
Gene expression

The discordant method: a novel approach for

differential correlation

Charlotte Siska1, Russell Bowler2 and Katerina Kechris3,*

1Computational Bioscience Program, Department of Pharmacology, University of Colorado Denver, 2Department of

Medicine, National Jewish, Denver, CO and 3Department of Biostatistics and Informatics, University of Colorado

Denver, Denver, CO, USA

*To whom correspondence should be addressed.

Associate Editor: Ziv Bar-Joseph

Received on May 12, 2015; revised on October 9, 2015; accepted on October 24, 2015

Abstract

Motivation: Current differential correlation methods are designed to determine molecular feature

pairs that have the largest magnitude of difference between correlation coefficients. These methods

do not easily capture molecular feature pairs that experience no correlation in one group but correl-

ation in another, which may reflect certain types of biological interactions. We have developed a tool,

the Discordant method, which categorizes the correlation types for each group to make this possible.

Results: We compare the Discordant method to existing approaches using simulations and two

biological datasets with different types of –omics data. In contrast to other methods, Discordant

identifies phenotype-related features at a similar or higher rate while maintaining reasonable com-

putational tractability and usability.

Availability and implementation: R code and sample data are available at https://github.com/siskac/

discordant.

Contact: katerina.kechris@ucdenver.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many strategies exist for analyzing high-throughput —omics data in

order to explore the complexity that differentiates biological groups.

The most common analysis is differential expression, which is

defined by molecular features that experience large changes in ex-

pression or abundance between groups (Malone and Oliver, 2011;

Oshlack et al., 2010). In addition to differential variance (i.e. groups

may not have different mean levels but dissimilar variance) (Ho

et al., 2008), another analysis that may be relevant is differential

correlation or coexpression (DC), which is the change of association

of molecular feature pairs between groups (e.g. healthy and disease).

These differential associations may indicate molecular interactions

that characterize or reflect biological or disease state.

Examples of DC can be found in both low- and high-throughput

studies. For instance, one study using chromatin immunoprecipitation

determined the effect of mutant p53 on wild-type p53 in the cell.

Mutated p53 reduces the binding of wild-type p53 to the p53 response

element of p21, MDM2 and PIG3, causing DC of p53 and these

targets between samples with wild-type p53 and mutant p53 (Willis

et al., 2004). Another study using ELISA and a lymphoproliferation

assay determined that patients with treated paracoccidioidomycosis

had correlation between interleukins and tumor necrosis factor, but

there was no correlation in untreated patients (Silva et al., 1995).

Larger-scale studies have identified DC to study how transcrip-

tion factors can influence the expression of a transcript. In a mye-

loma study, transcription factor coexpression with genes in

pathways was found to be different between the two major subtypes

of myeloma (Wang et al., 2014). Another transcriptomic study that

examined expression differences between lean and obese siblings

found that NEGR1 is a central hub in obesity-related DC networks

(Walley et al., 2012).

DC has been investigated with a myriad of approaches. These

methods have been reviewed recently (Kayano et al., 2014).

The classical method by Fisher transforms the correlation coeffi-

cients into z scores and then determines the statistical dissimilarity

between the two groups (Fisher, 1915). Software implementing this
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method is now available (Fukushima, 2013). Wang et al. (2014)

makes similar assumptions and uses a Hotteling test.

Another popular method uses linear models and determines sig-

nificant interaction terms between groups (Cho et al., 2009; Ruggeri

and Eng, 2015; Jauhiainen et al., 2012). Linear models have been

shown to be effective, however, there are deficiencies when there is

large differences in variability between groups, which may be relevant

when examining —omics data from different types of platforms and/

or data from humans or non-experimental model systems. It has been

shown that large variability results in incorrect slope estimates

(Cornbleet and Gochman, 1979; Ludbrook, 2010). Furthermore,

slope estimates can be different depending on what feature is con-

sidered the dependent or independent variable in the linear model.

