EBioMedicine 10 (2016) 185-194

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.ebiomedicine.com

Research Paper

Dual Effect of Rosuvastatin on Glucose Homeostasis Through Improved
Insulin Sensitivity and Reduced Insulin Secretion

@ CrossMark

Vishal A. Salunkhe ¢, Inés G. Mollet ¢, Jones K. Ofori ¢, Helena A. Malm °, Jonathan L.S. Esguerra °,
Thomas M. Reinbothe €, Karin G. Stenkula ®, Anna Wendt ?, Lena Eliasson **!, Jenny Vikman ¢*

2 Unit of Islet Cell Exocytosis, Dept Clinical Sciences Malmd, Lund University Diabetes Centre, Lund University CRC 91-11, SUS Malmé, Jan Waldenstréms gata 35, 205 02 Malmd, Sweden

b Unit of Glucose Transport and Protein Trafficking, Dept of Experimental Medical Sciences, Lund University Diabetes Centre, Lund University BVIC-C11, Sélvegatan 21, 222 84 Lund, Sweden

¢ Inst. Neuroscience and Physiology, Dept of Physiology, University of Gothenburg, Medicinaregatan 11-13, Box 432, 405 30 Gothenburg, Sweden

4 Unit of Diabetes and Endocrinology, Dept Clinical Sciences Malmé, Lund University Diabetes Centre, Lund University CRC 60-13, SUS Malmd, Jan Waldenstroms gata 35, 205 02 Malmo, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 5 April 2016

Received in revised form 24 June 2016
Accepted 7 July 2016

Available online 9 July 2016

Statins are beneficial in the treatment of cardiovascular disease (CVD), but these lipid-lowering drugs are associ-
ated with increased incidence of new on-set diabetes. The cellular mechanisms behind the development of
diabetes by statins are elusive. Here we have treated mice on normal diet (ND) and high fat diet (HFD) with
rosuvastatin. Under ND rosuvastatin lowered blood glucose through improved insulin sensitivity and increased
glucose uptake in adipose tissue. In vitro rosuvastatin reduced insulin secretion and insulin content in islets. In
Keywords: the beta cell Ca?* signaling was impaired and the density of granules at the plasma membrane was increased
Statin by rosuvastatin treatment. HFD mice developed insulin resistance and increased insulin secretion prior to admin-
istration of rosuvastatin. Treatment with rosuvastatin decreased the compensatory insulin secretion and in-
creased glucose uptake. In conclusion, our data shows dual effects on glucose homeostasis by rosuvastatin
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1. Introduction

Western life style with excessive food intake and reduced physical
activity is the leading cause of metabolic syndrome, including the fol-
lowing criteria; increased abdominal waist line, elevated triglycerides,
low HDL cholesterol levels, high blood pressure and insulin resistance
(Grundy et al., 2004). Metabolic syndrome is a strong predictor for the
development of cardiovascular disease (CVD), the leading cause of mor-
tality world-wide (Preiss and Sattar, 2012). The major risk factor for
CVD is hypercholesterolemia, and therefore statins are the major thera-
peutic drugs used to prevent cardiovascular episodes. Statins decrease
levels of low density lipoprotein cholesterol (LDL) in the blood by
inhibiting 3-hydroxy-3-methyl-glutaryl coenzyme-A (HMG-CoA). Al-
though proven beneficial for the treatment of CVD, there is emerging
evidence suggesting increased incidence of new-onset diabetes with
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statin use (Cederberg et al., 2015; Mora et al., 2010; Preiss and Sattar,
2012; Ridker et al., 2008; Ruscica et al., 2014; Sattar et al., 2010). The
first study to report an increased incidence of diabetes with statins
was the JUPITER trial, a double-blind randomized study comparing sub-
jects assigned to rosuvastatin 20 mg or placebo (Mora et al.,, 2010;
Ridker et al., 2008). Rosuvastatin has hydrophilic properties and is
more potent in reducing cholesterol levels than pravastatin and simva-
statin (Paoletti et al., 2001).

The mechanisms behind increased diabetes incidence by statins re-
main to be investigated. A follow-up study in the METSIM cohort
showed association between increased risk of diabetes with statins
and impaired insulin sensitivity and insulin secretion (Cederberg et al.,
2015). Others suggest improved insulin sensitivity by statins (Guclu et
al., 2004; Okada et al., 2005; Paolisso et al., 1991; Sonmez et al., 2003).
Insulin resistance leads to an increased pressure on the beta cells to se-
crete more insulin. When the beta cell response is insufficient, fasting
and postprandial hyperglycemia develops ultimately leading to type 2
diabetes. Normally, increased blood glucose stimulates beta cells to se-
crete insulin through a Ca?>* dependent process. We have previously
demonstrated that cholesterol in the plasma membrane of the beta
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cell is essential for insulin secretion, and removal reduces glucose-stim-
ulated insulin secretion by >50% (Vikman et al., 2009). Thus, although el-
evated blood cholesterol is deleterious, sufficient cholesterol levels in cell
membranes are vital. Hence, the balance between circulating and cellular
levels needs to be tightly controlled. It is not known whether statins
influence glucose metabolism through this balance or through a direct
effect on beta cells. In favor of the latter, studies performed in cell lines
suggest effects on small G-binding proteins (Li et al., 1993) and reduced
voltage-dependent Ca?* influx (Okada et al., 2005; Salunkhe et al., 2016;
Yada et al., 1999). Moreover, acute experiments with rosuvastatin in vitro
in human islets have shown ultrastructural changes (Bugliani et al.,
2013) and reduced insulin secretion (Zhao and Zhao, 2015).

