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SUMMARY

Right-censored time-to-event data are sometimes observed from a (sub)cohort of patients whose survival
times can be subject to outcome-dependent sampling schemes. In this paper, we propose a unified estima-
tion method for semiparametric accelerated failure time models under general biased estimating schemes.
The proposed estimator of the regression covariates is developed upon a bias-offsetting weighting scheme
and is proved to be consistent and asymptotically normally distributed. Large sample properties for the
estimator are also derived. Using rank-based monotone estimating functions for the regression parame-
ters, we find that the estimating equations can be easily solved via convex optimization. The methods are
confirmed through simulations and illustrated by application to real datasets on various sampling schemes
including length-bias sampling, the case–cohort design and its variants.

Keywords: Accelerated failure time model; Case–cohort design; Counting process; Estimating equations; Importance
sampling; Length-bias; Regression; Survival data.

1. INTRODUCTION

Length/size-biased sampling has been recognized in statistics for decades in the studies of ecology
(McFadden, 1962; Muttlak and McDonald, 1990), fiber length (Cox, 1969), and economic duration data
(Kiefer, 1988). This kind of biased sampling arises when a positive-valued outcome variable is sam-
pled with selection probability proportional to its size/survival time. The one-sample problem of esti-
mating the survivor function has been studied in Vardi (1982, 1985). Further results can be found in
Asgharian and others (2002) and Asgharian and Wolfson (2005).

Under the scope of semiparametric inference, Tsai (2009) carefully studied two intrinsically differ-
ent types of length-biased sampling, depending on the assumption made on the recruitment/censoring
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procedure under the Cox proportional hazards model. Shen and others (2012) proposed two likelihood
approaches for the estimation and assessment of the difference between two survival distributions under
length-biased sampling. While there has been extensive effort to develop survival models in the context
of length-biased sampling, e.g. proportional hazards and linear transformation models, less attention has
been paid to the accelerated failure time (AFT) model. More recently, Chen (2010) and Shen and others
(2009) specifically studied the AFT model for data that are length/size-biased.

Another outcome sampling scheme is the case–cohort design which has first proposed by Prentice
(1986). Such a design is developed in order to provide a more cost-efficient sampling method, especially
in large-scale (epidemiological) studies on rare diseases with certain covariate information that is diffi-
cult or costly to obtain. Recent works that study inference on survival data from the case–cohort design
include Lu and Tsiatis (2006), Nan and others (2009), and Kong and Cai (2009); the first of these devel-
oped inference procedure on a general class of semiparametric transformation models, while the latter two
proposed solutions on inferring regression parameters of the AFT model.

The AFT model, as a common alternative to linear transformation models, relates the logarithm of the
failure time linearly to the covariates; see Tsiatis (1990), Wei and others (1990), Kalbfleisch and Prentice
(2002), and Cox and Oakes (1984) among others. Under the AFT model, the effect of the covariates on the
failure time is directly related to the acceleration or deceleration of time to failure. This feature facilitates
an easy interpretation for clinicians and hence the model provides an alternative to the celebrated (Cox,
1972) proportional hazards model for the regression analysis of censored failure time data.

Several estimation and inferential procedures have been proposed for the estimation of the regression
parameters, including rank-based estimating equations and martingale estimating equations for unbiased
data; see Prentice (1978) and Buckley and James (1979). The large-sample properties of the Buckley–
James-type and rank estimators were then studied by Ritov (1990), Tsiatis (1990), Ying (1993), and
Jin and others (2003). Furthermore, Zeng and Lin (2007) proposed a kernel-smoothed profile likelihood
function for the AFT model.

Despite the theoretical advances, semiparametric methods for the AFT model have rarely been devel-
oped to deal with various biased sampling schemes, either due to natural setting or trial design, under
one general framework. This paper aims at proposing a unified approach that can handle many commonly
encountered biased sampling schemes such as length-biased sampling, the case–cohort design as well as
its variants. We show that our approach leads to estimators that are consistent and asymptotically normal
and we provide consistent variance estimators. The one-size-fit-all solution introduced in this paper should
benefit a wide range of practitioners who have to tackle problems on biased samples.

