri, A2NRi) is
the indicator vector for the second-stage interven-
tion options, where A2Ri is the indicator for the
second-stage intervention options for the responders
to the first-stage intervention (1 = continue the initial
intervention; −1 = reduce the intensity of the initial
intervention) and A2NRi is the indicator for the
second-stage intervention options for the non-
responders (1 = increase the initial intervention; −1 =
augment the initial intervention with the other type
of intervention), with A2Ri =0 for non-responders
and A2NRi =0 for responders. A1i ⋅ A2Ri and A1i ⋅
A2NRi are the interaction effects of the first-stage
intervention and second-stage intervention among
responders and non-responders, respectively, in the
submodel of Y2i (i.e., submodel (4)).
Parameters η0, η1, η2 and β00, β01, β02 are the coeffi-

cients of the baseline covariates and intercepts at
time points 0, T1i and T2i, respectively; submodel (2)
includes only baseline covariates as predictors for
the outcomes at the beginning of the study (i.e., Y0i

at t = 0); submodel (3) models the outcome of inter-
est at the intermediate time point of the study (i.e.,
Y1i at t= T1i) and includes covariates A1i and T1i, for
which the corresponding coefficients β11 and β31 ac-
count for the direct effect of A1i and indirect effects
through T1i on Y1i; submodel (4) includes all the
main and interacting effects of the intervention op-
tions at each stage and the duration T2i (T2i = T1i

+ Δt) as predictors, for which the coefficients β12
and β32 account for the delayed effect of A1i and de-
layed indirect effects of A1i through T2i. The coeffi-
cients β2 = (β22, β23) and β4 = (β41, β42) account for
the effects of the second-stage interventions and the
effects of their interactions with the first-stage inter-
ventions on the final outcome Y2i (measured at the
end of the study, T2i).
The conditional expectations for models (1)-(4) are

provided in Additional file 2. We also provided condi-
tional expectations of the final outcomes for each of
the eight embedded adaptive interventions in the
SMART design of Fig. 1 and four embedded adaptive
interventions in the SMART design of Fig. 2 [see
Additional file 2].

Joint model
In addition to the TVMEM, we postulate a relative risk
model for T1i (time to the event of interest) as

hi tð Þ ¼ h0 tð Þexp γ1A1i þ γ2Wi þ αmi 0ð Þ� � ð5Þ

where Wi is a vector of the baseline covariates, which
could be different from vector Zi in model (1), and h0(⋅)
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is the baseline risk function. The underlying longitudinal
measurement mi(0) at baseline (i.e., at time point t = 0), as
approximated by the TVMEM, and at the first-stage inter-
vention A1i are included as predictors in model (5) be-
cause the time point at which an individual responds to
the first-stage intervention (i.e., T1i) depends only on the
type of first-stage intervention the subject received and
the baseline characteristics.
We jointly estimate the coefficients in models (1) and

(5) by using the maximum likelihood estimation method.
To define the joint distribution of the time-to-event and
longitudinal outcomes, we assume that the random
effect bi underlies both the longitudinal and survival
processes for each subject. This means that the random
effect accounts for both the association between the
longitudinal and event outcomes and the correlation
between the repeated measurements in the longitudinal
process. We also assume that the longitudinal outcomes
{Y0i,Y1i,Y2i} are independent of the time T1i conditional
on the random effect bi. Therefore, the joint likelihood
contribution for the ith subject can be formulated as
p(T1i, δi,Yi; θ) =Z

p T 1i; δijbi; β; γ; α; ηð Þ
Y
j

p Y i tij
� �jbi; β; η� �" #

p bi; ; σbð Þdb,

where p{Yi(tij)|bi; β, η} is the univariate normal density
for the longitudinal responses at time point tij, which is
the element from the vector ti = {tsi}s = 0

2 = {0,T1i,T2i};
p(bi; σb) is the normal density with standard deviation σb
for the random effects bi; and p(T1i, δi|bi; β, γ, α, η) is the
likelihood for the time to the intermediate outcome
and can be written as p(T1i, δi|bi; β, γ, α, η) =

hi T 1ijmi 0ð Þ; β; γ; α; ηð Þf gδi ⋅ Si(T1i|mi(0), A1i; β, γ, α, η) =

hi T 1ijmi 0ð Þ; β; γ; α; ηð Þf gδi ⋅ exp −
Z T1i

0
hi sjmi 0ð Þ; β; γ; α; ηð Þds

� �
,

where δi = I(T1i < t10). Parameters in the model are esti-
mated by maximizing the corresponding log-likelihood
function with respect to (β, γ, α, η). We obtained the
maximum likelihood estimates using the R package
“JM” [30].
The parameters (β12, β22, β23, β32, β41, β42) in submodel

(4) (i.e., the model of final outcome Y2) are of primary
interest and were estimated using the two approaches
described above.
The data organization and implementation of these

methods is presented in Additional file 3.

