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Abstract

Motivation: The accumulation of high-throughput data in public repositories creates a pressing

need for integrative analysis of multiple datasets from independent experiments. However, study

heterogeneity, study bias, outliers and the lack of power of available methods present real chal-

lenge in integrating genomic data. One practical drawback of many P-value-based meta-analysis

methods, including Fisher’s, Stouffer’s, minP and maxP, is that they are sensitive to outliers.

Another drawback is that, because they perform just one statistical test for each individual experi-

ment, they may not fully exploit the potentially large number of samples within each study.

Results: We propose a novel bi-level meta-analysis approach that employs the additive method

and the Central Limit Theorem within each individual experiment and also across multiple experi-

ments. We prove that the bi-level framework is robust against bias, less sensitive to outliers than

other methods, and more sensitive to small changes in signal. For comparative analysis, we dem-

onstrate that the intra-experiment analysis has more power than the equivalent statistical test per-

formed on a single large experiment. For pathway analysis, we compare the proposed framework

versus classical meta-analysis approaches (Fisher’s, Stouffer’s and the additive method) as well as

against a dedicated pathway meta-analysis package (MetaPath), using 1252 samples from 21 data-

sets related to three human diseases, acute myeloid leukemia (9 datasets), type II diabetes (5 data-

sets) and Alzheimer’s disease (7 datasets). Our framework outperforms its competitors to correctly

identify pathways relevant to the phenotypes. The framework is sufficiently general to be applied

to any type of statistical meta-analysis.

Availability and implementation: The R scripts are available on demand from the authors.

Contact: sorin@wayne.edu

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

With rapid advances in high-throughput technologies, the gener-

ation of various kinds of high-throughput genomic data is prevalent

in most biomedical research. Advanced techniques in sequencing

(e.g. RNA-Seq, miRNA-Seq, DNA-Seq) and microarray assays (e.g.

gene expression, methylation) have transformed biological research

by enabling comprehensive monitoring of biological systems. Vast

amounts of data of all types have accumulated in many public repo-

sitories, such as Gene Expression Omnibus (GEO) (Barrett et al.,

2013), Array Express (Rustici et al., 2013) and The Cancer Genome

Atlas (TCGA) (http://cancergenome.nih.gov/). Gene expression

data, as measured by microarray and high-throughput sequencing,

are particularly abundant in public repositories, such that many dis-

eases are represented by half a dozen studies or more.
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It would be tremendously beneficial if all datasets associated

with a given condition could be analyzed together because of the in-

crease in power expected to be associated with the much larger num-

ber of measurements in the combined dataset. However, batch

effects, patient heterogeneity and disease complexity all complicate

the integration of data from different sources. Indeed, for the same

disease, different studies produce different sets of differentially ex-

pressed (DE) genes (Ein-Dor et al., 2005, 2006; Tan et al., 2003),

and we will show that this problem is not resolved at the systems

level, as pathway analysis results are often inconsistent as well.

Meta-analysis techniques, which are statistical methods for the

quantitative analysis of independent but related studies (Normand,

1999), have already proven to be very useful for combining gene ex-

pression studies (Ramasamy et al., 2008; Tseng et al., 2012), and

will be critical to decipher the biological knowledge contained in

vast amounts of often conflicting studies, independent of the data

type. In this manuscript, we describe a novel meta-analysis,

and apply it to gene expression data in the context of pathway

analysis.

Meta-analysis of gene expression data has primarily been used

for DE gene detection (Tseng et al., 2012). Early meta-analyses sim-

ply performed the intersection or union of DE gene lists obtained

from individual studies (Borovecki et al., 2005; Manoli et al., 2006),

resulting in a single list which is either too conservative or too inclu-

sive, respectively. Rhodes et al. (2002) were among the earliest to

apply sophisticated meta-analysis methods for DE gene detection. In

their work, P-values from multiple prostate cancer datasets were

combined using Fisher’s method (Fisher, 1925). Since then, other

P-value-based meta-analysis methods have been applied, such as

Stouffer’s method (Stouffer et al., 1949), minP (Tippett, 1931),

maxP (Wilkinson, 1951), weighted Fisher’s method (Li and Tseng,

2011), and latent variable approaches (Choi et al., 2007). A recent

literature review (Tseng et al., 2012) revealed that P-value-based

meta-analysis for gene detection accounts for approximately twice

as many studies as any other type of meta-analysis, and is favored

for its simplicity and extensibility. Therefore, we will focus on this

type of P-value-based meta-analysis, investigate its limitations, and

address them with our new approach.