The approach presented in this paper is related to that of Kim and others (2013), which deals with biased
sampling under the semiparametric linear transformation models. However, it is by no means straightfor-
ward to apply their framework directly to the AFT model setting. This is due to the fact that the bias involved
in sampling is usually characterized via the event time, whereas inference for the regression parameter of
the AFT model is carried out through the residual term. Furthermore, it has still been unclear about the fea-
sibility of extending the existing rank-based inference procedure for censored data (Jin and others, 2003,
2006) including finding equivalent objective functions and resampling schemes for variance estimation
to datasets with sampling bias. Our main contribution in this paper is to provide a careful treatment that
extends (Jin and others, 2003) methodology to a biased sampling setting so that the corresponding esti-
mator is still numerically tractable, while its standard error can also be estimated via a resampling scheme
as discussed in Jin and others (2006). Ignoring the sampling bias or uniqueness of the point estimates
may result in substantial bias in estimating the survival time distribution and hence potentially fallacious
inference.

The rest of the article is organized as follows: Section 2 specifies the model setup, necessary notation
as well as the estimating procedures. The asymptotic properties of the proposed estimator are studied.
In particular, we presented a Gehan-type estimating equation whose root can be obtained via convex
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optimization. We present a resampling procedure for variance estimation. Solution to a more general
weighting scheme will also be elaborated. Simulation studies under practical sample sizes and real data
analyses are conducted to assess the performance of the proposed estimator; the corresponding discussion
is included in Section 3. Section 4 concludes the paper. In addition to specific simulation settings and
results, all the technical details are presented in supplementary materials (available at Biostatistics online).

2. PROPOSED METHODS

We shall assume throughout this paper that there are two underlying random variables T ∗ and C∗ that
correspond to unbiased time to failure and time to censoring as seen in typical right-censored data prob-
lems. Only T̃ ∗, the minimum between T ∗ and C∗, is observed. The AFT model relates the logarithm of
the failure time linearly to the concomitant covariates, say Z = (Z1, . . . , Z p) in the following sense:

log T ∗ = −β ′
0 Z + ε, (2.1)

where β0 is a p-vector of regression coefficients and ε, in contrast to the transformation models, has an
unknown distribution. The parameter β0 appears to be easy to interpret because it directly relates to the
level of log T ∗. The primary goal of this paper is to find semiparametric estimates of β0, denoted by β̂,
under a generalized biased sampling scheme. The data observed will consist of n biased iid random vectors
{(T̃i ,�i , Zi )}i=1,...,n , where T̃i = min(Ti ,Ci ) and �i = I (Ti � Ci ). Following Kim and others (2013), we
introduce qZ (t, δ), t � 0, δ ∈ {0, 1}, the joint conditional density of (T̃ ∗,�∗) given the covariates Z , where
�∗ = I (T ∗ � C∗). Since T ∗ and C∗ are assumed to be conditionally independent given Z , we can write

qZ (t, δ)=
{

fZ (t)Ḡ Z (t)
}δ {

gZ (t)F̄Z (t)
}1−δ

, t � 0, δ ∈ {0, 1},

where fZ (F̄Z ) and gZ (Ḡ Z ) denote the conditional density (survival) functions of T ∗ and C∗, respec-
tively. Under a biased sampling scheme, i.e. the data collected are subject to a certain type of biased
sampling, which is characterized by a biasing function w(t, δ), t � 0, δ ∈ {0, 1}, the conditional joint den-

sity of (T̃ ,�) given Z then changes to

q̃Z (t, δ)= w(t, δ)qZ (t, δ)∫
w(s, 0)qZ (s, 0) ds + ∫

w(s, 1)qZ (s, 1) ds
. (2.2)

Typical examples of biasing functions include: (a) length-biased sampling, wherew(t, δ)= t and (b) case–
cohort sampling, where w(t, δ)= δ + (1 − δ)p, p ∈ (0, 1) is a predefined constant. Readers should be
noted that the biasing function can be generalized so that it depends on T̃ , �, or both.

2.1 Notation and background

For our purposes, it will be convenient to consider the counting process approach; see Gill (1980). Here, and
in the sequel, we shall use the notation N (t)=�I (T̃ � t) to represent the counting process which jumps
by one when a failure occurs. Hazard and cumulative hazard functions of T are denoted by λ(·) and �(·),
respectively. Let Y (t)= I (T̃ � t) denote the at-risk indicator. Moreover, for the AFT model, it is helpful
to re-express the counting process via the residual term. Specifically, we define ei (β)= log T̃i + β ′ Zi ,
Ni (β; t)=�i I {ei (β)� t}, and Yi (β; t)= I {ei (β)� t} for i = 1, 2, . . . , n. Unless there exists ambiguity,
the subscript Z that appears in q and q̃ will be suppressed.
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In full cohort design, the regression parameters can be estimated via the weighted log-rank estimating
function (Ying, 1993; Jin and others, 2003):