Simulations
For the example illustrated in Fig. 1, we considered
two simulation scenarios in which Y0 and Y1 were
simulated using submodels (2) and (3), respectively,
and Y2 was simulated with and without the inter-
action terms (A1i ⋅ A2Ri and A1i ⋅ A2NRi) in submodel

(4). In both scenarios, we simulated 500 replicates of
n = 1000 individuals, and randomly assigned subjects
(with probability .5) to one of the two first-stage in-
terventions (i.e., A1 to be equal to 1 [behavioral
intervention] or −1 [medication]). Responders and
non-responders to the initial interventions were then
re-randomized (with probability .5) to one of the
corresponding second-stage intervention options (i.e.,
A2R and A2NR were randomly assigned to be 1 or −1
and A2R =0 for non-responders and A2NR =0 for re-
sponders; see Fig. 1). In both scenarios, the random
effects {bi}i = 1

n for subjects i = 1, 2,…, n were gener-
ated from the normal distribution with a mean of 0
and a standard deviation of 5, and baseline outcomes
{Y0i}i = 1

n were simulated using submodel (2) with pa-
rameters β00 = 10 and ε0i ~ N(0, 42). The intermediate
outcomes {Y1i}i = 1

n were simulated using submodel (3)
with parameters β01 = 1, β11 = 0.2, and β31 = 0.1 in
the first scenario; whereas outcomes {Y1i}i = 1

n in the
second scenario were simulated with β01 = 1, β11 =
0.6, and β31 = 0.1, with a standard deviation of 5 (i.e.,
ε1i ~ N(0, 52) in both scenarios and satisfying the
conditions Y0i − Y1i ≥ 9 (C = 9) if subject i is a re-
sponder and Y0i − Y1i < 9 if subject i(i = 1, 2,… n) is a
non-responder.
The time points T1i were generated from a left-

truncated Weibull distribution (truncated from t00 =0.1,
the start time for monitoring), with shape = 1 and
scale= exp{γ0 + γ1A1i + αmi(0)}, where γ0 = − 1.5, γ1 =
0.4, and α = 0.25, and those for whom T1i was greater
than 1 (non-responders), were assigned T1i = t10 = 1
(the maximum time the first-stage intervention is
administered [t10]). The indicator of response status
was then defined by δi = I(T1i < 1). The final outcomes
Y2i(i = 1,…, n) were generated using submodel (4), with
ε2i ~N(0, 52). The values of the other parameters in
submodel (4) are reported in Table 1 (without interac-
tions) and Table 3 (with interactions).
For the intervention strategy depicted in Fig. 1,

there are eight adaptive interventions imbedded in
the design and represented by the three indicators
A1, A2R, and A2NR. For example, in adaptive interven-
tion (A1, A2R, A2NR) = (−1, 1, 1), participants are ini-
tially randomized to the medication (A1 = − 1); those
who respond are re-randomized to continue on the
medication (A2R = 1) and those who do not respond
are re-randomized to increased medication (A2NR = 1).
Another example of an adaptive intervention is (A1,
A2R, A2NR) = (1, 1, −1), in which participants are ini-
tially randomized to a behavioral intervention (A1 = 1);
those who respond are re-randomized to continue on
the behavioral intervention (A2R = 1), and those who
do not respond are re-randomized to an augmented
arm (M + B, A2NR = − 1).
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For the design in Fig. 2, only the non-responders are
re-randomized in the second stage. Therefore, there are
four embedded adaptive interventions in this design,
which are represented by the vector of two indicators
(A1, A2NR). For example (−1,−1) represents the adaptive
intervention in which participants are initially random-
ized to medication (A1 = − 1) and those who do not re-
spond are re-randomized to the augmented arm (M + B,
A2NR = − 1), whereas responders continue on the medi-
cation arm.
Using this design, we also simulated the treatment of

1000 subjects. However, instead of using equal prob-
ability allocations as in Fig. 1, we used unequal prob-
ability allocations at both stages. Specifically, each of
the 1000 subjects were initially assigned to either A1 =
− 1 (medication) or A1 =1 (behavioral intervention)
with probabilities 0.4 and 0.6, respectively. Then, the
non-responders were re-allocated into either A2NR = − 1
(augmented first-stage intervention, M + B) or A2NR =1

(intensified first-stage intervention, M+ or B+) with
probabilities 0.55 and 0.45, respectively; whereas all re-
sponders were continued on their initial interventions
(therefore, A2R =0) in their second stage. Random
effects (bi), errors (εi), and longitudinal outcomes (Y0i,
Y1i(i = 1,…, n)) were generated as described for Fig. 1.
The final outcomes, Y2i(i = 1,…, n), were also generated
using submodel (4), but without the variable A2Ri, with
the parameter values reported in Tables 5 and 7 for the
two scenarios, respectively. In the first scenario, out-
comes Y2i(i = 1,…, n) were simulated without inter-
action terms and with the parameter values shown in
Table 5; in the second scenario, outcomes Y2i(i = 1,…,
n) were simulated with interaction terms and with the
parameter values shown in Table 7.

