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Abstract

Genital herpes is a painful disease frequently caused by the neurotropic pathogen herpes simplex virus type 2
(HSV-2). We have recently shown that HSV-2-secreted glycoprotein G (SgG2) interacts with and modulates the

activity of the neurotrophin nerve growth factor (NGF). This interaction modifies the response of the NGF receptor
TrkA, increasing NGF-dependent axonal growth. NGF is not only an axonal growth modulator but also an important
mediator of pain and inflammation regulating the amount, localization, and activation of the thermal pain receptor
transient receptor potential vanilloid 1 (TRPV1). In this work, we addressed whether SgG2 could contribute to HSV-
2-induced pain. Injection of SgG2 in the mouse hindpaw produced a rapid and transient increase in thermal pain
sensitivity. At the molecular level, this acute increase in thermal pain induced by SgG2 injection was dependent on

differential NGF-induced phosphorylation and in changes in the amount of TrkA and TRPV1 in the dermis. These
results suggest that SgG2 alters thermal pain sensitivity by modulating TRPV1 receptor.
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Abbreviations: CGRP, Calcitonin gene-related peptide; DMEM-F12, Dulbecco’s modified Eagle medium with
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HSV-1, Herpes simplex virus type 1; HSV-2, Herpes simplex virus type 2; NGF, Nerve growth factor; PBS, Phosphate-
buffered saline; PBS+TX, Phosphate-buffered saline containing Triton X100 detergent; PNS, Peripheral nervous
system; SgG1, Glycoprotein G from HSV-1; SgG2, Secreted glycoprotein G from HSV-2; STD, Sexually transmitted
disease; TrkA, Tyrosine kinase receptor for NFG; TRPV1, Thermal pain receptor transient receptor potential vanilloid 1

Introduction

Genital herpes is a common sexually transmitted disease
(STD) caused mainly by herpes simplex virus type 2 (HSV-
2) and, with lower incidence, by herpes simplex virus type 1
(HSV-1) [1]. Both viruses initially infect epithelial cells
within the skin and the mucosa during primary infection.
Following replication in epithelial cells, HSV reaches and
infects free nerve endings (FNE) of sensory neurons, estab-
lishing latency in ganglia of the peripheral nervous system
(PNS). Reactivation of HSV leads to production of
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infectious viral particles, which are anterogradely trans-
ported along the axons to the skin and mucosa, starting a
new cycle of infection [2].

Primary HSV infection, reactivation, and shedding can
be asymptomatic or proceed with clinically evident disrup-
tion of the skin and mucosa, causing papules and ulcers.
HSV infection can damage or kill epithelial and neuronal
cells [3, 4]. The degree of cell damage, together with the
associated inflammatory response, will determine the se-
verity of the pathology [1]. Nearly all patients suffering
from genital herpes present with itching, burning, and
pain, caused probably by an extensive inflammatory re-
sponse [5, 6]. Pain is an unpleasant sensory experience as-
sociated with a noxious stimulus that serves as a defense
mechanism [7]. It is conveyed to the spinal cord and the
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brain by specialized sensory neurons known as nocicep-
tors. Each type of nociceptor expresses a subset of recep-
tors that responds to tissue damage caused by chemical,
mechanical, or thermal stimulation. These receptors are
activated once the stimulus reaches a certain threshold
that is considered harmful. However, “pain thresholds”
can vary in physiological or pathological conditions.
Inflammation is a well-studied scenario in which pain
thresholds are reduced in such a manner that non-
harmful stimuli can be interpreted as painful [8]. During
inflammation, several factors are secreted by damaged tis-
sue and/or by immune cells that regulate nociceptors, de-
creasing the threshold of pain receptors.