Uφ(β)=
n∑

i=1

�iφ{β; ei (β)}[Zi − Z̄{β, ei (β)}] =
n∑

i=1

∫
φ(β; u){Zi − Z̄(β, u)} dNi (β; u)= 0,

where φ is a (data-dependent) weight function, Z̄(β, u) := S(1)(β, u)/S(0)(β, u) with S(κ)(β, u)=
(1/n)

∑n
j=1 Y j (β; u)Z κj , κ = 0, 1; Z0 = 1, and Z1 = Z . The choices of φ(β, u)= 1 and φ(β, u)= S(0)

correspond to log-rank and Gehan statistics, respectively.
One of the technical issues that needs to be tackled for the above root-finding problem is that the

estimating equation Uφ(β) is not necessarily component-wise monotone in β. Non-differentiability and
non-monotonicity involved with respect to β also lead to the potential of having multiple solutions to the
equation, amongst which some of them are inconsistent. Such a problem is even more prominent when β
is of higher dimension. In the following subsections, apart from introducing the estimation procedure for
β, we shall also investigate the numerical issues involved in this root-finding procedure.

2.2 Estimation procedure

Biased sampling appears in many applications, either naturally or by design. To the best of our knowl-
edge, there has not yet been any unified inference procedure for the regression parameter in the AFT
model (2.1) under general biased sampling schemes. A key element in the counting process approach
is the use of E{dN (t)− Y (t) d�(t)} = 0 as the basis for constructing an unbiased estimating equation.
Under the biased sampling setting (2.2), however, the above quantity is no longer a zero-mean process. In
fact, Kim and others (2013) derived the following lemma that shows that the compensator of the counting
process N (t) requires an extra adjustment term to achieve the mean-zero property.

LEMMA 2.1 Under the biased sampling scheme, i.e. (T̃ ,�) follows q̃Z given by (2.2) and ω(t, T̃ ,�, β),
we have

EZ {dN (t)} = EZ {ω(t, T̃ ,�, β0)Y (t)λ(t) dt}, (2.3)

where EZ denotes the conditional expectation given Z and ω(t, T̃ ,�)= {q(T̃ ,�)/q̃(T̃ ,�)}
{q̃(t, 1)/q(t, 1)}.

The inclusion of the adjustment term ω(t, T̃ ,�, β) in (2.3) can be regarded as the Radon–Nikodym
derivative between the true and the biased densities for the risk set and the counting process, respectively.
Due to the fact that both the counting process and the risk set are observed under a biased probability
measure, whereas the hazard function is expressed with respect to the true density, we have to adjust both
dN (t) and the at-risk indicator Y (t) so that all the components in estimating equation (2.3) are evaluated
under the same measure. The proof of this lemma is presented in Kim and others (2013).

Due to (2.3), we can obtain the following set of estimating equations:

n∑
i=1

φ(t;β){dNi (t)− ω(t, T̃i ,�i ;β)Yi (t) d�(t)} = 0, (2.4)

n∑
i=1

∫ τ

0
Ziφ(t;β){dNi (t)− ω(t, T̃i ,�i ;β)Yi (t) d�(t)} = 0, (2.5)
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where τ is constant such that P(T̃ � τ) > 0. By choosing φ(·)= 1 for (2.4), we obtain d�̂(t)=∑n
i=1 dNi (t)/

∑n
i=1 ω(t, T̃i ,�i ;β)Yi (t). It follows that if we consider a transformation on the time scale:

t �→ te−β ′ Z , then (2.5) can be written as

n∑
i=1

∫ τ exp(β ′ Zi )

0
φ(te−β ′ Zi ;β)

{
Zi −

∑n
j=1 Z jω(te−β ′ Z j , T̃ j ,� j ;β)Y j (te−β ′ Z j )∑n

j=1 ω(te
−β ′ Z j , T̃ j ,� j ;β)Y j (te−β ′ Z j )

}
dNi (te

−β ′ Zi )= 0,

or equivalently,

0 =
n∑

i=1

�iφ(T̃i ;β)
[

Zi −
∑n

j=1 Z jω{T̃i eβ
′(Zi −Z j ), T̃i ,�i , β}Y j {T̃i eβ

′(Zi −Z j )}∑n
j=1 ω{T̃i eβ

′(Zi −Z j ), T̃i ,�i , β}Y j {T̃i eβ
′(Zi −Z j )}

]

=
n∑

i=1

�iφ(T̃i ;β){Zi − Z̄ω(β)}, say. (2.6)

The unbiasedness property exhibited in (2.6) is important in obtaining an asymptotically unbiased esti-
mator for β0. It is noteworthy that since the weight function ω, which may contain T̃ and/or �, is not
necessarily Ft -measurable, the process M(t)= N (t)− ∫ t

−∞ ω(u, T̃i ,�i , β)Yi (u) d�(u) is not a martin-
gale but a mean-zero process instead.