An alternate simulation approach
For the design illustrated in Fig. 1, we performed an
alternate simulation approach that does not simulate

Table 1 Simulation results for the design in Fig. 1: the estimated means, based on 500 replicates, are reported for coefficients in
model (4)

Parameter estimation

β12 β22 β23 β32

(first-stage
interventions A1)

(second-stage interventions
for responders A2R)

(second-stage interventions
for non-responders A2NR)

(time of
intervention T2)

True value 0.4 0.5 0.5 2

Joint Model Estimate 0.407 0.503 0.502 1.790

MSE 0.011 0.029 0.016 0.147

CI% 97.8 % 95.0 % 96.8 % 94.2 %

Length
of CI

0.478 0.674 0.538 1.447

TVMEM Estimate 0.275 0.503 0.501 4.073

MSE 0.026 0.030 0.017 4.400

CI% 88.0 % 95.6 % 97.0 % 0.0 %

Length
of CI

0.484 0.695 0.549 1.436

CI%: Coverage probability of the 95 % confidence interval
MSE mean squared error

Table 2 Simulation results for the design in Fig. 1: the estimated means, based on 500 replicates, are reported for the final
outcomes of the eight adaptive interventions embedded in the design

Mean of the final outcomes

(−1,-1,-1) (−1,-1,1) (1,-1,-1) (1,-1,1) (−1,1,-1) (−1,1,1) (1,1,-1) (1,1,1)

Simulated
means

4.538 5.087 5.554 6.275 4.988 5.536 5.842 6.564

Estimated
means by
Joint model

4.543 5.093 5.549 6.269 4.982 5.531 5.849 6.569

Estimated
means by
TVMEM

4.543 5.093 5.549 6.269 4.982 5.531 5.849 6.569
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values for T1i from the Weibull distribution. Instead, we
considered a situation in which values of Y1i are moni-
tored and T1i is the value for which the Y1i crosses the
pre-specified boundary condition for the first time. In
this simulation approach, random effects {bi}i = 1

n and
error terms ε0, ε1 and ε2 were all simulated the same way
as described above. Baseline outcomes {Y0i}i = 1

n are simu-
lated using submodel (2) with β00 = 2 and ε0i ~ N (0, 22).
Furthermore, we defined an individual i, as a responder
if he/she had a certain percentage reduction in the inter-
mediate outcome value, Y1i, compared to his/her base-
line value Y0i. This may be a more appropriate definition
of responders in some practical scenarios than a simple
reduction by a fixed amount (e.g., C = 9) as was used in
the previous simulations. In this simulation, those with a
40 % reduction from their baseline values were considered
responders. The parameter values used for submodel (3)
were β01 = −2, β11 = −0.5, and β31 = 5 . For an individual i,

we first simulated ε1i ~N (0, 22), and calculated T1i
* for

which the β01 + β11A1i + β31T1i
* + bi + ε1i equals the 40 %

reduction from Y0i, the baseline value. Therefore, we
define T1i = t00, if T1i

* < t00; T1i =T1i
* , if t00 ≤T1i

* ≤ t10; and
T1i = t00, if T1i

* ≥ t10. Then, T1i is substituted in the right
side of equation (3) to obtain the value of Y1i for the indi-
vidual i(i = 1,…, n). The final outcomes Y2i(i = 1,…, n)
were generated using submodel (4), with ε2i ~ N (0, 22).
As previously, we simulated 500 replicates of n = 1000 in-
dividuals in each trial, and randomly assigned subjects
(with probability 0.5) to one of the two first-stage inter-
ventions (i.e., A1 to be equal to 1 [behavioral intervention]
or −1 [medication]). Responders and non-responders to
the initial interventions were then re-randomized (with
probability 0.5) to one of the corresponding second-stage
intervention options (i.e., A2R and A2NR were randomly
assigned to be 1 or −1 and A2R =0 for non-responders and
A2NR =0 for responders; see Fig. 1).

Table 3 Simulation results for the design in Fig. 1: the estimated means, based on 500 replicates, are reported for coefficients in
model (4) with interactions

Parameter estimation

β12 β22 β23 β32 β41 β42

(first-stage
interventions A1)

(second-stage
interventions
for responders A2R)

(second-stage interventions
for non-responders A2NR)

(time of
intervention T2)

(interaction
term A1. A2R)

(interaction
term A1. A2NR)

True value −0.4 0.5 0.4 2.0 0.55 −0.40

Joint model Estimate −0.381 0.490 0.389 1.626 0.542 −0.397

MSE 0.014 0.038 0.019 0.305 0.037 0.019

CI% 97.4 % 95.6 % 96.8 % 87.0 % 96.8 % 98.0 %

Length
of CI

0.521 0.789 0.593 1.671 0.789 0.593

TVMEM Estimate −0.530 0.489 0.390 4.122 0.542 −0.396

MSE 0.029 0.039 0.020 4.697 0.037 0.020

CI% 88.2 % 95.8 % 96.4 % 0.0 % 97.0 % 97.8 %

Length
of CI

0.525 0.809 0.605 1.618 0.809 0.605

CI%: Coverage probability of the 95 % confidence interval
MSE mean squared error

Table 4 Simulation results for the design in Fig. 1: the estimated means, based on 500 replicates, are reported for the final
outcomes of the eight adaptive interventions embedded in the design with interactions in model (4)