Alternative methods use Bayesian models (Bradley et al., 2009;

Dawson and Kendziorski, 2012). For example, Bradley et al. uses

pathway information as a prior, which can be beneficial for identifi-

cation, but pathway knowledge can also be incomplete. Very few

pathway databases combine interactions between multiple types of

molecular features (Bader, 2006) except for KEGG (Kanehisa,

2000). Dawson et al. implemented EBcoexpress, which uses

Empirical Bayes estimation and returns a posterior probability of

differential coexpression for each pair of molecular features.

Another statistical method to determine DC is the Expected

Conditional F-statistic, which modifies the F-statistic from analysis

of variance for multiple groups (Fang et al., 2010; Ho et al., 2008;

Lai et al., 2004). The F-statistic was adapted to determine molecular

feature pairs that share the least variance instead of single features

that share dissimilar mean across groups.

Other methods use partial correlations, hierarchical clustering,

principal component analysis and other models to determine

DC modules rather than individual pairs (Kayano et al., 2013;

Kostka and Spang, 2004; Tesson et al., 2010; Watson, 2006).

Although these types of analyses are informative, they only de-

scribe the average behavior of molecular features instead of spe-

cific pairs.

Missing from all of these methods is categorizing the different

types of DC scenarios, commonly referred to as ‘binning’, where

each pair is categorized into all possible paired correlation scenarios.

The following are different examples: (i) Group 1: þ, Group 2: �,

(ii) Group 1: þ, Group 2: 0, (iii) Group 1: þ, Group 2: þ. Example

1 is an extreme version of DC, where the correlation is in opposite

directions between groups. Example 2 also illustrates DC, except

that in Group 2 the correlation is zero. Finally, Example 3 is where

there is no DC because the correlation is in the same direction for

both groups. Most methods are well suited to detect molecular fea-

ture pairs with a pattern similar to Example 1 (i.e. cross), but are

less likely to identify DC molecular feature pairs with a pattern simi-

lar to Example 2 (i.e. disrupted). Molecular feature pairs in Example

2 could be biologically relevant since they indicate an interaction in

one group that is disrupted in the other group.

In this work, we develop a method that uses binning to not only

improve the identification of molecular feature pairs that exhibit

more significant cross DC as in Example 1, but also disrupted DC as

in Example 2. Our method is based on a mixture model originally

developed to assess whether microarray experiments could be com-

bined (Lai et al., 2007, 2014). We have altered the application of

this method to determine DC of molecular feature pairs between

groups and have named it the Discordant method. Using the EM al-

gorithm (Dempster et al., 1977), the Discordant method estimates a

posterior probability for each possible paired correlation scenario to

achieve binning. Binning increases power since it identifies all pos-

sible DC pairs rather than the most extreme. Other advantages of

the Discordant method are computational tractability and ease in

choosing initial parameters.

We compare our method to Fisher’s method, linear interaction

models and EBcoexpress (Dawson and Kendziorski, 2012; Fisher,

1915) with simulations to assess specificity and sensitivity for all

three methods. We also use the Cancer Genome Atlas (TCGA) glio-

blastoma miRNA and transcriptomic data (McLendon et al., 2008)

and Chronic Obstructive Pulmonary Disease (COPD) metabolomic

and transcriptomic data (Bahr et al., 2013) as a biological validation

of the methods.

2 Methods

2.1 Fisher’s transformation
Fisher’s transformation is used (Fisher, 1915) to convert Pearson’s

sample correlation coefficient r into z score with the following

equation:

z ¼ 1

2
ln
ð1þ rÞ
ð1� rÞ (1)

The resulting z score has an approximately normal distribution

(Hotelling, 1953). Fisher’s transformation is applied to all possible

feature pairs for each biological group, which may be subsets of dis-

ease, biological or treatment samples. For example, in the biological

applications of the methods in this study, the groups are defined by

the presence or absence of disease.