Pathway analysis belongs to a family of statistical hypothesis

testing (Goeman and Bühlmann, 2007) methods that have been de-

veloped to leverage molecular pathway knowledge bases such as the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and

Goto, 2000; Ogata et al., 1999) or Reactome (Croft et al., 2014).

These knowledge bases contain graphs that describe how genes

interact together to accomplish specific biological processes. Over-

Representation Analysis (ORA) (Drǎghici et al., 2003), Gene Set

Enrichment Analysis (GSEA) (Subramanian et al., 2005), Gene Set

Analysis (GSA) (Efron and Tibshirani, 2007) and Impact Analysis

(Drǎghici et al., 2007), are examples of approaches designed to

identify the pathways that are relevant in a given condition. All

of them take gene expression changes and a list of pathways as

input, and produce a ranked list of pathways along with their

P-values.

Recently, meta-analysis has also been used to combine multiple

experiments at the pathway level (Kaever et al., 2014; Shen and

Tseng, 2010). The work in (Kaever et al., 2014) uses classical meth-

ods, such as Fisher’s method and Stouffer’s method, to combine

P-values of pathways from independent studies. The work in (Shen

and Tseng, 2010), named MetaPath, is a dedicated approach that

performs meta-analysis at both the gene and pathway level separ-

ately, and then combines the results to give the final P-value and

ranking of pathways. For gene level analysis, MetaPath calculates a

t-statistic for each gene in each study, then combines them using the

maxP method (Wilkinson, 1951). A pathway enrichment score is

calculated using these genes, for each pathway, using a

Kolmogorov–Smirnov test, and assessed for significance with a sam-

ple-wise permutation test. At the pathway level, MetaPath calculates

pathway enrichment for each individual study, then combines the

P-values, again using the maxP method (Wilkinson, 1951). Finally,

P-values from the gene and pathway level are integrated using minP

(Tippett, 1931) to give the final P-value and ranking of pathways.

One practical drawback of many P-value-based meta-analysis

methods, including Fisher’s, Stouffer’s, minP and maxP, is that they

are sensitive to outliers. For example, Fisher’s method employs the

log product of individual P-values and thus, a single P-value of zero

in one individual case will result in a combined P-value of zero re-

gardless of the other P-values. This can be a serious problem for

pathway analysis methods that employ a finite number of iterations

to construct an empirical distribution of a statistic which is then

used to calculate an empirical P-value. If the observed value of the

statistic is more extreme than any of the values obtained by the iter-

ations, such methods may report a P-value of zero, which will, in

turn, dramatically influence the meta P-value.

Another drawback of most P-value-based meta-analysis

approaches is that, because they perform just one statistical test for

each individual experiment, they may not fully exploit the poten-

tially large number of samples within each study. A statistical test

which is not powerful enough to reject the null hypothesis in one in-

dividual experiment can only derive power by amassing a large num-

ber of experiments. Low power in the case of a single experiment

can be due in part to a mathematical design which favors a moderate

number of samples, but may fail to fully exploit large sample sizes.

For example, the basic t-test is designed to do well even with a small

number of samples in each group. While the power of the t-test in-

creases as the number of samples increases, a set of 20 experiments

with 5 samples each has more power than a single experiment com-

prised of the same 100 samples (see Fig. S4 in Supplementary

Materials).

Here we propose a P-value-based meta-analysis framework

which addresses the mentioned shortcomings and thus provides

more reliable results. As we will demonstrate, the proposed method

is not sensitive to outliers. To gain power from the large number of

samples within each experiment, the proposed meta-analysis inte-

grates multiple independent studies on two levels: an intra-experi-

ment analysis, and an inter-experiment analysis. First, for

each individual experiment, the intra-experiment analysis splits

the dataset into smaller datasets, performs a statistical test on each

of the newly created small datasets, then combines the P-values.

Next, the inter-experiment analysis combines those processed

P-values, from each of the individual experiments. We demonstrate

the power of our bi-level meta-analysis in the context of pathway

analysis.