Mean of the final outcomes

(−1,-1,-1) (−1,-1,1) (1,-1,-1) (1,-1,1) (−1,1,-1) (−1,1,1) (1,1,-1) (1,1,1)

Simulated
means

5.456 6.306 5.009 5.000 5.400 6.249 5.577 5.565

Estimated
means by
Joint model

5.456 6.306 5.009 5.000 5.400 6.249 5.577 5.565

Estimated
means by
TVMEM

5.456 6.306 5.009 5.000 5.400 6.249 5.577 5.565
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We evaluated the performance of our two proposed
analytic approaches in these simulated data sets by
measuring the (a) means of the estimates of each of the
adaptive interventions embedded in the design, (b) par-
ameter estimates in the model, (c) mean squared error
(MSE), (d) estimated coverage probability of the 95 %
confidence interval, and (e) length of the confidence
interval.
Using these simulations parameters, we simulated

two trials with identical sample sizes: (a) the time-
varying SMART design and (b) the standard SMART
design. We evaluated the performance of the time-
varying SMART design and an analogous standard
SMART design by measuring the (a) power to select
the optimal embedded intervention, and (b) associated
cost.

Results
Tables 1-4 show the results of the two simulation sce-
narios based on the design shown in Fig. 1. Similarly,
Tables 5-8 show the results of the two simulation
scenarios for the design in Fig. 2.
In Table 1 the true parameters were the coefficient

of the first-stage interventions, β12 = 0.4; coefficient of
the second-stage intervention for responders, β22 = 0.5;
coefficient of the second-stage intervention for non-
responders, β23 = 0.5; and coefficient of T2, the total time
of the first- and second-stage interventions, β32 = 2. The

estimates obtained using TVMEM were β̂12 ¼ 0:275; β̂22

¼ 0:503; β̂23 ¼ 0:501; and β̂32 ¼ 4:073 , while the

estimates obtained using the joint model were ~β12

¼ 0:407; ~β22 ¼ 0:503; ~β23 ¼ 0:502; and ~β32 ¼ 1:790 .
Both approaches estimated coefficients β22 and β23
accurately. The parameters β12 and β32 were estimated
accurately using the joint model, but poorly using the
TVMEM. Similarly, in terms of the MSE, the length of
the 95 % confidence interval, and the estimated
coverage probability of the 95 % confidence interval,
both approaches performed similarly for estimating β22
and β23, but joint modeling performed better for esti-
mating β12 and β32. For example, for β12, the estimated
coverage probability obtained using the TVMEM was
88 %; whereas that obtained from the joint model was
97.8 %.
For each of the eight embedded adaptive interventions

in the design, Table 2 shows that both approaches accur-
ately estimated the means of the final outcome,
E[Y2|(A1, A2R, A2NR)]. For example, the simulated means
of the adaptive interventions (A1, A2R, A2NR) = (−1, −1, −
1), (−1, 1, 1), and (1, 1, 1) were 4.538, 5.536, and 6.564,
respectively, and the estimated means were 4.543, 5.531,
and 6.569, respectively, using the TVMEM and joint
model.

Tables 3 and 4 show results similar to those in Tables 1
and 2, respectively. In Table 3, the coefficient of inter-
action of the first-stage interventions and second-
stage interventions among responders is denoted by
β41, and the coefficient of interaction of the first-stage
interventions and second-stage interventions among
non-responders is denoted by β42. As shown in
Table 3, both TVMEM and joint modeling accurately
estimated parameters β22, β23, β41, and β42, with little
difference in the MSE, estimated coverage probability,
and length of the 95 % confidence interval. However,
as in Table 1, the joint modeling approach estimated
β12 and β32 more accurately than the TVMEM ap-
proach. For example, the true coefficient of T2 was
β32 = 2.0, which was poorly estimated as 4.122 using
the TVMEM and estimated as 1.626 using the joint
model. Table 4 shows that the estimated means of
the eight adaptive interventions obtained from both
analytical approaches were identical and close to the
simulated means up to the third decimal.
Similar trends were observed in Tables 5-8 for the

two simulations of Fig. 2. β12 and β32 were better
estimated using the joint modeling approach, whereas
all the other parameters and the means of the final
outcomes of the four adaptive interventions embedded
in the design were accurately estimated using both
approaches.
In Table 5, the true coefficient values of β12 =0.450

and β32 =2.0 were estimated as β̂12 ¼ 0:388 and β̂32

¼ 4:046 using the TVMEM, and as ~β12 ¼ 0:456 and
~β32 ¼ 1:767 using the joint model. Coefficient β23 was
accurately estimated using both models. As for the
four adaptive interventions (i.e. (A1, A2NR) = (−1,1),
(−1,-1), (1, 1) and (1, −1)) embedded in the design
of Fig. 2, Table 6 shows that the simulated means
were 5.213, 4.802, 6.330, and 5.805, respectively,
and the estimated means were 5.228, 4.790, 6.344,
and 5.793, respectively, using the TVMEM, and
5.230, 4.788, 6.345, and 5.792, respectively, using
the joint model.
In Table 7 shows that the true parameters β12 =0.40

