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SUMMARY

We consider the use of randomized clinical trial (RCT) data to identify simple treatment regimes based
on some subset of the covariate space, A. The optimal subset, Â, is selected by maximizing the expected
outcome under a treat-if-in-A regime, and is restricted to be a simple, as it is desirable that treatment
decisions be made with only a limited amount of patient information required. We consider a two-stage
procedure. In stage 1, non-parametric regression is used to estimate treatment effects for each subject, and
in stage 2 these treatment effect estimates are used to systematically evaluate many subgroups of a simple,
prespecified form to identify Â. The proposed methods were found to perform favorably compared with
two existing methods in simulations, and were applied to prehypertension data from an RCT.
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1. INTRODUCTION

Although some treatments may be more widely effective than others, few, if any, work for all individuals in
a target population. In many cases, a treatment may be extremely effective for some subset of a population,
but mildly effective of ineffective for others. Even if a new treatment is effective, the standard of care
may still be preferred for some individuals if, for example, the new treatment is very expensive and there
is little difference in effectiveness between the two (Song and Pepe, 2004). Thus, it is desirable to know
which subgroup(s) of a population, if any, will respond well to a particular treatment. In particular, the
identification of the characteristics which lead to these individuals showing an enhanced response is of
interest, as this may allow future patients to be assigned the treatment which will benefit them most.

Treatment decisions will often be made by someone who may not be comfortable with complex rules
and algorithms. Thus, an issue which should be considered before employing any subgroup identification
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procedure is the potential interpretability of the results. A very complex subgroup, which depends on
many covariates may accurately identify truly enhanced responders, but often lacks “nice” interpretability.
In addition, the dependence on a large number of covariates means a large amount of information needs
to be collected, which could lead to slower, more expensive, or more invasive treatment decisions than are
necessary, limiting the chances of such a subgroup being used in practice. In contrast, a subgroup which
depends on only one or two covariates will be easier to interpret, and in many cases, may be still able to
classify enhanced responders relatively well.

If only a small number of covariates exist, or if one has specific subgroups or markers that are
of interest, testing for a small number of interactions (perhaps with a correction for multiple compar-
isons) can be considered. However, oftentimes many covariates exist, and subgroups of interest are not
know a priori, so identifying simple subgroups requires some form of variable selection. One option
is to use tree-based methods (Negassa and others, 2005; Su and others, 2008, 2009; Foster and others,
2011; Lipkovich and others, 2011; Faries and others, 2013), which partition the data into subgroups of
individuals who are similar with regard to the response, generally defined using only a subset of the
covariates. One could also consider a more model-based approach to selecting covariates, such as penal-
ized regression (Tibshirani, 1996; Fan and Li, 2001; Gunter and others, 2007; Zou and Zhang, 2009;
Qian and Murphy, 2011; Imai and Ratkovic, 2013; Foster and others, 2013), which simultaneously esti-
mates regression parameters and performs variable selection by shrinking some parameter estimates and
forcing others to zero.

We limit our discussion to randomized clinical trial (RCT) data with a continuous outcome, two treat-
ments and a moderate number of baseline covariates, e.g. 5–100. We consider the use of RCT data
to select a treatment “regime” which, if followed by the entire population, leads to the best expected
outcome (Murphy and others, 2001; Robins, 2004; Gunter and others, 2007; Brinkley and others, 2010;
Qian and Murphy, 2011; Zhang and others, 2012). This expectation is sometimes referred to as the average
Value (Sutton and Barto, 1998; Gunter and others, 2007; Qian and Murphy, 2011). Our potential regimes
assign one treatment to individuals who are in a subgroup, Â, of the population, and the other treatment to
those in Âc. The identification of “optimal” treatment regimes is not a new problem; however, our empha-
sis will be on the simple form of the regime. In particular, our goal will be to identify the best regime
defined by a contiguous subsets of the covariate space of up to three dimensions, such as {x1 > 0, x2 > 0}
or {x3 < 5, x4 > 0, x7 < 1}, should a worthwhile regime of this form exist. Ideally this “locally optimal”
regime will give an expected outcome which is similar to that of the globally most optimal regime, but in
some cases the true treatment effect may be so complex that no worthwhile simple regime exists. For exam-
ple, if the truly enhanced subgroup was not contiguous, it could be difficult to capture using a contiguous
region.

2. IDENTIFYING SIMPLE TREATMENT REGIMES

Suppose that we have independent observations (y1, x1, T1), . . . , (yn, xn, Tn) from the model

yi = h(xi ) + (Ti − π)g(xi ) + εi , (2.1)

where y is continuous, g and h are unknown functions, with g(xi ) being the treatment effect for subject
i , T is a treatment indicator, π is the treatment randomization probability, ε1, . . . , εn are independent
and identically distributed (i.i.d.) errors with mean zero and variance σ 2 and covariates x1, . . . , x p are
independent, and may be continuous or categorical. Without loss of generality, assume that higher levels
of y represent an improved response. This formulation was chosen because, in the linear setting (i.e. g(x) =
xT β), it was shown to be robust to misspecification of h. In particular, under certain assumptions, β̂ is a
consistent estimate of β, regardless of the choice of main effect (Lu and others, 2013). To identify our
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treatment regime, we consider a two-stage approach where, in stage 1, we estimate h and g in (2.1), and
in stage 2, these estimated g(xi ) values are used to systematically evaluate many subgroups of a simple,
prespecified form in order to identify our treatment regime.