Nerve growth factor (NGF) is a neurotrophic factor that
belongs to the family of the neurotrophins [9]. NGF binds
to and activates tyrosine kinase receptor TrkA to promote
neuronal survival, axonal growth, and guidance in the
PNS. NGF is also crucial for the development and main-
tenance of nociceptors [10]. At birth, the majority of
nociceptors express TrkA. Afterwards, half of the nocicep-
tive neurons downregulate the expression of TrkA
reaching complete extinction during the first 3 weeks of
life [11, 12]. In mature nociceptors, expression of TrkA is
associated with peptidergic neurons expressing inflamma-
tory neuropeptides like calcitonin gene-related peptide
(CGRP) or substance P [13, 14]. This, together with the
increased secretion of NGF during inflammation and its
role in activating mast cells and neutrophils, underlines
NGF’s role in inflammatory pain. Therefore, NGF coordi-
nates pain and inflammation through the regulation of im-
mune and neuronal cells [15-17].

The relationship between NGF and inflammatory pain
has been well characterized at the molecular level. The
thermal pain receptor transient receptor potential vanil-
loid 1 (TRPV1) is a non-specific cation channel activated
by physical stimuli such as high temperatures and chem-
ical stimuli like low pH or capsaicin. TRPV1 activation
in nociceptive neurons leads to a painful and burning
sensation [18]. TRPV1 is extremely regulated, and its
threshold for activation is high (i.e., temperatures higher
than 42 °C). However, under physiological or patho-
logical conditions, activation thresholds can vary [18].
TRPV1 levels in peripheral nerves in the skin are low
while levels in the cell bodies within the dorsal root gan-
glia (DRG) are high [13]. The NGF-TrkA axis is one of
the most important regulators of TRPV1 amount, spatial
distribution, and activation threshold [19, 20]. Inflamma-
tion of peripheral tissues promotes a local upregulation
of NGF [21]. As a consequence, phosphorylation levels
of TrkA are increased, affecting TRPV1 in two different
ways. First, in the short term (from minutes to a few
hours), TRPV1 is rapidly and locally phosphorylated in
serine/threonine and tyrosine residues. Phosphorylation
in serine/threonine residues decreases TRPV1 activation
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threshold [22-24], while phosphorylation in tyrosines al-
ters TRPV1 subcellular localization from vesicles to the
plasma membrane [20]. As a result of both increased
phosphorylations in TRPV1, sensory neurons show a
higher heat pain sensitivity in the short term. Second, in
the long term (from hours to days), once NGF-TrkA
complex has been retrogradely transported to the cell
bodies, nociceptive neurons mobilize TRPV1 anterogra-
dely, increasing its amount in nerve endings [19]. Fur-
thermore, there is an increase in TRPV1 translation, but
not expression, in nociceptive neurons [19]. Both mech-
anisms result in an increased heat pain sensitivity and
hyperalgesia in the long term. Then, NGF secretion from
damaged tissue or immune cells contributes to the burn-
ing and painful sensation at the site of inflammation
through these mechanisms (for review, see [25, 26]).

We have recently shown that secreted glycoprotein G
from HSV-2 (SgG2) binds NGF and alters NGF-dependent
TrkA activation. SgG2 increases NGF-mediated axonal
growth, blocking retrograde transport of TrkA, resulting in
an accumulation of high levels of phosphorylated TrkA at
the nerve endings. This could attract TrkA+ nerve endings
to the site of infection [27]. However, since NGF is not only
a neurotrophic factor but also an inflammatory mediator,
we hypothesized that SgG2 could play a role in pain and
burning sensation produced by HSV-2. Our present results
show that injection of SgG2 in the mouse hindpaw in-
creased thermal pain sensitivity at 3-h postinjection (hpi)
but not at 16 hpi. At the molecular level, the effect induced
by SgG2 at 3 hpi could be explained by an increased NGEF-
dependent TRPV1 phosphorylation in serine residues. We
also found reduced amounts of TRPV1 at 16 hpi that may
explain the lack of SgG2-increased thermal sensitivity at
this time point. These results suggest that SgG2-NGF inter-
action alters thermal pain sensitivity, affecting the phos-
phorylation and spatio-temporal levels of TrkA and TRPV1
in a complex scenario.