and β32 =2.0 were respectively estimated as β̂12 =0.298

and β̂32 =4.308 using the TVMEM, and as ~β12 =0.408 and
~β32 =1.784 using the joint model. The other two
parameters, β23 and β42, were accurately estimated
using both approaches. Table 8 shows that the
means were accurately estimated using both
approaches.
Tables 9 and 10 show the results from the alterna-

tive simulation strategy. In Table 9, the true coeffi-
cient values of β12 = −0.6 and β32 = −1.5 were

estimated as β̂12 = −0.534 and β̂32 = −2.367 using the
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TVMEM, and as ~β12 = −0.608 and ~β32 = −1.338 using
the joint model. Coefficients β22, β23 and the means
of the final outcomes of the eight adaptive interven-
tions embedded in the design were accurately esti-
mated using both approaches (Table 10).

Comparison of power between the time-varying SMART
design and the standard SMART design
We analyzed the time-varying SMART design’s ability
to select the most optimal embedded intervention
and compared the associated power to that of the
standard SMART design. We performed the compari-
son by conducing two trials with identical sample
sizes and intervention effects using (a) the time-
varying SMART design and (b) the standard SMART
design. Figure 3 represents the standard SMART
design that is analogous to the time-varying SMART
design depicted in Fig. 1. The major difference be-
tween the two designs is that in the time-varying
SMART design, a responder is re-randomized to the
second-stage intervention at a random response time

T1 (< t10); whereas in the standard SMART design,
everyone is re-randomized at a fixed time point t10.
Responders are defined similarly in both designs. In
our example, a subject is considered a responder to
the first-stage intervention if there is a significant
decrease in the number of cigarettes the person
smoked per day. The second-stage intervention is
identical for both designs.
For both designs, we calculated the percentage of

times that the best embedded intervention is
selected (i.e., the power of the design). We simulated
six parameter scenarios: the true parameters for the
coefficient of the first-stage interventions, β21;
coefficient of the second-stage intervention for re-
sponders, β22; coefficient of the second-stage inter-
vention for non-responders, β23; coefficient of T2,
the total time of the first- and second-stage inter-
ventions, β32; coefficient of interaction of the first-
stage interventions and second-stage interventions
among responders β41; and the coefficient of inter-
action of the first-stage interventions and second-
stage interventions among non-responders β42. The

Table 5 Simulation results for the design in Fig. 2: the estimated means, based on 500 replicates, are reported for coefficients in
model (4)

Parameter estimation

β12 β23 β32

(first-stage
interventions A1)

(second-stage
interventions for
non-responders A2NR)

(time of
intervention T2)

True value 0.450 0.40 2.0

Joint model Estimate 0.456 0.441 1.767

MSE 0.013 0.017 0.168

CI% 95.6 % 95.6 % 93.6 %

Length of CI 0.482 0.536 1.452

TVMEM Estimate 0.388 0.439 4.046

MSE 0.016 0.017 4.297

CI% 94.0 % 96.0 % 0.0 %

Length of CI 0.489 0.547 1.442

CI%: Coverage probability of the 95 % confidence interval
MSE mean squared error

Table 6 Simulation results for the design in Fig. 2: the estimated means, based on 500 replicates, are reported for the final
outcomes of the four adaptive interventions embedded in the design

Mean of the final outcomes

(−1,1) (−1,-1) (1,1) (1,-1)

Simulated means 5.213 4.802 6.330 5.805

Estimated means by joint model 5.230 4.788 6.345 5.792

Estimated means by TVMEM 5.228 4.790 6.344 5.793
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simulated values of each of these parameters are
reported in Tables 11 and 12. The simulation results
are based on 500 replicates and are shown in
Table 11 for comparing the two designs in Fig. 1
(time-varying SMART) and Fig. 3 (analogous standard
SMART). Overall, both designs were equally effective
in selecting the optimal embedded adaptive interven-
tion. For example, when β21 = 0.4, β22 = 0.5, β23 = 0.5
and β32 = 2, using the joint model and implementing
the time-varying SMART design showed 82.8 %
power to select the optimal embedded adaptive inter-
vention; whereas the power associated with the stand-
ard SMART design was 83.0 %. Similar results were
obtained when comparing the time-varying SMART
design in Fig. 2 and the standard SMART design in
Fig. 4 (see Table 12).

Comparison of the cost associated with conducting the
time-varying SMART design versus that associated with
conducting the standard SMART design
To assess the cost associated with the conducting
trials using these two competing designs, we consid-
ered a linear cost function for both SMART designs.