2.1 Non-parametric estimation of g and h

We estimate h and g using the following iterative approach:

(i) Fit the model y = h(x) to obtain the initial estimate of h, ĥ(1).
(ii) Fit the model (1/(T − π))(y − ĥ(k)(x)) = g(x) to obtain ĝ(k), k � 1.

(iii) Fit the model y − (T − π)ĝ(k)(x) = h(x) to obtain ĥ(k+1), k � 1.
(iv) Iterate between steps (ii) and (iii) until

∑n
i=1[yi − ĥ(k)(xi ) − (Ti − π)ĝ(k)(xi )]2 changes by less than

a prespecified small number.

Functions h and g may be complex, so we use non-parametric methods, such as multivariate adaptive
regression spline (MARS) (Friedman, 1991) or Random Forests (RFs) (Breiman, 2001), to estimate them.
One may wish to choose the “convergence threshold” in step (iv) differently depending on which method
is chosen to estimate h and g. For instance, we found a threshold of around 10−5 can generally be achieved
within a few iterations for MARS. For RF, the amount by which the sum of squares in step (iv) changes
remains somewhat constant across iterations, most likely because of the random nature of this method.
Thus, in this case, we continue until 60 iterations have been performed, which we found is sufficient to
obtain good estimates of h and g. The required number of iterations may be smaller or larger in other
settings.

2.2 Selecting a subgroup for fixed g and h

Using notation similar to Zhang and others (2012), let y1i and y0i be the potential responses given that
subject i received treatment or the standard of care, respectively, so that yi = y1i Ti + y0i (1 − Ti ). Let
y∗

i (A) = y1i I (xi ∈ A) + y0i (1 − I (xi ∈ A)) be the potential outcome for a future patient in the popula-
tion under this “treat-if-in-A” regime. for any A. Using simple algebra, we have

E[y∗
i (A)] = E[E(y∗

i (A) | xi , A)] = E[h(xi )] − E[πg(xi )] + E[g(xi )I (xi ∈ A)]. (2.2)

As only the last term in (2.2) involves A, maximizing (2.2) with respect to A amounts to maximizing
E[g(xi )I (xi ∈ A)], which, given g, can be estimated by (1/n)

∑n
i=1 g(xi )I (xi ∈ A). After multiplying by

n and replacing g by ĝ, this becomes ∑
i :xi ∈A

ĝ(xi ). (2.3)

The chosen subgroup, denoted by Â, is that which maximizes (2.3). Note that, if there were no restriction
on Â, we would choose Â = {x : ĝ(x) > 0}. In practice, one may wish to consider the inclusion of an offset
in (2.3), as in our experience this can help to better identify truly positive responders. Specifically, one
could replace (2.3) with

∑
i :xi ∈A[ĝ(xi ) − δ], where δ > 0. Selection of the offset δ is considered below.

We consider 1D, 2D and 3D regions of the general form {xi j
�
< c j }, or {xi j

�
< c j } ∩ {xik

�
< ck} or

{xi j
�
< c j } ∩ {xik

�
< ck} ∩ {xil

�
< cl} as candidates for Â, where �

< indicates either � or < and covariates j ,
k, and l are distinct. In addition, we consider the complements of these regions. We refer to this as Simple
Optimal Regime Approximation (SORA).

Note that for just 3D regions, there are
(p

3

)
unique combinations of covariates, 23 = 8 unique ways to

assign directions � / < to x j , xk, and xl , and as many as n − 1 unique cutpoints for each covariate. Thus,
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SORA often involves the evaluation of many regions, making it computationally expensive. Therefore, we
employ a modified version, in which we consider an evenly-spaced grid of 10–20 cutpoints, rather than all
observed values for each covariate. Additionally, instead of considering all candidate regions simultane-
ously, we employ a “stepwise” approach. Let Bq(Mq) denote the set of unique covariates which define the
best Mq candidate regions of dimension q. The stepwise algorithm is as follows: (1) evaluate all candidate
1D regions, and identify B1(M1), (2) evaluate all candidate 2D regions in which one of the dimensions is
defined by a member of B1(M1), and identify B2(M2), and (3) evaluate all candidate 3D regions in which
two of the dimensions are defined by a pair from B2(M2), and select the best 3D region. The best overall
region is Â. Note that Bq(Mq) only defines which covariates are considered in the next step. All candidate
directions (i.e. < or �) and cutpoints are re-considered for these covariates.

2.3 Evaluation of the region Â

The proposed method always selects a region, so it is important to evaluate the strength of Â. We thus
consider the metric proposed by Foster and others (2011):

Q( Â) = E(y | T = 1, x ∈ Â) − E(y | T = 0, x ∈ Â) − [E(y | T = 1) − E(y | T = 0)], (2.4)

which is a measure of the enhanced treatment effect in Â relative to the average treatment effect. Methods
for estimating (2.4) are considered below.
Resubstitution (RS). Replace the four conditional expectations in (2.4) with the observed means in the data
and use these obtain an estimate of

Q( Â) : Q̂( Â)RS =
∑n

i=1 yi I (xi ∈ Â, Ti = 1)∑n
i=1 I (xi ∈ Â, Ti = 1)

−
∑n

i=1 yi I (xi ∈ Â, Ti = 0)∑n
i=1 I (xi ∈ Â, Ti = 0)

−
[∑n

i=1 yi I (Ti = 1)∑n
i=1 I (Ti = 1)

−
∑n

i=1 yi I (Ti = 0)∑n
i=1 I (Ti = 0)

]
.