Results

Injection of SgG2 results in transient enhancement of
thermal pain sensitivity

To test whether SgG2 could be responsible, at least par-
tially, for the painful and burning sensation produced dur-
ing clinical shedding of genital herpes, we injected SgG2
into the mouse hindpaw and performed a Hargreaves test
(also known as plantar test) (Fig. 1). Injection of HEPES or
a secreted version of glycoprotein G (SgG1) from HSV-1
did not result in any differential thermal sensitivity at
3 hpi (Fig. 1a). However, injection of SgG2 induced a sta-
tistically significant reduction in the latency time to with-
draw the irradiated hindpaw at this time point compared
to injection of HEPES (Mann Whitney test, p = 0.0043;
unpaired ¢ test with Welch’s correction, p = 0029), indicat-
ing that SgG2 increases thermal pain sensitivity (Fig. 1a).
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Fig. 1 Injection of SgG2 induces a rapid and transient increase in
thermal pain sensitivity. Graphs showing the latency time to
withdraw the foot from an infrared lamp for non- or intradermally
injected mice subjected to Hargreaves test at a 3 hpi or b 16 hpi.
Viral proteins were injected in HEPES buffer which was also used as
injection control. Error bars represent the mean plus standard
deviation. ***p < 0.001; n.s. non-significant, s seconds

We repeated the test at 16 hpi in the same animals. At this
time postinjection, all injected animals showed shorter la-
tency responses compared probably due to a mild inflam-
matory process. Surprisingly, there were no differences
between the injection of HEPES, SgG1, or SgG2 at this
time point (Fig. 1b). More surprisingly, SgG2-injected
mice at 16 hpi showed a higher latency period than SgG2-
injected mice at 3 hpi (Mann Whitney test, p = 0.0022;
unpaired ¢ test with Welch’s correction, p = 0074). These
results suggest that injected SgG2 increases heat sensitiv-
ity in mice only shortly after injection.

SgG2 increases NGF-mediated TRPV1 phosphorylation on
serine residues

We have previously shown that SgG2 interacts with NGF
and alters membrane localization, internalization, retro-
grade transport, and downstream signaling of TrkA. SgG2
could have an impact on sensory neurons expressing
TrkA, including the regulation of heat pain sensitivity
threshold. The best characterized heat pain receptor
downstream the NGF-TrkA axis is TRPV1 [19, 20].
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Stimulation of sensory neurons with NGF induces TRPV1
phosphorylation. To test whether SgG2 affects NGF-
dependent TRPV1 phosphorylation, we used postnatal
sensory neurons, which express TrkA and TRPVI in
higher percentage than adult sensory neurons. We starved
dissociated mouse DRG neurons of NGF and exposed
them to HEPES, NGF plus HEPES, or NGF plus SgG2. As
a control, we analyzed the phosphorylation of TrkA and a
downstream protein, P38. As previously described, NGF
induced an increase in TrkA and P38 phosphorylation
[19] (Fig. 2a). In agreement with our previous results [27],
addition of NGF plus SgG2 resulted in higher phosphoryl-
ation of TrkA and P38 (Fig. 2a). To analyze TRPV1 phos-
phorylation status in this setting, we immunoprecipitated
TRPV1 and detected phosphorylated serine and tyrosine
residues by western blotting. SgG2 did not modify tyrosine
phosphorylation of TRPV1 (not shown). However, the
addition of SgG2 induced a statistically significant increase
in serine phosphorylation of TRPV1 (Mann Whitney test,
p =0.0286; unpaired ¢ test with Welch’s correction, p = ns,
Fig. 2b, c). These results could explain the increased heat
sensitivity promoted by SgG2 at 3 hpi, as increased serine
phosphorylation of TRPV1 has been associated with re-
duced threshold to heat-related pain [22-24].