2.2 Discordant
The model is adapted from Lais et al. which was developed to test

for concordance between microarrays (Lai et al., 2007, 2014). Our

method is based on a mixture model with three classes: 0, � and þ
as seen in Figure 1. Given a class i, the density for one feature pair,

with Fisher’s transformed correlations z1 and z2, for group 1 and

group 2, respectively, is:

f ½zð1Þ; zð2Þ� ¼
X2

i¼0

X2

j¼0

ðpij/li ;r
2
i
½z1�/gj ;s

2
j
½z2�Þ1ðwij¼1Þ (2)

where /l;r2 is the normal probability distribution function (pdf) for

group 1 with mean l and variance r2, /g;s2 is the normal pdf for

Fig. 1. Discordant algorithm pipeline. (a) Pearson’s correlation coefficients for

all A and B pairs. (b) Fisher’s transformation. (c) Mixture model based on z

scores. (d) Class matrix describing between group relationships. (e) EM

Algorithm to estimate posterior probability of each class for each pair. (f)

Features of —omics A and B that have high pp of DC
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group 2 with mean g and variance s2 and pij is the frequency that the

feature pair is in class i for group 1 and class j for group 2. The three

classes (represented by i and j) are 0 (i or j¼0),�(i or j ¼ 1), andþ (i

or j¼2). Class 0 correlations are distributed around 0, class � correl-

ations are distributed around an unknown negative mean and class þ
correlations are distributed around an unknown positive mean. The

three classes are combined into the 3 by 3 class matrix in Figure 1d to

explain all correlation scenarios between the groups (Supplementary

Fig. S1) represented by wij. The DC scenarios are those on the off-di-

agonal of the class matrix (i.e. when the correlations are different be-

tween the groups). In the mixture model, the unobserved variable is

the class membership for each feature pair.

In the E-step, posterior probabilities are determined for each

class and group:

qr
ijðkÞ ¼ p

�
wijðkÞ ¼ 1jhr�1; ½z1�; ½z2�

�
(3)

where k is the molecular feature pair, r the rth iteration, z1 and z2 are

the z scores for groups 1 and 2, h is the set of parameters

½l1;l2; l3; r1; r2; r3; g1; g2; g3; s1; s2; s3�, and qr
ijðkÞ is the updated

posterior probability of molecular feature pair k being in class wij in

iteration r. The posterior probabilities from the E-step are used for

the M-step to update the parameters (Supplementary Materials).

Once these are re-estimated, the likelihood is determined using the

density function in Equation (2):

L ¼
YK

k¼1

f ½z1ðkÞ; z2ðkÞ� (4)

After convergence of the EM algorithm (squared difference in

parameters <0.01), we report the summed differential coexpressed

posterior probabilities (i.e. off-diagonal in Fig. 1d):

pðDCkÞ ¼
X
i 6¼j

qr
ijðkÞ (5)

To compare with the other methods described below, we sub-

tract the posterior probabilities from one.

2.3 Comparison of discordant to other methods
Leading methods, Fisher, linear interaction models and

EBcoexpress, were chosen to compare to the Discordant method.

These methods have a similar output to Discordant, which is a

P-value or posterior probability of a molecular feature pair being

DC. They were compared based on q-values and ranks from simula-

tions and biological validations, which are further explained below.

2.3.1 Fisher

The dissimilarity between Fisher-transformed z scores is measured

with the following statistic, which has an approximately normal dis-

tribution (Fisher, 1915).

z� ¼ z2 � z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðn2�1Þ2 �
1

ðn1�1Þ2
q (6)

We report P-values from testing H0: z1¼ z2 versus H1: z1= z2.

2.3.2 Linear interaction model

Linear models were fit by regression of the feature y on main effects

of feature x, disease group and the interaction between x and disease

group. The follow linear model was used:

E½y� ¼ aþ xb1 þ gb2 þ xgb3 (7)

where b1 is the linear parameter for feature x, b2 is the group effect

and b3 is the interaction term. Using lm() in R, significance of x and

y interactions between groups was evaluated by determining if the

interaction b3 had a significant contribution to the model. This term

indicates group specific slopes and would reflect DC.