Before discussing more general weight functions ω(·) in Section 2.4, we first study the special case
of φ(te−β ′ Zi ;β)= ∑n

j=1 ω(te
−β ′ Z j , T̃ j ,� j , β)Y j (te−β ′ Z j ), which is regarded as the Gehan-type weight

function. Such a formulation can considerably simplify (2.6) and lead to

UG(β) :=
n∑

i=1

n∑
j=1

�i (Zi − Z j )ω{T̃i e
β ′(Zi −Z j ), T̃i ,�i , β}Y j {T̃i e

β ′(Zi −Z j )} = 0. (2.7)

There are a number of typical biasing sampling designs that can be covered under the purposed gen-
eralized framework. Common examples include (i) length-biased sampling, (ii) case–cohort design, (iii)
case–cohort sampling on a length-biased sampling, and (iv) generalized case–cohort design. Readers are
referred to Kim and others (2013) for a more elaborated description of the weight function ω(·) formula-
tion. We shall elaborate the subtlety of the proposed method and its difference between that discussed in
Kim and others (2013) via two examples.

Length-biased sampling. In the length-biased sampling case, since the density of (T̃ ,�) is proportional to
tq(t, δ), the weight function is given by

ω(t, T̃ ,�)= q(T̃ ,�)q̃(t, 1)

q̃(T̃ ,�)q(t, 1)
= t

T̃
.

Due to the fact that the time horizon considered in (2.7) is viewed from the perspective of η, the time
variable t expressed in the above weight function should be adjusted to te−β ′ Zi for subject i (i = 1, . . . , n),
instead. With specificallyω(t;β)= te−β ′ Z/T̃ and hence φ(te−β ′ Zi ;β)= ∑n

j=1 te−β ′ Z j Y j (te−β ′ Z j )/T̃ j , we
can rewrite (2.7) into the following estimating equation that corresponds to the length-biased sampling
setting:

n∑
i=1

n∑
j=1

�i (Zi − Z j )

{
T̃i

T̃ j

eβ
′(Zi −Z j )

}
I

{
T̃i

T̃ j

eβ
′(Zi −Z j ) − 1 � 0

}
= 0. (2.8)

We cannot, however, directly adopt the approach of Jin and others (2003) in solving (2.8) via linear pro-
gramming due to the extra term T̃i/T̃ j eβ

′(Zi −Z j ) involved for the bias correction.
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It can be shown in the supplementary material (available at Biostatistics online) that the root of (2.8) is
still a solution of a monotone estimating equation. In fact, the root-finding problem presented in (2.8) can
be translated into an optimization problem of a convex function:

LG(β) := 1

n

n∑
i=1

n∑
j=1

�i
T̃i eβ

′(Zi −Z j )

T̃ j

{ei (β)− e j (β)}− = 1

n

n∑
i=1

n∑
j=1

�iω(T̃i e
β ′ Zi ;β){ei (β)− e j (β)}−,

where a− = |a|I (a < 0). The minimizer of LG(β) is denoted by β̂G . Note that although β̂G is not neces-
sarily unique, all these minimizers are asymptotically equivalent.

We would like to emphasize that our estimation procedure is different from that proposed in Chen
(2010). In particular, Chen (2010) only considered the uncensored case and made use of the invariance prin-
ciple (see Property 1 of Chen, 2010, p. 150) to provide an inference procedure for the regression covariates.
Shen and others (2009) proposed the estimating equation

∑n
i=1 q(Zi )�i Zi (log T̃i − β ′ Zi )/ŵ(T̃i )= 0,

where ŵ(T̃i ) is a consistent estimator of w(T̃i )=
∫ T̃i

0 Ĝ(u) du with Ĝ the Kaplan–Meier estimator for the
censoring variable C . For the cases where censoring times are dependent on a large number of covariates,
the estimation of Ĝ(t) may not be stable, so will be the estimates of the regression parameters.

While the weight function introduced for bias-adjustment resembles the risk set resampling proposed in
Wang (1996), our methodology is developed upon an estimating equation derived from the joint density of
(T̃ ,�) and hence the problem of censoring, which is not covered under the pseudo-likelihood framework
as considered in Wang (1996), can be properly tackled.