We illustrate our approach using one of the most popular statis-

tical methods for pathway analysis, Gene Set Enrichment Analysis

(GSEA), applying it to KEGG pathways, and 21 public gene expres-

sion datasets, conducted in independent laboratories, from three

conditions: acute myeloid leukemia (9 datasets), type II diabetes

(5 datasets) and Alzheimer’s disease (7 datasets). We compare the re-

sult of the proposed framework with three classical meta-analysis

methods (Fisher’s, Stouffer’s, and the additive method), plus the

standalone meta-analysis method—MetaPath. For all three condi-

tions, our framework outperforms other approaches and correctly

identifies the pathways designed to describe the biological processes

responsible for these diseases.
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2 Methods

2.1 P-value-based meta-analysis
We first describe Fisher’s method and the additive method for com-

bining P-values, then discuss some of their limitations.

Subsequently, we introduce our technique, and discuss how it

addresses these limitations.

Fisher’s method is one of the most widely used methods for com-

bining multiple independent studies based on their P-values. Under

the null hypothesis, the log product of individual P-values follows a

v2 distribution with 2m degrees of freedom (Fisher, 1925). This dis-

tribution is used to calculate the probability of observing the log

product of individual P-values. One practical drawback of this ap-

proach is that if one of the individual P-values approaches zero, the

combined P-value approaches zero as well, regardless of other indi-

vidual P-values. Another drawback is that this method is very sensi-

tive to bias under the null (i.e. the P-values under the null do not

follow a uniform distribution). This results in a high false positive

rate (see Fig. S8 in Supplementary Materials).

The additive method (Edgington, 1972; Hall, 1927; Irwin, 1927)

uses the sum of the P-values as the test statistic, instead of the log

product. Let us denote the P-values resulting from the m independ-

ent significance tests as P1, P2, . . . , Pm. These P-values are independ-

ent and uniformly distributed between zero and one under the null

(i.e. all P-values between zero and one are equally probable

when the null hypothesis is true). Denote the sum of these P-values,

X ¼
Pm

i¼1 Pi (X 2 ½0;m�), as the new random variable. X is known

to follow the Irwin-Hall distribution (Hall, 1927; Irwin, 1927) with

the following probability density function (pdf):

f ðxÞ ¼ 1

ðm� 1Þ!
Xbxc
i¼0

ð�1Þi
m

i

 !
ðx� iÞm�1 (1)

Unlike Fisher’s method, the additive method is not sensitive to small

individual P-values. However, we note that the additive method

faces a different practical problem. For large values of m, Eq. (1) in-

volves some intensive computation due to a sum of combinatorial

and division by a factorial, the result of which can lead to an ‘arith-

metic underflow’. In other words, the result can be a number smaller

than what a computer can actually store in memory. Figure 1

displays the Irwin-Hall probability density function (pdf) (left panel)

and the area under the pdf curve (AUC) (right panel) for different m

values. For each value of m, the area under the curve, FðX ¼ mÞ,
should be 1 and therefore the log absolute value of FðX ¼ mÞ should

be 0. However, the calculation is not accurate for large values of m

and the area under the curve increases very rapidly (right panel).

The calculation of the additive method is not reliable when m>30.

Here we describe an enhancement to the additive method that

makes it more reliable for larger values of m. First, we change the

random variable from the sum of the P-values to the average of the

P-values. Second, when m is large, we replace the additive method

with the Central Limit Theorem (CLT). The reason for the modifica-

tion is that the additive method is accurate for small values of m,

while the Central Limit Theorem is more accurate for large values of

m. We select m ¼ 20 as a conservative cut-off. In other words, we

will use the additive method when m<20, and the Central Limit

Theorem when m�20.

To show the validity of using the Central Limit Theorem for

large m, we define a new random variable Y ¼
Pm

i¼1 Pi
m (Y 2 ½0; 1�),

which is the average of P-values. Since Y ¼ X
m, we can derive the

probability density function (pdf) of Y using a linear transformation

of X as follows:

gðyÞ ¼ m

ðm� 1Þ!
Xbm�yc
i¼0

ð�1Þi
m

i

 !
ðm � y� iÞm�1 (2)

The corresponding cumulative distribution function (cdf) can be

calculated as:

GðyÞ ¼ 1

m!