The RS method reuses the data which were used to identify Â. It is well known that, due to overfitting,
measures of a model’s predictive accuracy will often be overly optimistic when obtained from the training
data. It seems reasonable to assume that a similar phenomenon will occur when the training data are used
to identify a subgroup and then reused to assess the enhancement of that subgroup. Thus, we expect the
RS estimate to be positively biased.
Simulate new data (SND). The goal of this method is to obtain new data which “look like” the original
data, but are independent of the original data, reducing the bias of the resulting estimate. This could be
repeated many times, where each time Q̂( Â)RS was recalculated, and the SND estimate could be found
by averaging these RS estimates. We avoid actually simulating new data by instead replacing yi by ŷi =
ĥ(xi ) + (Ti − π)ĝ(xi ), i = 1, . . . , n in Q̂( Â)RS. This estimate is denoted by Q̂( Â)SND, and is generally
less biased than Q̂( Â)RS.
Mean ĝ. Under (2.1), the empirical version of (2.4) is (1/| Â|)∑i :xi ∈ Â g(xi ) − (1/n)

∑n
i=1 g(xi ), where

| Â| is the number of individuals in Â. Thus, ĝ can be used to estimate (2.4): Q̂( Â)ĝ = (1/| Â|)∑
i :xi ∈ Â ĝ(xi ) − (1/n)

∑n
i=1 ĝ(xi ). This is similar to Q̂( Â)SND, and will generally have a similar amount of

bias. In fact, if each treated observation had a corresponding identical (with respect to covariates) control
observation, this would be exactly equal to Q̂( Â)SND.
Bootstrap bias correction. We also consider the bootstrap bias correction of Foster and others (2011).
The bias of Q̂( Â) is Q̂( Â) − Q( Â), and as discussed in Foster and others (2011), can be approximately
estimated using bootstrap data. This estimated bias can then be used to adjust any of the above estimates, i.e.
bias-corrected Q̂( Â) = Q̂( Â) − (1/L)

∑L
l=1(Q̂(l)( Â(l)) − Q̂( Â(l))), where l denotes a particular bootstrap
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sample. These adjusted RS, SND, and Mean ĝ estimates are denoted by Q̂( Â)RS(BC), Q̂( Â)SND(BC), and
Q̂( Â)ĝ(BC), respectively.

2.4 Selection of δ

If one wishes to consider an offset, δ, a number of options exist. We describe two potential approaches
below. In this paper, we use δ to reduce classification errors (particularly false positives) around the thresh-
old ĝ(xi ) = 0. Alternatively, δ could be chosen a priori based on a meaningful treatment effect or, if one
wishes for Â to be of a specific size, δ could be chosen accordingly. If one wishes to be less aggressive,
an offset need not be used.
“Ad hoc” approach. True treatment effects can be broken into the following categories: (a) g(x) depends
on the covariates, (b) g(x) does not depend on the covariates and has a mean which is less than or equal
to zero, and (c) g(x) does not depend on the covariates, but has a positive mean. Factors which might be
important in determining a suitable δ are the variability of g(xi ), its signal-to-noise ratio E(g)/SD(g), and
the amount of variability that is explained by g in (2.1). As we wish to identify subjects for whom g(xi ) > 0,
δ will ideally be around zero, but because the estimate ĝ(xi ) is not precise, using a small positive offset
will reduce the false-positive rate. If the true treatment effect falls into category (a), then a small δ would
be appropriate, unless the signal-to-noise ratio for g is small and g only explains a small amount of the
variance. If the true treatment effect falls into category (b), we would like a modestly sized positive δ, as in
this case we do not wish to identify a subgroup. If the true treatment effect falls into category (c), the ideal
δ will be around zero, as in this case we essentially wish to treat everyone. Therefore, one potential δ is

δAd hoc = max

[
0.1,−1.4

( ¯̂g
SDĝ

)
+ 1.4

(
R2

2

R2
1

)4

+ 0.1

]
(SDĝ),

where SDĝ = SD(ĝ(x1), . . . , ĝ(xn)), R2
1 is the residual variance when model (2.1) is fit under the assump-

tion g(x) = θ , for some constant θ and R2
2 is that when model (2.1) is fit using the non-parametric procedure

outlined in Section 2.1. If g(x) does not depend on the covariates, we expect R2
1 and R2

2 to be close, whereas
if g(x) does explain more of the variability, we expect R2

2 to be considerably smaller than R2
1. Moreover, we

expect SD(ĝ) to increase as the degree to which g(x) depends on the covariates increases. Thus, we expect
δAd hoc to be closer to 0.1∗SDĝ when the true treatment effect is in category (c), closer to 1.5∗SDĝ when the
true treatment effect is in category (b), and between 0.1∗SDĝ and 1.5∗SDĝ when the true treatment effect
is in category (a).
Augmented Inverse Probability Weighted Estimate (AIPWE)-based approach. Recall that, if we were not
interested in forcing Â to have a simple form, we would select Â = {x : ĝ(x) > 0}, or more generally Â =
{x : ĝ(x) > δ}. This can be viewed as our “target group”, as our goal is essentially to identify the simple
approximation that most closely captures this region. Therefore, we may select δ using the AIPWE of the
expected response considered by Zhang and others (2012). In particular, we consider