As an additional remark, the current setup is designed for handling censoring first and followed by
length-biased sampling. In fact, this setting coincides with the first type of length-biased sampling consid-
ered in Tsai (2009). Adopting the notation used in Tsai (2009), we let h2(a, t, δ | Z) be the conditional prob-
ability density function of the observed data (A, T,�), where A denotes the truncation time. Under the
assumption that A follows a uniform distribution marginally, one can write q̃Z (t, δ)∝

∫ t
0 h2(a, t, δ | Z) da.

This formulation occurs naturally when a cross-sectional sampling (censoring) is performed in which the
probability for a sample to be selected is proportional to the follow-up period T̃ instead of the event time T .
Under such a model assumption, subjects with short follow-up times, which may be the result of dropouts
or death due to other unrelated causes, will be selected with lower probabilities. For the second type of
censoring discussed in Tsai (2009), we shall introduce the corresponding treatment in Section 3.2.

Classical case–cohort sampling and its variants. For those weight functions that do not involve time, it
can be easily proved that the estimating equations for these cases are also monotonically non-decreasing as
there is no time-transformation involved in the bias-adjustment termω(t;β). Similar estimation procedure
as shown above can be applied to obtain β̂G . In particular, for the traditional case–cohort biased sampling
setting, the corresponding LG(β) is given by

LG(β) := 1

n

n∑
i=1

n∑
j=1

�i

�i + (1 −�i )p
{ei (β)− e j (β)}− = 1

n

n∑
i=1

n∑
j=1

�iω(T̃i e
β ′ Zi ;β){ei (β)− e j (β)}−,

where p denotes the sampling probability amongst the censored subjects. Furthermore, in our model,
(T̃i ,�i )i=1,...,n refer to the samples selected in the subcohort. For case–cohort data on the AFT
model, Kong and Cai (2009) also proposed an estimation procedure based on the convergence result of
Wei and others (1990). Their method covers the case of sampling without replacement, which is slightly
different from the current setting. It is noteworthy that Nan and others (2006) and Nan and others (2009)
view case–cohort sampling from the missing data perspective. Indeed, one can actually derive (2.3) by
considering Pr{T̃ ∈ (t ± δ),� | D = 1, Z}, where D denotes the indicator of observing an individual or
not as demonstrated in Kim and others (2013). While our formulation coincides with the construction
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of Nan and others (2009) with a non-predictable weight function for the classical case–cohort sampling,
such a generalization enables us to handle variants of case–cohort sampling, including stratified case–
cohort sampling, generalized case–cohort sampling, and case–cohort sampling on length-biased samples;
see Section 3.1 and Kim and others (2013) for further details. Neither of the previously mentioned last
two settings has been studied in the existing literature to the best of our knowledge.

Before concluding this subsection, the authors would like to emphasize that the translation from
Kim and others (2013) to the current model setting is not as direct as it appears to be. In addition to the
fine treatment for the time variable t due to a different counting process considered, the proposed method,
under a relatively high-dimensional setting, requires extra attention for cases like left truncation. Recall
that for the case where there is left truncation for the sampled data, the weight function needed for bias
correction is given by ω(t, T̃ ,�)= I (U � t), where U is the truncation threshold. In order to be selected
into the sample, subjects must survive until at least U . Correspondingly, the estimating equation, under
the AFT model setting, will become

0 =
n∑

i=1

n∑
j=1

�i (Zi − Z j )I {U � T̃i e
−β ′(Zi −Z j )}Y j {T̃i e

β ′(Zi −Z j )}.

It can be shown that the right-hand side of the above equation is not a monotonic non-decreasing field.
There can be multiple inconsistent roots, especially for relatively high-dimensional Z ’s. For other sampling
procedures that introduce biases, which include case–cohort, stratified/generalized and combo of case–
cohort with length-biased sampling, we can still obtain a monotone estimating equation. Once we have
such a desirable numerical property, the root-finding procedure can be carried out via convex optimization.