Xbm�yc
i¼0

ð�1Þi
m

i

 !
ðm � y� iÞm (3)

The variable Y is the mean of m independent and identically dis-

tributed (i.i.d.) random variables (the P-values from each individual

experiment), that follow a uniform distribution with a mean of 1
2

and a variance of 1
12. From the Central Limit Theorem (Kallenberg,

2002), the average of such m i.i.d. variables follows a normal distri-

bution with mean l ¼ 1
2 and variance r2 ¼ 1

12m, i.e. Y � N 1
2 ;

1
12m

� �
for sufficiently large values of m.

Fig. 1. Probability density functions (pdf) of the Irwin-Hall distribution (left panel) and the area under the pdf curve (AUC) (right panel), for different values of m.

The left panel shows the density of X, when X 2 ½0;m�. For each value of m, the density function is symmetrical and takes values between 0 and m. The right

panel shows the area under the pdf curve calculated by a 64-bit implementation of R (version 3.1.1, 2014-Jul-10). For each value of m, the AUC should be 1 and

therefore the log10ðAUCÞ should be 0. However, due to the complexity of the Irwin-Hall formula and arithmetic underflow, the calculation is not accurate for large

values of m and the AUC increases very rapidly. The figure shows that the calculation is completely unreliable when m>30
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In the rest of the manuscript, we refer to our proposed combin-

ation of the Irwin-Hall distribution and the Central Limit Theorem

as ‘add-CLT’, for ‘additive-Central Limit Theorem’, in order to dis-

tinguish it from the classical additive method. As noted above, the

transition from the additive method to the Central Limit Theorem

takes place at the m�20 threshold.

The pdf of Y for different m values and the corresponding AUCs

are displayed in Figure S1 in Supplementary Materials. The data

show that the AUC is 1 as it should be, for all values of m. We can

see that add-CLT overcomes the computational problem of the clas-

sical additive method using the Irwin-Hall distribution.

2.2 Bi-level meta-analysis framework
In this section we describe the bi-level meta-analysis framework in

the context of pathway analysis. The input of the framework is as

follows. First, we have m studies (datasets) of the same disease. Each

dataset consists of a group of healthy samples and a group of disease

samples. Second, we have a list of k pathways from an existing path-

way database. Third, we have a pathway analysis method that can

be used to identify the significantly impacted pathways in a given

dataset. This pathway analysis method is used for each dataset, thus

calculating a P-value for each of the k pathways in each of the m

datasets.

Figure 2 displays the overall procedure of our framework. The

framework is divided into two stages: intra-experiment analysis and

inter-experiment analysis. The intra-experiment analysis works with

one dataset at a time. Given a dataset DSi (i 2 ½1::m�), we divide the

disease samples into ni smaller groups. Each data subset consists of a

small group of disease samples and all the control samples in the

dataset. We impose that each small group include at least 5 disease

samples, therefore, ni approximately equals the number of disease

samples divided by 5. Using the chosen pathway analysis method,

we calculate the P-values for the k pathways for each of the ni small

datasets. The result is ni lists of P-values, each with k P-values for

the k pathways. Therefore, each pathway will have ni P-values,

one from each of the ni lists. The ni P-values are then combined into

a single P-value for each pathway using the add-CLT described

above.

After performing intra-level-analysis on all m studies (datasets),

we have m lists of P-values—one per study, and each pathway has m

independent P-values. Using add-CLT, the inter-experiment analysis

combines the m P-values of each pathway into one meta P-value

that represents the significance of the pathway. The output of the

whole framework is a list of k pathways ranked according to the

meta P-values.

While our bi-level framework is described in the context of path-

way analysis, it can be modified and applied in any context. For ex-

ample, the pathway analysis method can be substituted with another

statistical test, or applied in totally different field. In addition, our

add-CLT method maybe replaced by another meta-analysis method.

However, we favor add-CLT for several reasons. First, it is robust

against small P-values and against bias under the null. Second, it is

more powerful than Fisher’s method in detecting changes in signal

(see Figs S8, S9 in Supplementary Materials).

3 Experimental studies

In order to provide a deeper understanding of why intra-experiment

analysis improves results on a mathematical level, we applied it to a

two-sample t-test and compared the results to a standard t-test. We

show that splitting datasets and combining P-values using add-CLT

results in a gain of power. We also investigated the false positive rate

of the bi-level meta-analysis and the robustness with respect to various

split sizes. Furthermore, we compared add-CLT against the popular

Fisher’s method. The results show that add-CLT is more reliable than

Fisher’s method in terms of both false positive rate (FPR) and true

positive rate (TPR) (see Figs S4–S9 in Supplementary Materials).