δAIPWE = arg maxδ AIPWE(δ) = arg maxδ

1

n

n∑
i=1

{
Cδ,i yi

πc(xi )
− Cδ,i − πc(xi )

πc(xi )
ŷi

}
,

where π̂(x) is the sample proportion assigned to the treatment group (since we consider only RCT data),
πc(xi ) = π̂(x)Ti (1 − π̂(x))1−Ti , Cδ,i = Ti I (ĝ(xi ) > δ) + (1 − Ti )I (ĝ(xi ) � δ), and ŷi ’s are the predicted
values from fitting (2.1).
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3. SIMULATIONS

A simulation study was undertaken, in which SORA was compared to Virtual Twins (VT)
(Foster and others, 2011) and the recursive partitioning approach proposed by Su and others (2009). VT is
another two-stage procedure designed to identify simple subgroups. In the first stage, y is modeled using
RF, with the covariates and treatment indicator as predictors to obtain estimates of y1i and y0i for each
subject, from which estimated treatment effects are calculated. In the second stage, the estimated treat-
ment effects are used as the outcome in a single regression tree, and the identified subgroup consists of
all terminal nodes for which the estimated treatment effect from the VT tree is beyond some predefined
“enhancement” threshold. The recursive partitioning approach of Su and others (2009) follows the stan-
dard classification and regression tree framework, but employs a splitting criterion which is large for strong
treatment-by-covariate interactions. This can be viewed as a “one-stage” approach, as it does not require
estimation of subject-specific treatment effects. We refer to this as the Tree approach. We also compare
the performance of some δ selection methods for SORA.

We consider eight cases:

1. g(x) = 25I (x1 > 0, x2 > 0),

2.

g(x) =

⎧⎪⎨
⎪⎩

0.5 + 10 min(|x1|, |x2|) if x1 > 0.5 and x2 > 0.5,

−0.5 if x1 < −0.5 or x2 < −0.5,

min(|x1 + 0.5|, |x2 + 0.5|) − 0.5 otherwise,

3. g(x) = 25I (x1 > 0, x2 > 0) min(|x1|, |x2|),
4. g(x) = (5/

√
2)(x1 + x2),

5. g(x) = 3,

6. g(x) = 0,

7. g(x) = (5/
√

2)(x1 + x2) + 6.4,

8. g(x) = (5/
√

5)(x1 + x2 + x3 + x4 + x5).

In Cases 1–7, at most two variables determine g(x), and in Case 8, five variables determine g(x). Cases
1–3 have clearly defined enhanced individuals present. In Case 1, the treatment effect for non-responders
is fixed at zero, and that for responders is a positive constant. In Case 2, there is a group of non-responders
whose g values vary slightly around zero, and a group of responders, whose values vary around some
non-zero mean. Case 3 is similar to Case 2, but non-responders have a constant zero treatment effect. In
Case 4, the treatment effects are symmetric about zero. Thus, there is no clearly separated “enhanced”
group of individuals who are different from the rest of the population, but the treatment effect is positive
for individuals with x1 + x2 > 0 and negative for those with x1 + x2 < 0. In Case 5, the treatment effect is
a positive constant for all individuals, so essentially everyone is “enhanced,” and in Case 6, the treatment
effect is exactly zero for everyone. Case 7 was chosen to be analogous to the data we will analyze in
Section 4. In this data set, nearly all subjects appear to respond positively to treatment, so the problem
becomes identifying the small subgroup of patients who should not receive treatment. Thus, in Case 7, we
generate data so that nearly all subjects have a positive treatment effect. Case 8 is similar to Case 4, but
with the true treatment effect depending on five covariates instead of two. This case was chosen to assess
the performance of SORA when the true treatment effect depends on more than three covariates and has
a non-rectangular form. In Cases 1–3, we expect one-fourth of the population to be enhanced, in Cases 4
and 8 we expect one-half of the subjects to be enhanced, in Case 5 the true region is all individuals, in Case
6 the true region is empty, and in Case 7 we expect about 90% of the subjects to be enhanced.

For each case, 500 data sets of size n = 500 were generated from yi = 30 + 5x1i + 5x2i − 5x7i +
Ti g(xi ) + εi , where x’s are i.i.d. N (0, 1) and are independent of the ε’s, which are i.i.d. N (0, 202).
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In all cases, we consider a total of 10 variables in our analysis. To match the desired covariate balance
in clinical trials and to eliminate spurious positive true Q( Â) values, we used paired data, i.e. each subject
in the treatment group has a “twin” in the control group with identical covariate values. This can be viewed
as an approximation to a stratified trial design.

For SORA, only subgroups of size 20 or larger were considered, though this value is somewhat arbitrary.
For the stepwise subgroup search, we chose M1 = 10, and B2(M2) consisted of unique pairs from the top
five groups of the form {xi

�
< ci , x j

�
< c j } (and top five of the form {xi

�
< ci , x j

�
< c j }c). Candidate cutpoints

for each covariate were the corresponding 5, 7.5, . . . , 95, 5, 10, . . . , 95, and 5, 20, 35, 50, 65, 80, 95 per-
centiles for the 1D, 2D, and 3D searches, respectively. For both SORA and VT, 20 bootstrap data sets
were used to obtain the bias-corrected estimates, and for SORA, g and h were estimated using a simple
average of MARS and RF estimates, as this was found to perform better than either method alone in our
simulations. These estimates were obtained using the R functions randomForest and mars with default set-
tings. For the Tree approach, the maximum tree depth was set at 15, and terminal nodes were required to
include at least 10 subjects from each treatment group. To prune initial trees for this method, a complexity
parameter value of λ = ln(n) was used. Additional details can be found in Su and others (2009).