Linear interaction models were only applied to Glioblastoma

multiforme (GBM) data because it is assumed that the independent

and dependent variables are respectively miRNAs and transcripts.

Because it is unknown what should be the dependent and independ-

ent variable for metabolites and transcripts, linear interaction mod-

els were not applied to the COPD data.

2.3.3 EBcoexpress

EBcoexpress is a bivariate mixture model for two groups to deter-

mine molecular feature pairs that are DC (Dawson and Kendziorski,

2012). EBcoexpress is based on a hierarchical model that uses

Empirical Bayes to estimate the posterior probabilities. Further ex-

planation on how initial parameters were chosen for EBcoexpress is

in Supplementary Materials. To compare EBcoexpress to the

Discordant and Fisher’s methods, the posterior probability for

equivalent coexpression was examined.

2.4 Validations
2.4.1 Simulations

Bivariate normal n by m matrices with n features and m samples were

first simulated using the function mvrnorm from R package MASS.

The means were set to 0 and the covariance matrix was a diagonal ma-

trix of 1. We assumed independence for all samples in groups and

across all features. The features were separated into two different sec-

tions, where these sections were treated as different types of —omics

data (Supplementary Fig. S2a). The Pearson’s correlation coefficients

were calculated (Supplementary Fig. S2b) and then they were swapped

to create pairs that simulate the nine different situations of Figure 1d

within the data (Supplementary Fig. S2c). This resulted in known DC

pairs, so we could observe how categorizing association types in

Discordant affected power compared with the other methods.

All methods were run on the simulated data and compared using a

Receiver Operating Characteristic (ROC) curve and sensitivity/specifi-

city by rank of P-values/1—posterior probabilities. Simulations were

run 100 times and results were averaged over the runs. The simula-

tions were altered to take into account how the methods were affected

by feature size, sample size, proportion of forced DC and correlation

method as summarized in Supplementary Table S1. We also ran the

simulations with a positive definite matrix for the covariance matrix

to account for relationships between features and found no qualitative

differences in the simulation results (data not shown).

2.4.2 Glioblastoma multiforme miRNA and transcriptomic data

From The Cancer Genome Atlas (TCGA, http://cancergenome.nih.

gov/) we accessed normalized GBM miRNA and mRNA expression

data that had matched subjects (McLendon et al., 2008). This data-

set was selected because it had the largest sample size of organ-

specific control samples between the two arrays on TCGA. The

miRNA data was generated on an Agilent miRNA array and was

normalized using quantile normalization and available at TCGA.

The mRNA data was generated on custom Agilent 244 K array and

normalized using lowess normalization. In the datasets, there are

470 miRNA and 90 797 mRNA. Grubbs’ outlier test (Grubbs,

1969) was used to eliminate any molecular features with outliers
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that could skew correlation, which reduced the feature size to 331

miRNA and 72 656 mRNA (Grubbs’ P-value>0.05). The number

of matched samples between the—omics datasets are 10 control

samples and 21 tumor samples.

Cancer-related miRNAs were accessed from multiMiR and

miRcancer (Ru et al., 2014; Xie et al., 2013). We collected miRNAs

on four cancers, including GBM as well as breast cancer, prostate

cancer and melanoma as negative controls. There were 47 total can-

cer-related miRNA for GBM, but only four were unique to GBM

and not occurring in any of the other cancers. After running each

method, the top rank, and respective P-value/posterior probability

and q-value of unique GBM-related miRNA-transcript pair was

reported.

2.4.3 COPD transcriptomic and metabolomic data

Through COPDGene (http://www.copdgene.org/), a nation-wide

genetic epidemiologic study, we were able to acquire metabolomic

and transcriptomic data from COPD patients. The peripheral blood

mononuclear cell (PBMC) transcriptomic data was generated on the

Affymetrix HGU133 Plus 2.0 array and normalized by measuring

the geometric mean (Bahr et al., 2013). Metabolomic data from

plasma was processed and generated using LC/MS Agilent software

and tools and pre-processed and filtered using MSPrep (Bowler

et al., 2015; Hughes et al., 2014). Both datasets were filtered based

on Grubbs’ outlier test, leaving 38 852 transcripts and 1640 metab-

olites (Grubbs’ P-value>0.05). COPDGene subjects were separated

by spirometry, which indicates the severity of COPD in a patient.