For the experiments based on real expression data, we compare

5 different meta-analysis approaches in the context of pathway ana-

lysis: our bi-level approach with add-CLT, three classical meta-ana-

lysis methods (Fisher’s, Stouffer’s and the additive method), and one

standalone, dedicated, pathway meta-analysis method—MetaPath.

We use the KEGG pathway database (version 65, 150 human path-

ways). For the 4 methods that need a pathway analysis algorithm,

we select GSEA (Subramanian et al., 2005), which is currently one

of the most popular methods.

We chose 21 datasets related to three human diseases: type II dia-

betes (5 datasets), acute myeloid leukemia (AML) (9 datasets) and

Alzheimer’s disease (7 datasets). These disease datasets were chosen

for several reasons—not only are they well suited for meta-analysis,

but we have a good way to evaluate the results. For each disease, there

is a dedicated pathway in KEGG that was created in order to describe

Fig. 2. Bi-level meta-analysis framework to identify significant pathways. The

input includes m datasets, k pathways and a pathway analysis method. The

intra-experiment analysis divides the dataset DSi (i 2 ½1::m�) into smaller data-

sets dsi1; . . . ;dsini
and then performs pathway analysis for each of the small

datasets, resulting in ni P-values for each pathway. The intra-experiment ana-

lysis combines the ni P-values into one P-value for each pathway using add-

CLT. After this process is done for all m studies (datasets), each pathway has

m independent P-values – one per study. The inter-experiment analysis then

combines the m P-values for each pathway into one meta P-value using the

add-CLT method. This meta P-value for each pathway represents the overall

significance of the pathway. The output of the framework is a list of k path-

ways ranked according to the meta P-values
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the known mechanisms involved in these specific diseases. Thus, the

five analysis methods can be assessed by their ability to identify these

‘target pathways’ in their respective conditions.

3.1 Pathway analysis using type II diabetes data
The diabetes datasets we use in our data analysis were obtained

from Gene Expression Omnibus (GEO) with IDs: GSE25462 (skel-

etal muscle, 10 cases and 15 controls), GSE19420 (skeletal muscle,

10 cases and 12 controls), GSE18732 (skeletal muscle, 45 cases and

47 controls), GSE23343 (liver biopsy, 10 cases and 7 controls) and

GSE22309 (skeletal muscle, 30 cases and 40 controls). Details of all

datasets are provided in Supplementary Materials.

We use Gene Set Enrichment Analysis (GSEA) to analyze the 5

diabetes datasets individually, before performing the meta-analysis.

For each dataset, GSEA produces a list of 150 KEGG pathways

ranked by P-values. The rankings and FDR-corrected P-values of

the target pathway Type II diabetes are displayed in Figure S2 in

Supplementary Materials. The target pathway gets an FDR-cor-

rected P-value higher than 0.5 in every single one of the diabetes

datasets. The target pathway is ranked between 4th (in GSE23343)

and 133th (in GSE19420). This is a clear case in which the correct

pathway is missed in every single one of the 5 individual datasets

available; such a situation calls for meta-analysis.

Proceeding to meta-analysis of these 5 datasets, the most

straightforward approach is to combine the 5 P-values produced by

GSEA for each pathway, using classical P-value-based meta-analysis

methods. Here we use three classical approaches to combine the in-

dependent P-values: Fisher’s (Fisher, 1925), Stouffer’s (Stouffer et

al., 1949) and the additive method (Edgington, 1972; Hall, 1927;

Irwin, 1927). Fisher’s and Stouffer’s method have been used in

(Kaever et al., 2014) to combine P-values of pathways in independ-

ent experiments. Stouffer’s method is similar to Fisher’s method,

with the difference that, as the random variable, it uses the sum of

P-values transformed into standard normal variables instead of the

log product. Alongside these three classical meta-analysis tech-

niques, we juxtapose our bi-level meta-analysis. The result of each is

a list of all 150 pathways ranked according to the combined P-val-

ues, which we adjust for multiple comparisons using FDR.