To assess the ability of the methods to identify the true underlying subgroup, we calculate the aver-
age number of individuals with a true positive treatment effect, the average | Â|, the average sensitivity,
specificity, positive and negative predictive values for Â, the proportion of times the correct covariates are
included in Â, the proportion of times Â is defined using only the correct covariates. We also compute the
average expected outcome if Â were used to assign treatment, and the average values of Q(A), Q( Â), and
all the estimates of Q( Â) discussed in Section 2.3. Only Q̂( Â)RS is computed for the Tree approach, as
this approach does not involve the estimation of subject-specific treatment effects.

For the comparison of SORA to VT and Tree approaches, we chose δ = 0 for SORA and

δVT = 0.1∗ max

(∑n
i=1 yi I (Ti = 1)∑n

i=1 I (Ti = 1)
−
∑n

i=1 yi I (Ti = 0)∑n
i=1 I (Ti = 0)

, sd(ŷi ; i : Ti = 0)

)

for VT. We considered terminal nodes with positive empirical treatment effects to be enhanced for the Tree
approach. From Table 1, we can see that, though all methods are generally quite similar, SORA appears to
best maximize the expected outcome. Note that this result also holds for Case 8, in which the true treatment
effect depends on five covariates and is non-rectangular. In addition, when δ = 0, SORA tends to identify
the largest subgroups, giving it higher sensitivity and lower specificity and positive predictive value than
the other two methods. VT is the most successful at identifying regions which depend on all of the true
covariates, followed by the Tree approach. Moreover, VT most frequently identifies regions which depend
only on the correct covariates, though none of the methods considered performs overly well in this regard.
It is worth noting that Cases 4 and 8 (for which SORA performs well) are the only scenarios in which it is
truly undesirable to treat too many people. In all other cases, subjects who unnecessarily receive treatment
would experience no real harm, as their true g(xi ) is close to zero. In Cases 5 and 7, it is important to treat
a larger number of people, and SORA achieves this.

From Table 2, we can see that the VT and Tree procedures identify more enhanced regions than SORA.
Again, this is a result of SORA’s tendency to identify larger subgroups when δ = 0. As expected, Q̂( Â)SND

and Q̂( Â)ĝ are less biased than Q̂( Â)RS for both VT and SORA. The bias correction appears to work better
for SORA, showing less of a tendency to overcorrect than with VT, though Q̂( Â)SND(BC) is quite poor for
both approaches, and Q̂( Â)ĝ(BC) is essentially always near zero. Although none of the estimates considered
is completely satisfactory, Q̂( Â)RS(BC) is generally the least biased for both SORA and VT.

SORA can be very computationally expensive. For instance, using the Biowulf Linux cluster at
NIH (see website in Acknowledgments for exact specifications), the average run time for Case 8 was
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Table 1. Simulation study results: subgroup identification performance

True # Incl. Only

Scenario responders† Size Sens. Spec. PPV NPV x1, x‡
2 x1, x‡

2 E(y∗(A))|A= Â

Case 1
SORA 125.41 395.71 0.99 0.28 0.32 0.99 0.42 0.01 36.24
VT 125.41 149.12 0.94 0.92 0.84 0.98 1.00 0.30 35.91
Tree 125.41 309.12 0.96 0.50 0.43 0.97 0.96 0.05 36.04

Case 2
SORA 125.41 279.90 0.64 0.47 0.30 0.80 0.10 0.002 30.47
VT 125.41 162.86 0.45 0.72 0.36 0.80 0.41 0.03 30.46
Tree 125.41 263.90 0.59 0.49 0.29 0.79 0.22 0.00 30.44

Case 3
SORA 125.41 357.02 0.90 0.35 0.33 0.92 0.21 0.004 32.76
VT 125.41 180.73 0.67 0.74 0.53 0.88 0.90 0.13 32.44
Tree 125.41 303.75 0.77 0.45 0.35 0.85 0.61 0.04 32.51

Case 4
SORA 250.26 247.76 0.68 0.68 0.70 0.70 0.39 0.01 31.03
VT 250.26 166.33 0.51 0.85 0.77 0.65 0.73 0.10 31.04
Tree 250.26 262.10 0.64 0.60 0.64 0.66 0.46 0.03 30.72

Case 5
SORA 500 391.88 0.78 — 1.00 — — — 32.36
VT 500 211.60 0.42 — 0.99 — — — 31.28
Tree 500 338.47 0.68 — 1.00 — — — 32.04

Case 6
SORA 0 249.83 — 0.50 — 1.00 — — 30.01
VT 0 147.21 — 0.71 — 1.00 — — 30.01
Tree 0 254.47 — 0.49 — 1.00 — — 30.01

Case 7
SORA 449.98 436.08 0.90 0.39 0.93 0.32 0.37 0.01 36.14
VT 449.98 233.30 0.51 0.88 0.98 0.17 0.76 0.10 34.16
Tree 449.98 375.88 0.78 0.47 0.93 0.22 0.46 0.03 35.39

Case 8
SORA 250.46 251.30 0.63 0.63 0.65 0.65 — — 30.78
VT 250.46 168.13 0.45 0.78 0.68 0.60 0.01 0.004 30.71
Tree 250.46 251.89 0.60 0.59 0.61 0.61 0.03 0.00 30.58

Values represent averages across 500 simulated data sets. VT failed to identify a subgroup in 3.6% of data sets for Case 2, 3.2% for
Case 4, 0.8% for Case 5, 7.2% for Case 6, and 2.8% for Case 8. Tree method failed to identify a subgroup in 4.4% of data sets for
Case 2, 3% for Case 4, 6.6% for Case 6, and 4.4% for Case 8.
†True responders defined as those with g(xi ) > 0.
‡In Case 8, these columns indicates inclusion of x1, x2, x3, x4, and x5.

approximately 6 h and 22 min, whereas the VT and Tree procedures generally did not take more than a few
minutes.