The control group contained subjects with normal spirometry

(FEV1/FVC>0.7 and FEV1 percent predicted>80% after broncho-

dilator) and disease group contained subjects with abnormal spirom-

etry (FEV1/FVC<0.7 and FEV1 percent predicted<50% after

bronchodilator). The final sample size for each group was control:

39 and COPD: 39.

Previous studies by COPDGene have implicated sphingolipids

and their related pathways in COPD (Bowler et al., 2015).

Sphingolipid-related metabolites were determined using ID Browser

in Mass Profiler Professional (MPP) software (Agilent).

Sphingolipid-related transcripts were determined using the Gene

Ontology to collect transcripts with a GO term related to sphingo-

lipids, and the probes acquired from Ensembl BioMart. The final

number of sphingolipid-related metabolites and transcripts is 37

and 188, respectively. We examined the top ranks and respective

P-values/posterior probability and q-values of the sphingolipid-

related feature pairs.

3 Results

We applied DC analysis to simulations and biological data to iden-

tify the ability for each method to determine true positives defined

by the simulations and identify pairs that have been previously vali-

dated in the respective phenotype. P-values and posterior probabil-

ities are not directly comparable, therefore, molecular feature pairs

were ranked by statistical significance for comparison by the re-

spective value depending on the method and ranked lists (Käll et al.,

2008), i.e. in order of increasing P-values and decreasing posterior

probabilities.

3.1 Simulations
The basic parameters for the simulations were sample size 20 for

both groups, 0.2 of feature pairs differentially correlated, 1000 pairs

and correlation measured with Pearson’s correlation coefficient.

These parameters were adjusted to determine if any would alter the

methods’ power (Supplementary Table S1).

Statistical performance of simulations was evaluated by observ-

ing the prediction of known true positives and true negatives. In the

ROC curve Discordant has more area under the curve (AUC) than

any of the methods, and Fishers, linear interaction models and

EBcoexpress have similar AUC (Fig. 2a). Sensitivity and specificity

were plotted to determine why the Discordant method has a better

ROC curve (Fig. 2b). Although specificity is the same for all three

methods, Discordant method performs better with respect to sensi-

tivity demonstrating that the Discordant method identifies more

true positives than the other methods.

The ROC curves and plots of sensitivity and specificity for ad-

justed parameters are in Supplementary Figures S3 and S4. From the

plots, change in sample size, the type of correlation used and the

number of forced DC pairs and feature pairs in the simulation did

not affect power except for disparate sample size in linear models.

To explore the predictions of paired correlation scenarios in the

class matrix (Fig. 1d), the distribution of the ranks for each class

was plotted in each method. As an example, for class 3, group 1 has

a positive correlation and in group 2 has a correlation close to 0

(Supplementary Fig. S5a), while in class 6, group 1 has a positive

correlation and group 2 has a negative correlation (Supplementary

Fig. S5b). In Supplementary Figure S5a the distribution of ranks for

Discordant is much smaller than Fisher or EBcoexpress, but in

Supplementary Figure S5b the distribution of ranks is similar across

all three methods. This affirms that binning in Discordant achieves

greater power for identifying differentially correlated pairs where

the correlation in one group is absent, whereas all methods identify

all the most extreme differential correlated pairs, i.e. negative in one

group and positive in the other group.