Table 1 lists the top 5 ranked pathways and FDR-corrected P-

values obtained by combining the 5 diabetes datasets using the 4

meta-analysis approaches. The pathway highlighted green is the tar-

get pathway Type II diabetes mellitus, which was created in order to

describe the phenomena involved in this disease. The horizontal line

marks the cutoff of 0.05 of the FDR-corrected P-values. All three

classical meta-analysis approaches, Fisher’s, Stouffer’s, and the addi-

tive method, fail to identify the target pathway as significant

(P>0.4) with rankings 7, 10 and 12, respectively. The Oocyte mei-

osis pathway has a combined P-value equal to zero for Fisher’s and

Stouffer’s methods because the P-value was zero for one of the data-

sets (GSE22309). As discussed in the Methods section, these

approaches are sensitive to such occurrences. The bi-level meta-ana-

lysis approach identifies the target pathway Type II diabetes mellitus

as the most significant pathway (P¼0.0151). Also, this is the only

significant pathway at the 5% significance threshold.

As a fifth method, we employ MetaPath (Shen and Tseng, 2010),

to combine the 5 studies. MetaPath (Shen and Tseng, 2010) is a

dedicated pathway meta-analysis which is open source and does not

require an external pathway analysis method. In our work, we use

the R package provided in (Wang et al., 2012). MetaPath performs

meta-analysis at both gene and pathway levels with a GSEA-like ap-

proach, and then combines the results to give the final P-value and

ranking of pathways. Table 2 lists the top 5 pathways using

MetaPath. The target pathway Type II diabetes mellitus is ranked

80th out of 150 with an FDR-corrected P-value of 1.

3.2 Pathway analysis using AML data
The following AML datasets from GEO were used for our analysis:

GSE14924 (CD4 T-cells, 10 cases and 9 controls, and CD8 T-cells,

Table 1. Results of combining GSEA P-values using 4 meta-analysis approaches for type II diabetes data

The top 5 pathways and their FDR-corrected P-values obtained by combining the P-values of GSEA using 4 meta-analysis approaches: Fisher’s, Stouffer’s, the

additive method and bi-level meta-analysis. In the first three approaches, the 5 P-values for a pathway (one of each of the 5 datasets) were combined into a single

p-value using Fisher’s, Stouffer’s, or the additive method. This is done for all of the 150 signaling pathways in KEGG. The P-values are then adjusted for multiple

comparisons using FDR. The pathways are sorted by the combined P-values, from low to high. The horizontal lines show the 5% significance threshold. The

target pathway Type II diabetes mellitus is highlighted in green. The target pathway Type II diabetes mellitus is the only significant pathway using the bi-level

meta-analysis. The three classical approaches, Fisher’s, Stouffer’s and the additive method, fail to identify the target pathway as significant and rank it in positions

7th, 10th and 12th, respectively.
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10 cases and 11 controls), GSE17054 (hematopoietic stem cells, 5

cases and 4 controls), GSE12662 (fractionated bone marrow:

CD34þ cells, promyelocytes, neutrophils and the PR9 cell line, 75

cases and 24 controls), GSE57194 (primary CD34þ cells, 6 cases

and 6 controls), GSE33223 (peripheral blood mononuclear cells, 20

cases and 10 controls), GSE42140 (peripheral blood mononuclear

cells, 26 cases and 5 controls), GSE8023 (CD34þ cells from cord

blood, 9 cases and 3 controls) and GSE15061 (bone marrow, 201

cases and 68 controls).

We use Gene Set Enrichment Analysis (GSEA) (Subramanian et

al., 2005) to analyze the 9 AML datasets individually. The rankings

and FDR-corrected P-values of the target pathway Acute myeloid

leukemia for the 9 datasets are displayed in Figure S3 in the

Supplementary Materials. The AML pathway is assigned an FDR-

corrected P-value ranging from 0.23 (GSE57194) to 1 (GSE33223)

and a ranking between 12 (GSE42140) and 114 (GSE14924) across

the 9 datasets analyzed. In essence, the AML pathway, which was

created precisely to describe the most important biological mechan-

isms involved in AML, is neither found to be significant, nor ranked

anywhere close to the top in any of the individual datasets.

We again use the 4 meta-analysis approaches to combine GSEA

results: Fisher’s, Stouffer’s, the additive method, and the bi-level

meta-analysis. The output for each of these 4 approaches is a list of

150 pathways ranked according to the combined P-values. Table 3

lists the top 5 ranked pathways and FDR-corrected global P-values

yielded by the 4 meta-analysis approaches. The green highlight

shows the target pathway Acute myeloid leukemia. The horizontal

line is the selected significance cutoff of 0.05.