Mobilization of TRPV1 to the dermis is reduced at 16 hpi
of SgG2

NGF plays a relevant role on TRPV1 phosphorylation and
mobilization from DRG soma to nerve endings [13, 19].
Moreover, NGF increases the total amount of TRPV1 [19].
We observed an increase in heat pain sensitivity only at 3-
h but not at 16-h post-SgG2 injection when NGEF-
dependent TRPV1 mobilization is predicted to start being
significant, contributing to inflammatory heat increased
sensitivity. The effect observed at 3-h post-SgG2 injection
correlates with higher serine phosphorylation levels of
TRPV1. The lack of effect on heat sensitivity at 16-h post-
SgG2 injection prompted us to investigate the localization
of TRPV1 in the injected tissue. As we performed intrader-
mal injections, we focused our attention in the dermis,
where the injected proteins should be present. It is de-
scribed that the presence of TRPV1 in the dermis and epi-
dermis is low in non-inflammatory conditions [19]. We
also found that non-injected animals had very low levels of
TRPV1 in the dermis (Fig. 3a). To detect nerves in the der-
mis, we used CGRP, a neuronal marker that has been asso-
ciated with the expression of TRPV1 [13, 14]. We did not
observe changes in the amount of TRPV1 in the dermis
analyzing the injected area at 3 hpi in any of the experi-
mental conditions (Fig. 3b). However, we observed a statis-
tically significant increase in the presence of TRPV1 in the
dermis of HEPES-injected mice at 16 hpi (Fig. 3c). This
correlates with a tendency to reduce the latency time to
withdraw the irradiated hindpaw between HEPES-injected
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Fig. 2 SgG2 increases NGF-dependent TRPV1 serine phosphorylation.
DRG neurons were grown for 3 days in NGF medium, NGF starved for
16 h, and stimulated with HEPES, NGF in HEPES, or NGF plus SgG2 for
30 min. Western blots showing phosphorylation of TrkA and p38 (a)
and TRPV1 phosphorylation in serine residues (b), which was detected
following TRPV1 immunoprecipitation. ¢ Graph showing the quantified
serine phosphorylation in TRPV1. The data corresponds to the average
of three independent experiments for TRPV1 serine phosphorylation.
Error bars represent the mean plus standard deviation *p < 0.05

mice at 3 and 16 hpi (Fig. 1). This could be due to a mild
inflammatory response following injection of fluid in the
hindpaw. Surprisingly, the amount of TRPV1 in the dermis
of mice injected with SgG2 at 3 or 16 hpi was similar
(Fig. 3¢). The reduced amounts of TRPV1 in the dermis of
SgG2-injected mice at 16 hpi compared to the HEPES con-
trol (Mann Whitney test, p < 0.0001; unpaired ¢ test with
Welch’s correction, p < 0.0001) could explain the absence
of heat pain sensitivity despite increased levels of NGF-
dependent TRPV1 serine phosphorylation. However, this
result does not explain the lower mobilization of TRPV1
from cell bodies to nerve endings in SgG2 injected mice.