3.2 GBM miRNA and transcript pairs
3.2.1 Validation

The top ranks, P-values and q-values of the four unique GBM-

related miRNAs pairs in Discordant, EBcoexpress, Fisher, miRNA-

independent and transcript-independent linear interaction models

were examined (Supplementary Table S2). The mean and median of

these ranks are found in Table 1. It was found that Discordant had a

smaller mean and median rank than the other methods, indicating

that overall Discordant identifies unique GBM-related miRNAs ear-

lier than any other method. Furthermore, at q-value<0.05

Discordant identified all four GBM-related miRNAs, whereas

EBcoexpress, Fisher and linear interaction models identify 3, 1

and 1, respectively. The top unique GBM-related miRNA pair,

Fig. 2. Simulation analysis. (a) ROC curve. Discordant AUC¼0.985,

EBcoexpress AUC¼0.931, Fisher AUC¼0.940, Linear AUC¼0.930. (b)

Senstivity/1-Specifcity plot
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hsa-miR-92b and Agilent probe A_32_P56375, is plotted in

Supplementary Figure S7.

The linear interaction models identify miRNAs at an earlier rank

than Discordant but the results are inconsistent between the linear

interaction models when the independent and dependent variables

are swapped (Supplementary Table S2). This was further confirmed

using a Wilcoxon Signed-rank test on the –log10(P-values) between

the two models (P-value<0.05).

The frequency of GBM-related miRNAs and their associated

classes were compared in Discordant and Fishers to determine the

effect of binning on the analysis. It was found that the differentially

correlated pairs with a GBM-related miRNA were more likely to be

class 2 or 3, or disrupted DC, in Discordant (Fig. 3a.1), in contrast

to Fishers and EBcoexpress where there were some pairs that were

class 6 or 8, or cross DC (Fig. 3a.2 and 3a.3). Linear interaction

terms had a similar pattern to Fisher and EBcoexpress (data not

shown).

3.2.2 Known and novel targets

Pairs with Discordant posterior probability>0.99 were used to in-

vestigate which features had the most connections, or hubs. The top

four genes that were the biggest hubs with over 30 connections are:

AGAP2, CRY2, GRIN1 and UPF3A (Supplementary Table S3).

Most of these genes have functions that are central to the brain,

where GBM occurs. AGAP2 is an Arf GAP that has anti-apoptotic

effects of nerve growth factor (Inoue and Randazzo, 2007), CRY2 is

a circadian rhythm gene that principally is localized in the brain,

GRIN1 is a ligand-gated ion channel that facilitates signals through

neurons (Wahlsten, 1999). UPF3A is found in the UPF complex that

is implicated in pathways altered in cancer such as post-splicing,

mRNA decay and nuclear export (Dreyfuss et al., 2002). None of

these genes have been implicated in GBM.

The miRNA hsa-miR-545 was the biggest hub connected to 39

genes, which is visualized in Figure 4a. hsa-miR-545 has not been

found to be involved in GBM. Ten of the connected genes are anno-

tated as being transmembrane proteins, and three of these are serine/

threonine kinases (CDC2L2, PDPK1 and BMPR2). Tyrosine kinases

have been found to be involved in GBM and are similar to serine/

threonine kinases (Hamza and Gilbert, 2014).

3.3 COPD sphingolipid-related transcript and

metabolite pairs
3.3.1 Validation

The sphingolipid pathway has been previously implicated in COPD

(Bowler et al., 2015). A list of sphingolipid-related metabolites and

genes was acquired, and the top rank and respective P-value/posterior

probability and q-value when sphingolipid-related pairs identified by

the three methods was evaluated (Supplementary Table S4). In

Table 1, it was found that the median sphingolipid-related pair rank

is smaller for Discordant compared with EBcoexpress and Fisher.

EBcoexpress’ mean rank is smaller than Discordant, but only by 2e4

where the median rank between Discordant and EBcoexpress differs

by 1e5. The expected mean and median rank of non-phenotype

related features that were randomly chosen was 3.6e5 and 2.6e5, less

than sphingolipid pairs. This may be reflecting the quality of the valid-

ation set (Section 4). At q-value<0.10 Discordant identified 146

sphingolipid pairs, whereas EBcoexpress identified 1 and Fisher 0.