SORA was also implemented for Cases 1–6 using δAd hoc and δAIPWE. From Tables 3 and 4, we can see
that the average | Â| varies considerably depending on which δ is selected, and thus so do sensitivity, speci-
ficity, positive predictive value, negative predictive value, Q( Â) and Q̂( Â). Of the methods considered,
choosing δ = 0 appears to lead to the best expected outcome, though all three methods are generally fairly
similar in this regard. However, choosing δ > 0 leads to smaller subgroups with a more clearly distinguish-
able treatment effect from the whole population.
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Table 2. Simulation study results: Q( Â) estimation performance

Q̂( Â) Bias-corrected Q̂( Â)

Scenario Q(A) Q( Â) RS SND Mean ĝ RS SND Mean ĝ

Case 1
SORA 18.73 1.76 4.15 2.57 2.94 2.09 −0.33 0.46
VT 18.73 14.81 17.89 13.48 — 12.65 7.03 —
Tree 18.73 4.43 9.71 — — — — —

Case 2
SORA 3.01 0.31 6.48 2.59 3.46 2.67 −2.82 −1.25
VT 3.01 1.05 10.46 3.43 — 2.93 −5.79 —
Tree 3.01 0.35 8.65 — — — — —

Case 3
SORA 8.75 1.10 4.50 2.40 2.88 1.66 −1.61 −0.60
VT 8.75 5.06 11.61 5.85 — 4.81 −2.50 —
Tree 8.75 1.77 8.56 — — — — —

Case 4
SORA 3.99 2.27 7.52 4.26 5.00 3.73 −1.01 0.45
VT 3.99 3.36 10.96 4.71 — 3.77 −4.17 —
Tree 3.99 1.60 9.23 — — — — —

Case 5
SORA 0.00 0.00 3.44 1.34 1.81 0.68 −2.56 −1.59
VT 0.00 0.00 8.58 2.67 — 1.47 −5.89 —
Tree 0.00 0.00 6.83 — — — — —

Case 6
SORA 0.00 0.00 7.45 2.75 3.80 3.33 −3.06 −1.25
VT 0.00 0.00 10.27 2.98 — 2.79 −6.20 —
Tree 0.00 0.00 8.64 — — — — —

Case 7
SORA 0.98 0.66 2.63 1.35 1.64 0.70 −1.25 −0.58
VT 0.98 2.75 8.59 4.27 — 1.99 −3.73 —
Tree 0.98 0.89 5.33 — — — — —

Case 8
SORA 3.98 1.71 7.42 4.00 4.79 3.57 −1.42 0.10
VT 3.98 2.28 11.16 3.83 — 3.66 −5.57 —
Tree 3.98 1.29 9.56 — — — — —

Values represent averages across 500 simulated data sets. VT failed to identify a subgroup in 3.6% of data sets for Case 2, 3.2% for
Case 4, 0.8% for Case 5, 7.2% for Case 6, and 2.8% for Case 8. Tree method failed to identify a subgroup in 4.4% of data sets for
Case 2, 3% for Case 4, 6.6% for Case 6, and 4.4% for Case 8.

4. APPLICATION TO RCT DATA

The proposed methods were applied to data from the Trial of Preventing Hypertension (TROPHY)
(Julius and others, 2006). This study included participants with prehypertension, i.e. either an average
systolic blood pressure (SBP) of 130–139 mm Hg and diastolic blood pressure (DBP) of no more than
89 mm Hg for the three run-in visits (before randomization), or SBP of 139 mm Hg or lower and DBP
between 85 and 89 mm Hg for the three run-in visits. These subjects were randomly assigned to receive
either 2 years of candesartan or placebo, followed by 2 years of placebo for all subjects. Subjects had
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Table 3. δ selection comparison: subgroup identification performance

True # Incl. Only
Scenario responders† Size Sens. Spec. PPV NPV x1, x2 x1, x2 E(y∗(A))|A= Â

Case 1

δ
‡
Ad hoc 125.41 362.24 0.99 0.36 0.36 0.99 0.45 0.02 36.21

δ
‡
AIPWE 125.41 227.57 0.92 0.70 0.63 0.97 0.72 0.05 35.75

δ = 0 125.41 395.71 0.99 0.28 0.32 0.99 0.42 0.01 36.24

Case 2
δAd hoc 125.41 145.78 0.37 0.73 0.36 0.78 0.13 0.02 30.32

δAIPWE 125.41 237.91 0.54 0.55 0.32 0.80 0.10 0.002 30.40

δ = 0 125.41 279.90 0.64 0.47 0.30 0.80 0.10 0.002 30.47

Case 3

δ
‡
Ad hoc 125.41 290.67 0.80 0.49 0.39 0.90 0.26 0.01 32.54

δ
‡
AIPWE 125.41 245.66 0.71 0.58 0.45 0.88 0.35 0.01 32.33

δ = 0 125.41 357.02 0.90 0.35 0.33 0.92 0.21 0.004 32.76

Case 4
δAd hoc 250.26 125.60 0.37 0.87 0.79 0.60 0.37 0.01 30.73
δAIPWE 250.26 243.84 0.63 0.65 0.70 0.69 0.37 0.01 30.81
δ = 0 250.26 247.76 0.68 0.68 0.70 0.70 0.39 0.01 31.03