Let c1 and c2 be the cost of the medication (M) and
behavioral intervention (B), respectively. Additionally,
we assumed that the reduced and increased intensity
of the first-stage intervention are at half and twice
the cost of the first-stage intervention, respectively,
and that augmentation of the first-stage intervention
in the second stage (M + B) has the cost c1 + c2.
Using these parameters, the cost for the time-varying
SMART design in Fig. 1 is

cost ¼ c1
X
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T 1i
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1
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Δt

0
@

1
Aþ c1

2

� 	 X
A2i¼M−

Δt

0
@

1
A

þ 2c1ð Þ
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Table 7 Simulation results for the design in Fig. 2: the estimated means, based on 500 replicates, are reported for
coefficients in model (4) with interactions

Parameter estimation

β12 β23 β32 β42

(first-stage
intervention A1)

(second-stage interventions
for responder A2NR)

(time of
intervention T2)

(interaction
termA1 A2NR))

True value 0.4 0.4 2.0 −0.4

Joint model Estimate 0.408 0.422 1.784 −0.400

MSE 0.012 0.020 0.157 0.019

CI% 98.2 % 97.2 % 95.6 % 97.2 %

Length of CI 0.513 0.594 1.542 0.593

TVMEM Estimate 0.298 0.419 4.308 −0.399

MSE 0.021 0.021 5.439 0.020

CI% 94.8 % 97.4 % 0.0 % 97.4 %

Length of CI 0.520 0.608 1.532 0.607

CI%: Coverage probability of the 95 % confidence interval; MSE: mean squared error

Table 8 Simulation results for the design in Fig. 2: the estimated means, based on 500 replicates, are reported for the final
outcomes of the four adaptive interventions embedded in the design with interactions in model (4)

Mean of the final outcomes

(−1,1) (−1,-1) (1,1) (1,-1)

Simulated means 5.487 4.622 6.032 6.059

Estimated means by joint model 5.502 4.610 6.047 6.046

Estimated means by TVMEM 5.500 4.611 6.045 6.048
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and the cost for the corresponding standard SMART
in Fig. 3 is

cost ¼ c1
X
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Similarly, the cost for the time-varying SMART in
Fig. 2 is

cost ¼ c1
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and the cost for the corresponding standard SMART
in Fig. 4 is

Fig. 3 Example of standard SMART design with equal probability allocation: each participant is randomized twice

Table 9 Simulation results from the alternative simulation approach: the estimated means, based on 500 replicates, are reported for
coefficients in model (4)

Parameter estimation

β12 β23 β32 β42
(first-stage
intervention A1)

(second-stage
interventions
for responder A2NR)

(time of
intervention T2)

(interaction
term A1 . A2NR)

True value −0.6 0.5 0.4 −1.5

Joint model Estimate −0.608 0.492 0.447 −1.338

MSE 0.002 0.003 0.018 0.034

CI% 97 % 96 % 87 % 70 %

Length of CI 0.199 0.192 0.376 0.411

TVMEM Estimate −0.534 0.492 0.448 −2.367

MSE 0.007 0.003 0.020 0.763

CI% 74 % 93 % 84 % 0 %

Length of CI 0.197 0.191 0.376 0.529

CI%: Coverage probability of the 95 % confidence interval
MSE mean squared error
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Note that in the above equations, T1i = t10 for non-

responders, and c1 þ c2ð Þ
X

A2i¼MþB

Δt

0
@

1
A is the cost of the

second stage for all the subjects assigned to the inter-
vention M + B.
Figure 5 shows the cost as a function of c1 and c2,

where red represents the cost of the time-varying
SMART design and blue represents the cost of the
standard SMART design. We can see that the cost of
the time-varying SMART is less than the cost of the
standard SMART in all scenarios. Table 13 shows the
average costs and standard deviations calculated at select
values of c1 and c2 based on 1000 replicates. For ex-
ample, when the unit costs are c1 = 2 and c2 = 1 for
medication and behavioral intervention, the average cost
of the time-varying SMART in Fig. 1 is 3446.5, with
standard deviation 49.87, while the average cost of the
corresponding standard SMART is 3935.8, with standard
deviation 41.47. Thus, the cost of the standard SMART

is about 12 % higher than that of the time-varying
SMART in this scenario.

Discussion
In the standard SMART design, the timing of allocating
the intervention is generally ignored, which leads to a
model of regression without the predictor of a time vari-
able. Therefore, in this article, we proposed a time-
varying SMART design that allows the re-randomization
to the second-stage interventions to occur at different
time points for different individuals. The two modeling
approaches we proposed for analyzing data using such
time-varying SMART designs provided good estimations
of the means of the final outcomes of all the embedded
interventions. However, the joint modeling approach
provided more accurate parameter estimates and higher
estimated coverage probability than the TVMEM, and
thus we recommend the joint model for analyzing data
generated from time-varying SMART designs.
In the examples illustrated in Figs. 1 and 2, a partici-

pant was defined as a responder if there was a significant
decrease in the number of cigarettes the participant
smoked per day. One may question the validity of re-
randomizing individuals who have a quick response to
the first-stage intervention because such a response indi-
cates the effectiveness of the intervention. However, if
significant adverse effects are associated with the inter-
vention (e.g., radiation therapy for many types of cancer
is commonly associated with skin damage [31], fatigue
[32, 33], diarrhea [34, 35], and rectal bleeding [36]), it is