Similarly to GBM, the findings here indicate that overall Discordant

identifies sphingolipid-related feature pairs earlier than the other two

methods. The top ranked sphingolipid-related metabolite-transcript

pair determined by Discordant, a sphingenine and PSAPL1, is plotted

in Supplementary Figure S8. Unlike GBM, the ranks are much later in

the hundred thousands. This may indicate that although the sphingo-

lipid pathway could be relevant to COPD, there may be other path-

ways that contribute to the complexity of the disease that may appear

earlier on in the ranked list.

Because the sphingolipid pathway is not as significantly differen-

tially coexpressed in COPD as the GBM-related miRNAs were in

GBM, instead we examined the classes of sphingolipid-related me-

tabolite and gene pairs that were in the top ranked 100 000 pairs.

Table 1. Summary of the top ranks of biologically-validated

features

Data Method Mean Median

GBM Discordant 464.75 347.5

EBcoexpress 815 607

Fisher 781 801

Linear (miRNA-independent) 1095 532.5

Linear (transcript-independent) 2596.5 787.5

COPD Discordant 5.08e5 2.14e5

EBcoexpress 4.91e5 3.21e5

Fisher 5.42e5 4.41e5

Boxes shaded grey to point out most significant results based on mean and

median ranks.

Fig. 3. Effect of binning in methods. (a) Increasing frequency of classes in

GBM. (b) Classes of sphingolipid-related metabolite and gene pairs in top

ranked 100 000 pairs (Discordant q-value¼ 0.08, EBcoexpress q-value¼0.35,

Fisher FDR¼ 1)

Fig. 4. Hubs found in COPD and GBM. Solid edges cross DC, dashed edges

disrupted DC. (a) hsa-miR-545.and its connected genes (transmembrane

genes shown). (b) Genes involved in ubiquitin mediated proteolysis con-

nected to L-Valine in COPD, L-Valine connected to 1667 genes
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We found that Discordant identified relatively more disrupted

classes than EBcoexpress or Fisher (Fig. 3b).

3.3.2 Known and novel targets

Molecular features that had the largest hubs were identified and

listed in Supplementary Table S5. IGHG1, or immunoglobulin

heavy constant gamma 1 is considered a true positive since immun-

ity plays a central role in COPD (Rovina et al., 2013). Another gene

identified as a hub is SARDH, or sarcosine dehydrogenase which

has been implicated previously in COPD (Ubhi et al., 2012). The

metabolite that has the largest hub has yet to be formally annotated;

its chemical formula is C20 H33 N9 P2 S. The other metabolite that

was a large hub is L-Valine, a metabolite involved in multiple bio-

chemical pathways.

Genes connected to L-Valine were investigated using DAVID to

determine if they were enriched in a biological pathway that is impli-

cated in COPD (Huang et al., 2008, 2009). The ubiquitin mediated

proteolysis KEGG pathway was enriched in the L-Valine differential

coexpressed gene set with q-value¼0.001. In Figure 4b the genes

involved in this pathway are highlighted from the rest of the other

genes, which total to 17 out of 1667 in the gene set. In previous

studies, the ubiquitin protease degradation pathway has been associ-

ated with COPD (Ottenheijm et al., 2006).

4 Discussion

We have presented the Discordant method for identifying DC pairs.

Discordant categorizes the paired coexpression scenarios by

‘binning’, enabling it to determine more DC pairs than the other

methods and improves power of detecting disrupted interactions.

Binning not only improves performance for the Discordant method

but also facilitates biological interpretation of results. As seen in

Figure 3, Discordant identifies more disrupted DC pairs than

EBcoexpress and Fisher, a trend also found in the simulations

(Supplementary Fig. S5). Discordant also identifies more significant

phenotype-related feature pairs in general for both GBM and

COPD.