Case 5
δAd hoc 500 326.04 0.65 — 1.00 — — — 31.97
δAIPWE 500 246.41 0.49 — 1.00 — — — 31.49
δ = 0 500 391.88 0.78 — 1.00 — — — 32.36

Case 6
δAd hoc 0 107.23 — 0.79 — 1.00 — — 30.01
δAIPWE 0 239.91 — 0.52 — 1.00 — — 30.01
δ = 0 0 249.83 — 0.50 — 1.00 — — 30.01

Values represent averages across 500 simulated data sets.
†True responders defines as those with g(xi ) > 0.
‡Averages based on 497 and 499 data sets in Cases 1 and 3, respectively, due to numerical problems.

return visits at 1 and 3 months post-randomization, and approximately every 3 months thereafter. The
study produced analyzable data on 772 subject (391 candesartan, 381 placebo). Baseline measurements
included age, gender, race (white, black, or other), weight, body-mass index (BMI), SBP, DBP, total choles-
terol, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), HDL:LDL
ratio, triglycerides, fasting glucose, total insulin, insulin:glucose ratio, and creatinine. The insulin:glucose
ratio was dropped due to extremely high correlation (≈0.98) with total insulin. For our analysis, we con-
sider SBP at 12 months post-randomization as the outcome.

At 12 months post-randomization, approximately 20% of the outcome values were missing due to
patient dropout and patients developing hypertension. Because hypertension was defined based only on
observed blood pressure measurements, missing data due to patients experiencing the event were assumed
to be missing at random. There was also a small amount of missingness in the baseline covariates, with the
largest fraction for any covariate being 4.3%. All missing values were imputed using SAS PROC MI (SAS
Institute, Inc., Cary, NC, USA). The imputation model included baseline measures of age, weight, BMI,
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Table 4. δ selection comparison: Q( Â) estimation performance

Q̂( Â) Bias-corrected Q̂( Â)

Scenario Q(A) Q( Â) RS SND Mean ĝ RS SND Mean ĝ

Case 1

δ
†
Ad hoc 18.73 2.61 5.30 3.37 3.81 3.02 0.08 1.02

δ
†
AIPWE 18.73 9.37 12.50 7.21 8.39 8.98 1.87 4.11

δ = 0 18.73 1.76 4.15 2.57 2.94 2.09 −0.33 0.46

Case 2
δAd hoc 3.01 0.93 15.08 4.98 7.26 8.84 −3.79 −0.22

δAIPWE 3.01 0.57 10.20 3.53 5.03 5.63 −2.93 −0.55

δ = 0 3.01 0.31 6.48 2.59 3.46 2.67 −2.82 −1.25

Case 3

δ
†
Ad hoc 8.75 2.16 7.17 3.60 4.41 3.59 −1.50 0.03

δ
†
AIPWE 8.75 3.38 9.86 4.51 5.71 5.70 −1.43 0.64

δ = 0 8.75 1.10 4.50 2.40 2.88 1.66 −1.61 −0.60

Case 4
δAd hoc 3.99 3.56 15.76 7.33 9.25 9.35 −1.52 1.77

δAIPWE 3.99 2.29 9.52 4.68 5.78 5.23 −1.22 0.74

δ = 0 3.99 2.27 7.52 4.26 5.00 3.73 −1.01 0.45

Case 5
δAd hoc 0.00 0.00 5.87 2.12 2.96 2.33 −2.86 −1.37

δAIPWE 0.00 0.00 9.44 3.15 4.56 4.92 −3.20 −0.93

δ = 0 0.00 0.00 3.44 1.34 1.81 0.68 −2.56 −1.59

Case 6
δAd hoc 0.00 0.00 17.95 5.46 8.27 10.79 −4.54 −0.26

δAIPWE 0.00 0.00 10.10 3.27 4.80 5.42 −3.24 −0.82

δ = 0 0.00 0.00 7.45 2.75 3.80 3.33 −3.06 −1.25

Values represent averages across 500 simulated data sets.
†Averages based on 497 and 499 data sets in Cases 1 and 3, respectively, due to numerical problems.

total cholesterol, LDL, HDL, HDL:LDL ratio, total insulin, fasting glucose, insulin:glucose ratio, trilglyc-
erides, and creatinine, as well as all blood pressure measurements up to 12 months post-randomization,
stratified by treatment, and gender. Because the proposed methods have not yet been extended to data with
missing values, only a single imputation was performed.

There are three very large and influential outliers in the covariate values. Thus, RF, rather than an
average of RF and MARS, was used to estimate g and h, as we found it to be less sensitive to outliers.
Insulin, glucose, HDL, LDL, HDL:LDL ratio, and triglycerides were log-transformed.