SgG2 alters TrkA spatial distribution after injection

Sensory neurons have very long projections. Signals acti-
vated in a distal organ, like the skin, must reach the neur-
onal cell body for their processing. When NGF activates
TrkA in distal tissues, TrkA must be endocytosed and
retrogradely transported to the neuronal cell body for a
complete response to NGF to occur [28]. Our previous re-
sults show that SgG2 impairs internalization and retrograde
transport of TrkA in response to NGF [27]. Impairment of
TrkA retrograde transport by SgG2 could explain the re-
duced mobilization of TRPV1 from cell bodies of DRG
neurons to the nerve endings at 16-h post-SgG2 injection.
To test if TrkA spatial distribution was altered, we analyzed
the levels of TrkA in the dermis after injection (Fig. 4). As a
control for nerves in the dermis, we used CGRP, a neuronal
marker that has been associated with the expression of
TrkA [11]. The levels of TrkA in the hindpaw dermis of
non-injected animals were high (Fig. 4a). The levels of
TrkA in the dermis of HEPES-injected mice were highly re-
duced at 3 hpi, probably due to NGF secretion by epider-
mal and immune cells following injection (Fig. 4b).
However, injection of SgG2 resulted in lower reduction in
the amount of TrkA in the dermis when compared to
HEPES control at 3 hpi (Fig. 4b). The difference in TrkA
levels was statistically significant between HEPES and SgG2
at this time point (Mann Whitney test, p < 0.0001; unpaired
t test with Welch’s correction, p <0.0001). We also mea-
sured the amount of TrkA at 16 hpi. At this time point, we
observed that the level of TrkA started to be restored in the
HEPES-injected dermis (Fig. 4c) but was still significantly
lower than that in the dermis of animals injected with
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Fig. 3 Injection of SgG2 blocks long-term transport of TRPV1 to the site of injection. Immunofluorescences showing the presence of TRPV1 and
CGRP-positive nerves in the dermis of non-injected (a) or intradermally injected mice at 3 hpi (b) and 16 hpi (c). TRPV1 is shown in red, CGRP in
green, and the cell nuclei are stained with To-Pro-3 and shown in blue. The graph represents TRPV1 quantification relative to CGRP in 10 random
fields of each analyzed mouse (three mice injected). Error bars show the mean plus standard deviation. a.u. arbitrary units. ***p < 0.001
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SgG2 (Mann Whitney test, p = 0.0022; unpaired ¢ test with
Welch’s correction, p = 0.0015) (Fig. 4c). These results sug-
gest that TrkA spatial distribution is altered by SgG2 in
vivo, remaining in the site of the injection which could ex-
plain why sensory neurons did not mobilize TRPV1 to the
site of the SgG2 injection 16 h later.

Discussion

HSV-1 and HSV-2 are two human pathogens with preva-
lence values around 65 % for HSV-1 [29] and 11.3 % for
HSV-2 [30]. Following lytic infection of epithelial cells in
the skin or the mucosa, they establish latency in peripheral
ganglia. HSV-1 is more commonly acquired during child-
hood and is associated with establishment of latency in
the trigeminal ganglia and oro-labial disease. HSV-2 is ac-
quired later in life, normally through sexual contact, and
is linked to establishment of latency in sacral ganglia and
genital herpes. Genital herpes is a painful disease that can
be caused by both HSV-1 and HSV-2. The symptoms
(pain, itch, burning sensation) reported by HSV-1- and
HSV-2-infected patients during the first episode of genital
herpes are similar [5, 6]. However, periodicity and severity
of genital herpes episodes increase when HSV-2 is the
causative agent [1, 5].

The viral and cellular elements and the molecular
mechanisms leading to burning sensation in HSV-2-
induced genital herpes are not known. We show here
that HSV-2 SgG induces heat-related pain, an effect that
may contribute to HSV-2 pathogenicity. NGF is a neuro-
trophic factor involved in the development and mainten-
ance of nociceptors [10] and an important mediator of
inflammatory pain [17]. NGF is expressed in the mucosa
and the skin, common sites of HSV replication during
primary and recurrent infection [31]. We have recently
described that SgG2 specifically binds NGF altering its
receptor and downstream signaling pathways [27].
This results in increased neurite outgrowth and im-
pairment of TrkA retrograde transport. On the con-
trary, SgGl binds NGF but does not alter NGF
activity [27]. TrkA, together with CGRP, is a common
marker of peptidergic neurons present in the DRG.
Since TrkA peptidergic neurons are enriched in the
genitalia [32-34], we hypothesized that the modifica-
tion of NGF/TrkA axis could have implications in the
physiological properties of these nociceptors following
HSV-2 infection. In particular, we hypothesized that
SgG2 may be involved in HSV-2-induced pain during
episodes of genital herpes.
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HSV-2 infection, or transfection of SgG2, in the mouse
footpad, results in a higher percentage of peptidergic FNE
entering the stratum granulosum [27]. On the contrary,
infection with HSV-1 or transfection of SgG1 does not
affect peptidergic FNE growth [27]. In this report, we
show that footpad injection of recombinant SgG2, but
not SgG1, caused an increase in heat pain sensitivity at
3 hpi. This result correlates with increased phosphoryl-
ation of TRPV1 in serine residues after stimulation with
recombinant SgG2 plus NGF. It also fits with previous
data showing that TRPV1 serine phosphorylation is asso-
ciated with reduced threshold activation and that some
serine/threonine residues within the N and C termini of
TRPV1 are implicated in receptor sensitization and acti-
vation [22-24, 35, 36].