2.3 Variance estimation

The random vector n1/2(β̂G − β0) is asymptotically mean zero with covariance matrix of the form
A−1

G BG A−1
G , where AG and BG are functions of λε(·), the unknown hazard of the residual:

AG := lim
n→∞ An = lim

n→∞
1

n

n∑
i=1

∫
{Zi − Z̄ω(u, β0)}⊗2{λ̇ε(u)/λε(u)} dNi (β; u),

BG := lim
n→∞ Bn = lim

n→∞
1

n

n∑
i=1

∫
{Zi − Z̄ω(u, β0)}⊗2 dNi (β; u),

where λ̇ε(u)= dλε(u)/du. It is therefore challenging to obtain an analytical expression for the covariance
matrix. In this subsection, we will adopt a resampling scheme discussed in Jin and others (2006). Since
the perturbation method proposed in Jin and others (2003) is developed upon a martingale structure, the
weight function ω(·) that adjusts the bias makes the direct adaptation of Jin and others (2003) not possible.

We, therefore, define a loss function

U ∗
G(β)=

1

n

n∑
i=1

n∑
j=1

�i (Zi − Z j )ω(T̃i e
β ′ Zi , T̃i ,�i ;β)I {ei (β)� e j (β)}ξiξ j ,

where (ξ1, . . . , ξn) are independent positive random variables with E(ξi )= Var(ξi )= 1, i = 1, . . . , n.
Denote by β̂∗

G a root that solves U ∗
G = 0, which can be obtained from the convex optimization discussed

in Section 2.2. Note that U ∗
G has the same mean and approximately the same variance as its unperturbed

counterpart UG as defined in (2.7). It can be shown that the asymptotic distribution of n1/n(β̂G − β0) can
be approximated by the conditional distribution of n1/2(β̂∗

G − β̂G) given the data (T̃i ,�i , Zi ). In order to

582 J. P. KIM AND OTHERS



approximate the distribution of βG , a large number of realizations of β̂∗
G are generated by randomizing the

perturbation (ξ1, ξ2, . . . , ξn) while holding the data at their observed values. The asymptotic variance of
β̂G can then be estimated by the empirical covariance matrix of β̂∗

G , enabling construction of Wald-type
confidence intervals for β̂G . This procedure is applicable to cases in which there are high censoring rates
and hence is useful for the biased sampling schemes that our framework can cover.

2.4 General weight functions

Upon the basis of β̂G , we introduce the following modification that allows the construction of weighted
Gehan-type loss functions. It is a modified version of Jin and others (2003) with the variable t due to the
bias-adjusting weight function which may involve time. The most popular weight functions, for example
log-rank, Prentice–Wilcoxon and G p class of Harrington and Fleming (1982), are special cases of this
framework. Let ψ(t; b)= φ(t; b)/S(0)ω (t; b); one can write

Ũφ(β; β̂)=
n∑

i=1

�iψ{T̃i e
β ′ Zi × e(β̂−β)′ Zi ; β̂}S(0)ω {T̃i e

β ′ Zi ;β}{Zi − Z̄ω(β)}

=
n∑

i=1

�iψ(T̃i e
β̂ ′ Zi ; β̂)S(0)ω (T̃i e

β ′ Zi ;β){Zi − Z̄ω(β)},

where S(k)ω (te
−b′ Zi ; b)= ∑n

j=1 Z κjω(te
−b′ Z j , T̃ j ,� j ; b)Y j (te−b′ Z j ), κ = 0, 1. The resulting Ũφ(β; β̂) is

similar to that of (2.7) except for the additional weights φ introduced. This term is, however, free of
β. Hence, Ũφ(β; β̂) is still monotone in each component of β and the root-finding procedure can be
carried out in a similar fashion as discussed in Section 2.2. The estimate β̂ has to be estimated iter-
atively with β̂G as the initial value. Numerical results suggest that the number of iterations can be as
small as three in order to achieve the convergence; see Jin and others (2003). Similar to the discussion in
Section 2.2, despite the fact that β̂ can be easily obtained via iterations, it is difficult to obtain an ana-
lytical expression for the limiting covariance matrix. As in the case of β̂G , one can adopt the resampling
approach and carry out inference on β0 based on the empirical distribution of β̂∗, the set of estimates under
perturbation.

3. NUMERICAL RESULTS

3.1 Simulations

Results of simulations of four study designs are detailed in the supplementary material available at Bio-
statistics online. In particular, we considered four biased sampling designs that are under the scope of the
proposed framework, namely (i) length-biased sampling, (ii) case–cohort design, (iii) generalized case–
cohort design, and (iv) a combo biased sampling: case–cohort analysis on length-biased data. For general-
ized case–cohort design (Kim and others, 2013), case–cohort samples are selected from the full cohort by
sampling from cases with a probability of p1(�, T̃ ,X) and controls with a possibly different probability of
p2(�, T̃ ,X), where X denotes covariates that may include (part of) the model covariates Z. Such a design
can be regarded as a generalization of the stratified case–cohort design; see Borgan and others (2000). In
all the examples presented, our method produces nearly unbiased parameter estimates with empirical cov-
erage probabilities of the confidence intervals constructed close to their nominal values. As suggested by
an anonymous referee, we also compared our results on length-biased data with Mandel and Ritov (2010);
for various case–cohort settings, our approach was compared with that proposed in Nan and others (2009).
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Our approach, in general, provides more desirable estimates in terms of lower biasedness and/or smaller
standard errors incurred.