Table 11 Power to select the optimal embedded adaptive intervention strategy for designs in Figs. 1 and 3

Comparison of designs
in Figs. 1 and 3

β12 β22 β23 β32 β41 β42 Power to select optimal embedded adaptive strategy

Time-varying SMART Standard SMART

Without interaction 0.4 0.5 0.5 2 82.8 % 83.0 %

0.3 −0.2 0.4 2 60.2 % 59.2 %

0.3 −0.5 0.4 2 76.2 % 75.0 %

With interaction 0.4 0.5 0.5 2 0.5 −0.3 99.2 % 97.0 %

0.6 0.5 0.4 2 0.2 0.2 63 % 62.8 %

0.6 −0.5 −0.5 2 0.2 −0.3 72.2 % 73.4 %

Table 10 Simulation results from the alternative simulation approach: the estimated means, based on 500 replicates, are reported
for the final outcomes of the eight adaptive interventions embedded in the design

Mean of the final outcomes

(−1,-1,-1) (−1,-1,1) (1,-1,-1) (1,-1,1) (−1,1,-1) (−1,1,1) (1,1,-1) (1,1,1)

Simulated means −0.208 −0.070 −1.589 −1.356 0.678 0.810 −0.918 −0.689

Estimated means by Joint model −0.203 −0.066 −1.595 −1.359 0.675 0.804 −0.915 −0.683

Estimated means by TVMEM −0.203 −0.063 −1.594 −1.363 0.672 0.804 −0.912 −0.684
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reasonable to shorten the duration of the intervention to
avoid side effects. Therefore, the allocation strategy for
the responders in the examples of the time-varying
SMART design makes it more efficient than the stand-
ard SMART design.
We proposed two approaches for analyzing the longi-

tudinal outcomes obtained from the time-varying
SMART design: the TVMEM and the joint model.
According to the simulation results, the joint modeling
approach better estimated the effects of the duration of
the intervention (i.e., T2) and the first-stage interventions
(i.e., A1) in model (4). More specifically, the joint model-
ing approach had more accurate estimates, smaller
MSEs, higher estimated coverage probabilities, and
smaller 95 % confidence intervals (i.e., smaller estimated
standard deviations) for the coefficients of the effects of
the first-stage intervention and the time of intervention.
Because we wanted to illustrate the cost efficiency of the
proposed time-varying SMART design and its ability to
select the optimal embedded adaptive intervention, we
implemented a rather simplified linear mixed-effects
submodels (2)-(4) of the more general TVMEM in

model (1). We showed that the joint model performs
better than the TVMEM in analyzing the data collected
from such time-varying SMART designs. The joint mod-
eling approach extracts part of the information con-
tained in the time of the response, which is a function of
the first-stage treatment assignment. Also, the associ-
ation between the longitudinal and event outcomes is
accounted for by the random effect that underlies both
the longitudinal and survival processes for each subject.
Therefore, although complex, time-varying SMART de-
signs may require more complicated models for time
and an extra layer of joint modeling, and as such one
would expect a better performance from joint modeling
in general. Nevertheless, both modeling approaches per-
formed well in estimating the other parameters and the
mean of the final outcomes for each adaptive interven-
tion embedded in the corresponding designs. Further-
more, equation (1) is a general form of TVMEM, and in
our study is equivalent to equations (2) ~ (4) at time
points t = 0,T1i,T2i for each subject i. T1i is a subject-
specific random variable, and coefficients in equation (3)
can also be subject-specific. However, in practice,

Fig. 4 Example of standard SMART design: only non-responders are re-randomized in the second stage

Table 12 Power to select the optimal embedded adaptive intervention strategy for designs in Figs. 2 and 4

Comparison of designs
in Figs. 2 and 4.

β12 β23 β32 β42 Power to select optimal embedded adaptive strategy

Time-Varying SMART Standard SMART

Without interaction 0.5 0.5 2 92.8 % 90.6 %

0.45 0.4 2 86.6 % 83.6 %

−0.2 0.2 2 68.4 % 66.2 %

With interaction 0.4 0.4 2 −0.4 98.2 % 97.4 %

0.2 0.2 2 −0.4 88.4 % 87.6 %

0.4 0.1 2 −0.25 77.4 % 78.6 %
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modeling coefficients to be subject-specific may lead to
the estimation of too many parameters which, in some
scenarios, may not be identifiable, particularly with small
sample sizes. Therefore, as an initial attempt, we mod-
eled T1i as a subject-specific random variable and the
coefficients as fixed parameters. For example, coeffi-
cients β0(t), β1(t), β3(t) in equation (1) are fixed coeffi-
cients β01, β11, β31 in equation (3), as model (1) is
equivalent to submodel (3) at time point T1i. More
complicated models such as subject-specific and time-
varying coefficients in submodels (2)-(4) can be consid-
ered, if the sample sizes are large.
We also illustrated the effectiveness of the joint mod-