None of the three classical meta-analysis approaches identify the

target pathway Acute myeloid leukemia as significant. Fisher’s yields

a global P-value of 0.264, Stouffer’s yield a global P-value of 0.099

and the additive method yields a P-value of 0.112. Fisher’s method

ranked the target pathway as 4th out of 150. The bi-level meta-ana-

lysis with add-CLT identifies the target pathway as significant with

a P-value of 0.0005, and also ranks it 1st.

Again, we also provide the results of MetaPath (Shen and Tseng,

2010) when analyzing the 9 studies together. Table 4 lists the top 5

pathways using MetaPath for the 9 acute myeloid leukemia datasets.

The target pathway Acute myeloid leukemia is highlighted green.

This pathway is not significant (P¼0.4), and is ranked 3rd.

3.3 Pathway analysis using Alzheimer’s data
As a final case, we selected Alzheimer’s disease because we want to

give an example of a situation with more than one expected path-

way. Alzheimer’s disease, Parkinson’s disease and Huntington’s dis-

ease are three neurological disorders that share many signaling

mechanisms and affect the same tissue (brain). The common elem-

Table 2. MetaPath results for 5 diabetes datasets

MetaPath

Pathway P-value.fdr

1 Maturity onset diabetes of the young 0.9975

2 Lysosome 0.9988

3 Ribosome biogenesis in eukaryotes 1.0000

4 RNA transport 1.0000

5 mRNA surveillance pathway 1.0000

The target pathway Type II diabetes mellitus is ranked 80th.

Table 3. Results of combining GSEA P-values using 4 meta-analysis approaches for acute myeloid leukemia (AML)

The 5 top ranked pathways and FDR-corrected P-values obtained by combining the P-values of GSEA using 4 meta-analysis approaches: Fisher’s, Stouffer’s,

the additive method and bi-level meta-analysis. In the first three approaches, the 9 P-values for a pathway (one of each of the 9 datasets) were combined into a sin-

gle P-value using Fisher’s, Stouffer’s and the additive method. This is done for all of the 150 signaling pathways in KEGG. The P-values are then adjusted for mul-

tiple comparisons using FDR. The pathways are sorted by the combined P-values, from low to high. The horizontal lines show the 5% significance threshold. The

target pathway Acute myeloid leukemia is highlighted in green. The target pathway Acute myeloid leukemia is significant only when using bi-level meta-analysis.

Table 4. MetaPath results for 9 acute myeloid leukemia datasets

The target pathway Acute myeloid leukemia is not significant and is ranked

3rd.
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ents include abnormal protein folding, endoplasmic reticulum stress,

and ubiquitin mediated breakdown of proteins, leading to pro-

grammed cell death (Swerdlow, 2011; Maruszak and _Zekanowski,

2011; Zhu et al., 2013; Querfurth and Laferla, 2010). Furthermore,

previous studies have shown the presence of a strong cross-talk that

makes these three neurological disease pathways appear as signifi-

cant simultaneously, due to their dominant mitochondrial module

(Donato et al., 2013). Therefore, we expect a good analysis method

to find all three of these pathways as significant in this meta-analysis

of Alzheimer’s data.

The Alzheimer’s datasets we use in our data analysis were ob-

tained from Gene Expression Omnibus (GEO) with IDs: GSE1297

(hippocampus, 22 cases and 9 controls), GSE28146 (hippocampus,

22 cases and 8 controls) and GSE5281 (a mixture of entorhinal cor-

tex, hippocampus, medial temporal gyrus, posterior cingulate, su-

perior frontal gyrus and primary visual cortex, 87 cases and 74

controls), GSE16759 (parietal lobe cortex, 4 cases and 4 controls),

GSE48350 (a mixture of post central gyrus, superior frontal gyrus,

hippocampus and entorhinal cortex, 80 cases and 173 controls),

GSE39420 (brain tissues, 14 cases and 7 controls) and GSE4757

(entorhinal cortex, 10 cases and 10 controls).