Due to the long-term involvement of NGF in inflamma-
tion [17, 19] and the reports of chronic neuralgias induced
by HSV-2 infection [37], we expected a prolonged effect
of SgG2 inducing heat-related pain. However, SgG2 did
not increase heat sensitivity compared to HEPES or other
viral proteins at 16 hpi. At this time point, SgG2 injection
induced less mobilization of TRPV1 to the site of injection
than HEPES. This may explain the absence of differences
in heat-induced pain at 16 hpi even with increased levels

of TRPV1 serine phosphorylation. Reduced long-term
mobilization of TRPV1 after SgG2 injection may appear
contradictory. However, this result fits with our previous
described data [27]. In order to accomplish all its bio-
logical functions during inflammation, NGF must be
retrogradely transported from the inflamed distal tissue to
the cell bodies of nociceptors [38]. Our previous results
showed that SgG2 impairs NGF-induced TrkA retrograde
transport in primary culture of neurons grown in micro-
fluidic devices [27]. Similarly, we report here that injection
of recombinant SgG2 alters TrkA spatial distribution of
the CGRP" neurons, maintaining high levels of TrkA in
axons crossing the dermis, which would fit with a reduced
TrkA retrograde transport. We hypothesize that this dif-
ferential TrkA spatial distribution, with TrkA retained in
the distal axons upon SgG2 intradermal injection, may ex-
plain our observations: in the short term, it may contrib-
ute to enhanced local TRPV1 phosphorylation, favoring
an increase in heat pain sensitivity and, in the long term, it
may explain the reduced mobilization of TRPV1 to the
SgG2 injection site, diluting the short-term effect.

HSV-2 infection of genitalia can course from asymp-
tomatic to extremely painful [1]. This suggests that HSV-2
interaction with the host is complex, and many different
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variables contribute to the final outcome. Then, under-
standing of SgG2 involvement in HSV-2-induced pain will
require further studies in a more complete framework.
Also, SgG2 interacts with chemokines and modulates che-
mokine receptor activity [39, 40]. Since chemokines also
participate in nociceptive processes and inflammation
[41], SgG2 could transiently contribute to pain induction
by modifying chemokine activity. In conclusion, our re-
sults suggest that SgG2 alters thermal nociception by al-
tering TrkA and TRPV1, and may contribute, at least
partially, to HSV-2 induced pain.

Materials and methods

Ethics statement

All animal experiments were performed in compliance
with national and international regulations and were ap-
proved by the Ethical Review Board of the Centro de
Biologia Molecular Severo Ochoa under the project
number SAF2009-07857 and SAF2012-38957.

Expression and purification of viral proteins

Viral proteins were expressed and purified by affinity
chromatography from the supernatant of Hi-5 insect
cells as previously described [40].

In vivo injection of viral proteins in mouse hindpaw

All mice used were CD-1 males with 5 to 8 weeks of age
from Charles Rivers (Wilmington, MA). Mice were anes-
thetized with a mixture of ketamine/xylazine (100 and
10 mg/kg body weight, respectively) prior to injection.
We injected the viral proteins intradermally, in a region
located between the proximal pads and heel of the ven-
tral hindpaw. Always, the left hindpaw was injected;
5 pL of HEPES or indicated viral proteins at 6.8 uM in
HEPES buffer were injected.

Hargreaves plantar test

The Hargreaves test was performed using a standard ap-
paratus from Ugo Basile (Monvalle, Italy). Mice were
placed in a transparent acrylic box. A mobile infrared heat
lamp was positioned to irradiate the left hindpaw. Inten-
sity of the infrared heat lamp was set using non-injected
mice. The latency time of the withdrawal response of each
hindpaw was determined at 3- and 16-h postinjection.
Measurements for each time point and mouse were taken
several times and considered as technical replicates.