eling approach in accurately estimating the parameters
even when no specific model was assumed for the dur-
ation of the first-stage intervention, T1i. The conclusions
were qualitatively similar as that in the simulation where
Weibull model was assumed for the duration of the
first-stage intervention.
In the scenarios we considered here, the time at which

individuals were re-randomized was assessed only for
responders to the first-stage intervention. However, one
may also consider varying times for the non-responders
and for the second-stage interventions. For example, a
non-responder showing severe side effects or no trend
towards achieving intermediate goals may be re-
randomized sooner than t10. The analytic approaches for
such designs would be similar to the joint or time-

varying mixed effects models proposed in this manu-
script, for example, with an extra submodel for the
duration of the second-stage interventions.
Instead of randomization with certain pre-defined

probabilities (e.g., in the first two simulation scenarios,
randomization with probability 0.5 was used for both
stages; in the last two scenarios, unequal randomization
with probabilities 0.4(0.6) and 0.55(0.45) was used for
the two stages, respectively), information concerning po-
tential moderators could be used to tailor and assign the
interventions. For example, the choice of the first-stage
intervention options could depend on the severity of
the subject’s smoking habit at the beginning of the
study; whereas the choice of the second-stage interven-
tion option could depend on the subject’s adherence to
the first-stage intervention. The analysis of such a
randomization scheme would require assigning weights
for each subject [37].
We also compared the cost and power associated with

selecting the optimal embedded adaptive intervention
for the proposed time-varying SMART design versus
that for the analogous standard SMART design. Our
simulation results showed similar power for the two de-
signs. We used a linear cost function to assess the cost
efficiency of the proposed design and found that it can
have substantially lower cost than the standard design.
Several other forms of cost functions can be used to
assess cost efficiency. However, as long as the cost is an

Fig. 5 The cost associated with implementing a standard SMART (blue) and equivalent time-varying SMART (red)

Table 13 Examples of the average cost for time-varying SMART and the standard SMART

c1 c2 Average Cost(SD)

Time-varying SMART Standard SMART

Design in Figs. 1 and 3: All the subjects are re-randomized 2 1 3446.5(49.87) 3935.8(41.47)

1 1 2325.7(29.82) 2631.4(19.15)

1 2 3526.5(57.00) 3953.2(46.63)

Design in Figs. 2 and 4: Only non-responders are re-randomized 2 1 3593.4(45.40) 4056.9(36.52)

1 1 2416.1(24.12) 2704.9(14.59)

1 2 3655.5(53.53) 4056.7(42.77)
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increasing function of time, the proposed time-varying
SMART design will have lower cost than the standard
SMART design. Therefore, the time-varying SMART de-
sign can be used to study how the intensity and combin-
ation of two types of interventions might be adapted to
a subject’s progress in a cost- and time-efficient manner.
In our study, we assume that there is no unmeasured

confounder. As suggested by Chakraborty and Murphy
[38], the assumption of “no unmeasured confounders”
holds in a SMART design if the randomization probabil-
ities of A1 at most depend on the baseline covariates,
and the randomization probabilities of A2 at most de-
pend on the baseline covariates, the intermediate out-
come, and A1. We performed additional simulations to
investigate the role of unmeasured confounders on the
parameter estimations. From these simulations, we see
that when the unmeasured confounders affect only T1

and Y1, the parameter estimation is still accurate
(Additional file 4: Table S4). However, when these un-
measured confounders affect Y2, there is bias in the esti-
mation of T2 (Additional file 4: Tables S5-S6).
In the ADHD SMART study discussed by Nahum-

Shani et al. [20], a weighted average was applied to the
final outcomes when their primary goal of the study was
to compare the imbedded adaptive intervention options
in the SMART. In our Time-Varying SMART study, we
used regression-based methods to identify more efficient
adaptive decision rules for each subject along with their
longitudinal outcomes. Similar to the analytic process of
the standard SMART design by Q-learning in which a
regression model for the outcome is postulated at each
decision as a function of the patient’s information to that
point, our TVMEM in equation (1) is equivalent to sub-
models (2)-(4) at three time points of longitudinal out-
comes for each individual. Therefore, we did not include
weights in this study of the time-varying SMART design.
However, for increased complexity of time-varying
SMART designs, weights may be incorporated into the
analysis in a future study to develop more robust estima-
tions and results.

Conclusion
The proposed time-varying two-stage SMART design
can take into account the time associated with the first-
stage interventions and thus could result in clinical trials
with fewer side effects and lower cost. Additionally, the
two modeling approaches we proposed are able to pro-
vide good estimations of the means of the final out-
comes of all the embedded interventions. The joint
modeling approach resulted in more accurate estimates
and higher estimated coverage probabilities; therefore,
we recommend using joint modeling to analyze data
generated from the time-varying designs proposed in
this manuscript.
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