3.2 Real examples

In this subsection, we analyze three datasets, namely (i) a shrub dataset of Muttlak and McDonald (1990)
for size-biased data, (ii) a dementia study carried out by Canadian Study of Health and Aging, and (iii)
South Wales Nickel Refinery Study on nasal sinus. The first two sets of data correspond to length-/size-
biased data, while the last one involves case–cohort analysis and its variants.

The original dataset of shrub with contains data on 89 shrub samples. According to Wang (1996), the
dataset includes 46 samples. Data were collected using a line-intercept sampling method for vegetation.
Under this sampling technique, the probability a shrub was included in the sample was proportional to
the width. Two indicator covariates were used to denote the three groups of transects to which the shrubs
belonged. In the analysis with results reported in Table 1(a), we defined Z1 and Z2 to be indicators that
the shrub belonged to transect I and transect III, respectively, in which case the second transect was the
reference group. A total of 500 resamplings were carried out for estimating the standard errors of the
estimators. The estimates obtained are in concordance with the conclusion drawn in Kim and others (2013)
for the Cox proportional hazards model and show the proportional hazards model provides a better fit to
the dataset.

The second example covers another version of length-biased sampling discussed in Vardi (1989), Wang
(1991), and Shen and others (2009). It also corresponds to the second type of censoring under the length-
bias setting studied in Tsai (2009). This configuration involves censoring of the residual lifetime after the
data are sampled with bias. Under this setting, individuals’ unbiased failure times can be observed only
when they are event-free before the unbiased truncation time A∗, i.e. T ∗ � A∗. For the observed (biased)
data, we define V as the time measured from the initiation time A to failure, which is regarded as the
residual survival time. We assume that V is censored by C̃ , the residual potential censoring variable, and
that C̃ is independent of (A, V ) conditional on Z . Then the observed survival and censoring times, T and C ,
can be expressed, respectively, as T = A + V and C = A + C̃ ; again T̃ = min(T,C) and �= I (T � C).

It can be shown that, conditional on the truncation time A, the weight function ω is

ωi (t)= qZi (T̃i ,�i )

q̃Zi (T̃i ,�i )
× q̃Zi (t, 1)

qZi (t, 1)
= I (Ai � t).

This weight function leads to

EZ {dNi (t)− I (Ai � t)Yi (t)�(t | Zi )} = 0 and (3.1)

EZ {dNi (t)−�i I (T̃i − Ai � t)Yi (t)�(t | Zi )} = 0, (3.2)

where (3.2) is due to the stationarity assumption, see Vardi (1989). We can, therefore, define a family of
subject-specific weight functions by combining (3.1) and (3.2):

ωi (t)= π I (Ai � t)+ (1 − π)�i I (T̃i − Ai � t), (3.3)

where π ∈ [0, 1]. We recommend the choice of π = 0.5,which can strike a balance between (3.1) and (3.2).
The indicator functions included, however, may not necessarily lead to a monotone estimating equation as
discussed at the end of Section 2.2. Our numerical experience, however, shows that this non-monotone
structure does not affect the estimation accuracy significantly for 2D cases. To handle this problem for
a more general setting, one may adopt the induced smoothing approach for the AFT model proposed in
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Table 1. (a) Estimates and standard errors for regression parameters in Shrub Dataset; see
Muttlak and McDonald (1990). (b) Estimates and standard errors for regression parameters CSHA
Dataset. (c) Analysis of time from the first employment to the nasal sinus cancer death for the Welsh

Nickel Refiners Study; Breslow and Day (1987)

(a)

Parameter Gehan Log-rank Parameter Gehan Log-rank

β1 β2

Est. 0.580 0.624 Est. −0.182 −0.221
SE 0.213 0.235 SE 0.210 0.231

(b)

Parameter Gehan Log-rank Parameter Gehan Log-rank

βVD βPA

Est. −0.043 0.014 Est. −0.060 −0.050
SE 0.044 0.030 SE 0.050 0.060

(c)