Nerve staining and non-permeabilized
inmunofluorescence

Mice were euthanatized and hindpaw skin was immedi-
ately removed by using a 3-mm biopsy punch and fixed in
Zamboni’s fixative for 6 h. The biopsies were then washed,
embedded in agarose sucrose, and sectioned using a
vibratome; 50-pm, free-floating sections were washed in
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phosphate-buffered saline (PBS) with 0.5 % Triton X-100
(PBS + TX), blocked for 30 min in 10 % horse serum PBS
+TX. Anti-CGRP (whole protein) antibody was from
Sigma (St. Louis, MO), anti-extracellular TrkA AF1056
was purchased from R&D Systems (Minneapolis, MN),
and anti-N-terminal TRPV1 (named as VRI1, P-19) was
from Santa Cruz (Santa Cruz, Ca). To-Pro-3 and second-
ary antibodies used were from Life Technologies (Life
Technologies, Thermo Fisher Scientific, Carlsbad, CA).
Confocal analysis was performed with a LSM 510 Con-
focal Laser Scanning Microscope from Carl Zeiss. Images
for an experiment were taken with the same settings to
allow proper comparison. Analysis and treatment of im-
ages was performed using LSM Image Browser, Fiji and
Adobe Photoshop; firstly, a region of interest (ROI) in the
CGRP image was defined. The area of the staining within
this ROI was measured using Fiji after a threshold correc-
tion. The ROI was maintained for measurements in the
other channels, and thresholds applied were the same for
all the analyzed channels.

Culture of dissociated DRG neurons

Ganglia were dissected from newborn mice (postnatal day
0-1), digested in collagenase and trypsin (Worthington,
Lakewood, NJ), dissociated by trituration and plated on
dishes previously coated with polylysine (250 pg/mL)-lam-
inin (10 pg/mL) in DMEM-F12 (all three from Life
Technologies, Thermo Fisher Scientific) containing 10 ng/
mL NGF (Alomone labs, Jerusalem, Israel), 5 % horse
serum, and 5 ng/mL of aphidicolin (A.G. Scientific, San
Diego, CA) for 3 days.

Treatment of DRG neurons

Dissociated neurons were grown during 3 days in vitro
(DIV) and starved of NGF during 16 h when indicated.
NGF and SgG2 were mixed in DMEM-F12 prior stimu-
lation. To calculate NGF molarity, we considered NGF
as a dimer (26 kDa). The concentrations used were
0.5 nM NGF with 100 nM SgG2 for signaling experi-
ments, and the stimulation period was 30 min.

Western blot and immunoprecipitation

Antibodies to detect p-TrkA Tyr490 (#9141) and p-p38
(Thr180, Tyr 182 #9211) were obtained from Cell Signal-
ing (Danvers, MA). Anti-phospho-serine antibody (Ab
1603) was from Merck-Millipore (Darmstadt, Germany).
To detect N-terminal actin, we used an antibody from
Sigma (A-2228). For immunoprecipitation, 100 pg of
DRG neuron extract was incubated overnight with anti-
TRPV1 (termed VR1 P-19, Santa Cruz) antibody. Then,
the mix was incubated with protein G-coupled agarose
beads (GE Healthcare Waukesha, WI) and washed three
times with lysis buffer (1 % NP40, 50 mM Tris pH 7.5,
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150 mM NaCl and protease, and phosphatase inhibitors)
prior to analysis by SDS-PAGE and western blotting.

Statistical analysis

The significant value (p value) was calculated using
GraphPad Prism. First, we calculated whether the data
followed a Gaussian distribution using D’Agostino and
Pearson omnibus normality test, Shapiro-Wilk normality
test, and Kolmogorov-Smirnov normality test. Since the
data did not follow a Gaussian distribution, we employed
two different statistical analyses: Mann Whitney test and
unpaired ¢ test with Welch’s correction.
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