For SORA, all 1D and 2D regions were considered in the stepwise procedure, and B2(M2) consisted of
unique pairs from the top 50 2D groups (and the top 50 complement groups). Percentiles used as cutpoints
in the 3D search were 7.5, 15, . . . , 90, and the RF included 2000 trees. All other settings were the same as
in the simulations.

A histogram of the estimated treatment effects is given in Figure 1. The very high percentage of pos-
itive predicted treatment effects suggests that candesartan is widely effective, so in this case, it is more
interesting to identify the small subgroup of individuals who should not receive treatment. As a result,
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Fig. 1. Histogram of ĝ(x) for TROPHY Data.

we chose δ = 0, and Â was redefined as the region which minimizes (2.3). The identified region was
Â = {HDL:LDL ratio < 0.38, HDL < 46.02, total insulin � 25.11}, and contained 20 subjects, suggest-
ing a regime where these individuals receive no treatment and all others receive candesartan. These sub-
jects also had high triglycerides, total cholesterol, and LDL, and could be described as having an elevated
risk profile on lipids and a high risk of diabetes. Values of Q̂( Â)RS, Q̂( Â)RS(BC), Q̂( Â)SND, Q̂( Â)SND(BC),
Q̂( Â)ĝ , and Q̂( Â)ĝ(BC) were −1.63, 3.92, −8.14, 0.35, −9.75, and −4.24, respectively. The relatively small
magnitude of the bias-corrected estimates suggests that individuals in Â may have essentially no response
to treatment, rather than a large negative response.

Due to the random nature of RF, results may vary slightly depending on which seed is chosen for esti-
mating g and h. We re-implemented SORA using a different seed, and a slightly different Â was identified;
however, it was again defined using insulin and two of the cholesterol measures, and contained some, but
not all of the same individuals. The above analysis was also performed without the three large outlying
observations in the covariates, and again a region based on cholesterol measures and insulin was identified.

We also applied the VT and Tree procedures to the TROPHY data. For this analysis, we chose
δVT = 0, and VT selected a tree containing HDL, total insulin, triglycerides, baseline SBP, and age,
but failed to identify a subgroup, as predictions from this tree suggested that all subjects benefit
from candesartan. The Tree procedure identified three disjoint subgroups, containing a total of
128 subjects: {HDL � 45, baseline SBP < 128} (34 subjects), {HDL < 45, total insulin �
4.7, fasting glucose � 88.39, triglycerides < 112, weight � 184} (50 subjects), and {HDL <

45, total insulin � 4.7, fasting glucose � 88.39, 141 � triglycerides < 215, weight � 209} (44 subjects),
and Q̂( Â)RS for these 128 subjects was −12.72. Because Q̂( Â)RS is generally strongly biased, it is difficult
to assess the strength of this subgroup. However, it is possible that these individuals truly have a strong
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negative response to candesartan, but were not all identified by SORA because the true structure of the
subgroup was too complex to be detected.

5. DISCUSSION

We proposed a method, SORA, that uses RCT data to identify simple treatment regimes which, once
properly validated, could be used to assign treatment to future patients in the population. Our simulations
showed that regimes identified by SORA better maximized the expected outcome than those identified
by the VT or Tree methods. Moreover, in our experience, the VT and Tree procedures have a tendency to
identify subgroups which consist of two or more disjoint regions, so subgroups identified by SORA will
generally be more interpretable.

The SORA method tends to select 3D regions, even when the true underlying region is of fewer dimen-
sions. Thus, it may be interesting to consider some form of pruning, or perhaps incorporating a penalty
based on the number of covariates into the objective function, which could help SORA identify regions of
the correct dimension more frequently.

As illustrated in our simulations, the value of δ can strongly impact | Â|. Although we considered a few
methods for selecting δ, other data-adaptive methods could be developed. There may also be logistical or
cost-based reasons for preferring a non-zero δ, which could be taken into account.

It may be of interest to consider methods for increasing computational speed. The speed of SORA as
implemented in this paper does not change with n, but is heavily dependent on the number of covariates, so
it may be interesting to consider a method for weeding out “useless” covariates between model estimation
and subgroup identification to reduce computation time.

In our simulations, the bootstrap often led to an overestimate of the bias of Q̂( Â). This phenomenon
was discussed by Efron and Tibshirani (1997) in the case of classification error. Although the settings are
slightly different, it may be possible to improve the estimation of Q( Â) by following their same general
arguments. As a rough illustration, consider Q̂( Â)SND. In Table 2, Q̂( Â)SND tends to overestimate Q( Â),
whereas Q̂( Â)SND(BC) underestimates Q( Â). However, 0.632Q̂( Â)SND + 0.368Q̂( Â)SND(BC) is generally
very close to Q( Â). That is, by up-weighting Q̂( Â)SND and down-weighting Q̂( Â)SND(BC) in a fashion
similar to Efron and Tibshirani (1997), we can obtain a noticeably less biased estimate. It may be interesting
to investigate this further. One could also potentially consider using cross-validation to obtain more honest
estimates of Q( Â), though this was also shown by Foster and others (2011) to overestimate the bias for VT.

Who should and should not receive treatment are both very important and clinically meaningful ques-
tions, and considering only the primary outcome when attempting to choose the best regime may lead to
less sufficient results. It may thus be useful to consider additional information when attempting to select the
best regime, such as secondary outcomes, and the risks and rewards associated with each of the competing
treatments for the outcome(s) considered.

6. SOFTWARE

R code is available on request from the corresponding author.
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