The GBM dataset produced more significant DC results for

phenotype-related features than the COPD dataset. The GBM valid-

ation set is well curated because there are experimentally validated

miRNAs involved in GBM, whereas for COPD there is less known

about the molecular pathways. The sphingolipid-related genes and

metabolites were determined by annotation for being in sphingolipid

pathways, because there is limited experimental data for specific genes

and metabolites. Despite the challenges of the COPD dataset, we did

observe that sphingolipid metabolite-gene pairs were identified earlier

in Discordant than EBcoexpress and Fisher (Table 1) and that there

were more sphingolipid metabolite-gene pairs in the top 100 000 pairs

in Discordant than EBcoexpress and Fisher (Fig. 3).

Both GBM and COPD have promising results of known and

novel targets from Discordant. This confirms Discordant’s ability to

identify phenotype-related biological processes and indicates the po-

tential that Discordant can produce further testable hypotheses.

A similar method is to apply linear models with interaction

terms. One of the benefits of linear models is that it assumes condi-

tional normality instead of joint normality, meaning that the de-

pendent variable can be non-normal. Linear models identified

GBM-related miRNA pairs in earlier ranks than Discordant in the

GBM data, but linear models can be difficult to use since it is un-

clear what should be the dependent and independent variable. We

explored this by switching miRNA and transcript as the dependent

and independent variable and we found it changed the results. We

also found that the ranks of unique GBM-related miRNA pairs were

different between the two analyses. It is highly suggested to only use

linear models if it is known what is the independent and dependent

variable, such as miRNA and transcript, respectively.

In terms of run-time, Fisher is notably faster than the rest of the

methods, EBcoexpress is the slowest and Linear and Discordant

only differ slightly (Supplementary Table S5). The Big O notation

for Fisher is linear, O(n), where n is the number of feature pairs. For

the linear interaction model and Discordant it is polynomial, O(n2)

and O(2nþ3n2). The Big O notation for EBcoexpress is not as sim-

ple to identify since there are nested EM algorithms. EBcoexpress

runs about 3-fold longer than Discordant in the GBM and COPD

datasets and it also requires a grid approach to determine hyper-

parameters. Although Discordant does not run faster than Fisher

and its run-time is comparable to linear interaction models, it still

performs either equally or better with consistent results.

There are some limitations to Discordant. We assume independ-

ence between pairs, which is not true since features show up in mul-

tiple pairs. This assumption is critical to reducing computational

complexity, and has been made by others (Dawson et al., 2012).

Appropriate sample size is necessary for Discordant or any other

DC method to work effectively to accurately estimate r between two

features. Finally, the model assumes there are three Gaussian com-

ponents in the mixture model. To explore the Gaussian assumption,

we suggest that users apply the R package mixtools or lcmix, which

can assess alternative or non-parametric densities (Benaglia et al.,

2009, Dvorkin et al., 2013). Assuming the Gaussian case, we then

recommend users to first run a mixture model fitting method (such

as mclust) on each group to check that there is more than one mix-

ture component (k>1) by comparing the Bayesian Information

Content (BIC) for different values of k. For the simulations and

GBM, we found evidence of k>1, while for COPD there was less

evidence (data not shown) which is not unexpected considering the

more challenging nature of that dataset.

Future directions for the Discordant method is to add more

classes (�� and þþ) that would contain correlation coefficients

that were highly negative and highly positive to identify cases where

there is a stronger linear association in one group versus the other. A

challenge with adding these extra classes is that increasing the num-

ber of classes and parameters also increases complexity, which

means longer run-time. We also want to investigate using discrete

data, such as counts from RNA-Seq experiments.

Overall, when investigating DC pairs, Discordant performs well

with respect to usability and accuracy. EBcoexpress, the most analo-

gous method to Discordant, was not originally developed to investigate

large —omics datasets, so it is possible that it could be optimized for

that purpose. The Fisher method has short run-time but does not per-

form as well as similar methods. Linear interactions terms are effective,

but should only be used when the dependent and independent variable

are known when used to integrate different types of —omics data. The

Discordant method fills in the drawbacks to all of these methods, in

addition to providing a binning of results for easier interpretation.
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