Again, we use the 5 meta-analysis approaches, Fisher’s, Stouffer’s,

the additive method, the bi-level meta-analysis and MetaPath, to com-

bine the 7 Alzheimer’s studies. Table 5 lists the top 5 ranked pathways

and FDR-corrected P-values obtained by combining the 7 Alzheimer’s

datasets using the 4 existing meta-analysis approaches. Table 6 lists

the top 5 ranked pathways using MetaPath. The horizontal line marks

the 5% cutoff for the FDR-corrected P-values.

All 4 meta-analysis approaches, Fisher’s, Stouffer’s, the additive

method and MetaPath, fail to identify the primary target pathway

Alzheimer’s disease as significant, and rank it on positions 5, 11, 28

and 40, respectively. They also fail to identify Parkinson’s disease as

significant. Among 4 existing meta-analysis approaches, only

Fisher’s method identifies Huntington’s disease as significant.

In contrast, the bi-level meta-analysis approach identifies the tar-

get pathway Alzheimer’s disease as significant (P¼0.0149) with

ranking 2. In addition, the pathways Huntington’s disease and

Parkinson’s disease also appear as significant in the results of the bi-

level meta-analysis. Furthermore, the proposed approach does not

produce any false positives.

For all three disease conditions, diabetes, AML and Alzheimer’s

disease, the classical meta-analysis approaches and MetaPath were

unable to identify the target pathway as significant. Only the pro-

posed bi-level meta-analysis identifies the target pathway as signifi-

cant. This is likely due to two reasons. First, the combination of the

additive method and the Central Limit Theorem is reliable in terms

of both false positive rate and true positive rate. Second, the intra-

experiment analysis performed within each of the individual studies

increases the power of the pathway analysis.

4 Conclusion

In this article, we present a novel meta-analysis approach that com-

bines multiple studies to gain more statistical power. The new

framework exploits not only the vast number of studies performed

in independent laboratories, but also makes better use of the

Table 5. Results of combining GSEA P-values using 4 meta-analysis approaches for Alzheimer’s data

The 5 top ranked pathways and FDR-corrected P-values obtained by combining the P-values of GSEA using 4 meta-analysis approaches: Fisher’s, Stouffer’s,

the additive method and bi-level meta-analysis. In the first three approaches, the 7 P-values for a pathway (one of each of the 7 datasets) were combined into a sin-

gle P-value using Fisher’s, Stouffer’s and the additive method. This is done for all of the 150 signaling pathways in KEGG. The P-values are then adjusted for mul-

tiple comparisons using FDR. The pathways are sorted by the combined P-values, from low to high. The horizontal lines show the 5% significance threshold. The

target pathway Alzheimer’s disease and two neurological disease pathways, Parkinson’s disease and Huntington’s disease, are highlighted in green. Only the bi-

level meta-analysis identifies all three neurological disease pathways, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, as significant.

Table 6. MetaPath results for Alzheimer’s data

None of the three neurological disease pathways, Huntington’s disease,

Alzheimer’s disease and Parkinson’s disease, appears as significant. They are

ranked on positions 4th, 40th, 16th, respectively.
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available number of samples within individual studies. In addition,

the use of the additive method and the Central Limit Theorem

makes the framework robust to outliers and keeps the false positive

rate under the desired threshold.

To evaluate the proposed framework for pathway analysis appli-

cations, we analyze 5 diabetes datasets, 9 acute myeloid leukemia

datasets and 7 Alzheimer’s datasets using 5 different approaches:

Fisher’s, Stouffer’s, the additive method, MetaPath and the bi-level

meta-analysis. For each of these three diseases, there is a KEGG

pathway, referred to as the target pathway, that describes the phe-

nomena associated with these conditions. All 4 existing meta-ana-

lysis methods fail to identify the target pathways as significant after

combining all available datasets for each condition. In contrast, the

proposed bi-level meta-analysis identifies the target pathways as sig-

nificant in all three conditions. These results confirm the increased

power of the bi-level meta-analysis with respect to the other meta-

analysis approaches.

Although the bi-level meta-analysis framework is illustrated in

the context of pathway analysis, it is in fact a general meta-analysis

method that can easily replace existing meta-analysis procedures in

a wide range of research areas, such as biomarker/oncogene detec-

tion, genome-wide association studies (GWAS), enrichment analysis

(Gene Ontology, gene set analysis), or even clinical trials to assess

the effect of a therapy in complex diseases.
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