Full cohort Case–cohort Gen. Case–cohort

Parameter Gehan Log-rank Gehan Log-rank Gehan Log-rank

log(AFE − 10)
Est. 0.612 0.598 0.706 0.768 0.604 0.589
SE 0.110 0.103 0.122 0.148 0.126 0.137

(YFE − 1915)/10
Est. 0.014 0.017 0.168 0.223 0.044 0.041
SE 0.077 0.075 0.101 0.116 0.083 0.086

(YFE − 1915)2/100
Est. −0.173 −0.304 0.019 −0.054 −0.230 −0.322
SE 0.103 0.130 0.129 0.181 0.104 0.126

log(EXP + 1)
Est. 0.168 0.210 0.254 0.324 0.147 0.183
SE 0.041 0.042 0.052 0.066 0.044 0.047

Chiou and others (2015) to avoid the multiple-root problem. This is, however, beyond the scope of this
paper.

The dataset collected in the Canadian Study of Health and Aging (CSHA) study identified 1132 seniors
aged 65 or above having the disease. All the dementia patients had undergone a follow-up procedure up
to 1996. Entries with missing attributes are removed, resulting in the final dataset of size 818. Each indi-
vidual can be categorized into three groups, namely (i) probable Alzheimer’s disease (393 patients), (ii)
possible Alzheimer’s disease (252 patients), and (iii) vascular dementia (173 patients). The censoring rate
is slightly over 22%. Table 1(b) reports the estimated values of βVD and βPA based on (3.3). They can be
interpreted as the marginal effect on the log-survival times of vascular disease and possible Alzheimer
patients, respectively. Neither of these indicator variables is statistically significant. In other words, there
is no significant difference in survival times amongst the three groups of patients. Our finding agrees with
the conclusion made in Shen and others (2009).

In addition to length-/size-biased data, we also analyze a case–cohort sampling-related sample called
the South Welsh Nickel Refiners Study dataset. It contains altogether 679 subjects employed in a nickel
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refinery. The records of these workers are registered in Appendix VIII of Breslow and Day (1987).
The study continued the follow-up until 1981 when 56 deaths were observed from cancer of the nasal
sinus. The corresponding censoring rate is ∼92%. Previous studies discover three significant risk fac-
tors, which include AFE (age at first employment), YFE (year at first employment), and EXP (expo-
sure level). In Kim and others (2013), specifically, they set up the following four variables as regression
covariates: log(AFE− 10), log of the age of the first employment minus 10 years, (YFE− 1915)/10,
(YFE− 1915)2/100, two transformed versions of number of years working in the refinery since 1915
and log(EXP+ 1), the log exposure level; some of the subjects had zero exposure and hence EXP+ 1 is
considered so that its logged value is non-negative and well-defined.

In Table 1(c), the first column presents the estimated parameter values obtained from the full cohort
dataset. In this case, p = 1 for all observations. The second column displays the results from fitting the
same model to data obtained from a randomly drawn, hypothetical subcohort. Such a subcohort contains
all the observed failures and some censored subjects that make up two-thirds of the size of the subco-
hort. We also performed an analysis on another hypothetical subcohort which was drawn from the gen-
eralized case–cohort sampling scheme. We used selection probability p(T̃ )= 1 − {1 + exp(1 + T̃ γ )}−1,
where γ = −0.010 and −0.050 for p1(t) and p2(t), respectively. The estimated values of β and their stan-
dard deviations are summarized in the third column of Table 1(c). All of these studies indicate that the
covariates log(AFE− 10) and log(EXP+ 1) are statistically significant. Compared with the full cohort
study, the estimated standard deviation of β̂ presented for the two case–cohort studies are slightly inflated.
The estimates obtained from this generalized case–cohort sampling scheme are closed to the correspond-
ing values obtained by using a full cohort. Under the generalized case–cohort setting, however, only
65% of the cases were included in the subcohort with the sample size only about 30% of that of the
original samples.

4. CONCLUSION

In this paper, we propose an inference procedure for the regression parameter and the distribution func-
tion of the error term in the AFT model under general biased sampling schemes. This is a parallel of
Kim and others (2013) to the AFT counterpart. This methodology again covers special cases of gen-
eral biased sampling schemes in which the sampling probability depends on the outcome variable (T̃ ,�)
under one unified framework. The weight function ω introduced that adjust the bias due to various sam-
pling schemes plays a major role. As we have demonstrated, the corresponding weight functions for many
common sampling schemes are readily available. This adds versatility and usefulness to the proposed
method.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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