The High Fat Diet (HFD) fed mouse is a widely used model to study
insulin resistance (Winzell and Ahren, 2004), and the phenotype has
many of the risk factors associated with metabolic syndrome (Grundy
et al,, 2004). The mice are obese, and have elevated cholesterol and
blood glucose. The blood glucose is only slightly increased since the
HFD mouse compensate with increased insulin secretion, further fuel-
ing weight gain and insulin resistance (Winzell and Ahren, 2004). As
many patients treated with statins have a high BMI, it is of interest to in-
vestigate the mechanisms explaining the effect of statin treatment on
glucose homeostasis in HFD mice compared to mice fed a normal diet
(ND). Here we have studied the integrated role of rosuvastatin on glu-
cose homeostasis and aimed to understand the cellular mechanisms
by which rosuvastatin acts on insulin secretion and glucose uptake.

2. Materials and Methods
2.1. Animals

C57BL/6 female mice were delivered from Taconic, Denmark at
8 weeks. Mice were allowed to adapt to the surrounding for one week
before given high-fat diet (HFD) and matched low-fat normal diet
(ND) (Research Diets Inc, New Brunswick, USA). The ND contained
the same ingredients with a closely matched composition to the HFD
formula. After 4 weeks on ND or HFD mice part of the mice were
given rosuvastatin (0.2 mg/mice/day; LKT Laboratories, MN, USA) in
the drinking water for the rest of the study period. At the end of the
study mice were sacrificed and tissues were collected for further analy-
sis. The procedures used in the in vitro and in vivo studies were ap-
proved by the ethical committee of Lund/Malmé.

2.2. OGTT and In Vivo Measurements

The in vivo study was performed according to the study plan (Fig.
S1). OGTT was performed at week 0, 4, 8 and 12. Prior to OGTT mice
were fasted for 4-6 h. p-Glucose was administered at 75 mg/mouse by
oral gavage and blood was sampled from the vena saphena at 0, 15,
30,60 and 120 min. The samples were immediately analyzed for glucose
using a blood glucose meter (Accu-Check Aviva, Roche Diagnostics
Scandinavia AB, Bromma, Sweden). Plasma samples were stored at
— 20 °C until being assayed for insulin ELISA (Mercordia, Uppsala, Swe-
den). Blood samples to measure total cholesterol, triglycerides and HDL
were collected at week 6, 10 and 12 and levels were determined using
commercially available kits (HDL: HDL-cholesterol plus direct method
(#981823); total cholesterol: InfinityTM Cholesterol Liquid Stable Re-
agent (#TR13421); triglycerides: InfinityTM Triglycerides Liquid Stable
Reagent (#TR22421); Thermo Fisher Scientific, VA, USA). LDL was esti-
mated according to the manufacturer's instructions.

2.3. Isolation of Islets and Hormone Release Assays

Pancreatic islets were isolated by collagenase digestion and hand-
picked prior to insulin secretion measurements. Insulin secretion was
measured in static batch incubations as previously described (Vikman
et al., 2009). Briefly, islets were pre-incubated in 1 mM glucose for

30 min followed by 1 h incubation in Krebs-Ringer bicarbonate buffer
(pH = 7.4) with 10 mM HEPES, 0.1% bovine serum albumin and variable
glucose as indicated (5.6, 11.1, and 16.7 mM). In some experiments the
buffer was supplemented with 0.1 pM GLP-1 (Bachem, Bubendorf, Swit-
zerland) or 50 mM KClI (equimolar substituted for NaCl), respectively.
Total insulin islet content was determined after extraction with acidic
ethanol. Insulin secretion and islet content was measured using Radio
Immuno Assay (RIA; Millipore, Solna, Sweden).

2.4. Ultrastructural Analysis

Mouse islets were fixed in 2.5% glutaraldehyde in freshly prepared
Millonig's buffer and post-fixed in 1% osmium tetroxide before being
dehydrated, embedded in AGAR 100 (Oxford Instruments Nordiska
AB, Johanneshov, Sweden) and cut into ultrathin sections (70-90 nm).
The sections were put on Cu-grids and contrasted using uranyl acetate
and lead citrate. The islet containing sections were examined in a JEM
1230 electron microscope (JEOL-USA, Inc., Peabody, USA). Micrographs
were analyzed with respect to the intracellular granule distribution as
described elsewhere (Vikman et al., 2009).

2.5. Imaging and Ca®* Measurements

Imaging of insulin and glucagon staining was performed using con-
focal microscopy imaging (Zeiss LSM 510). For calcium imaging islets
were loaded with 4 uM Fura 2-AM (TefLabs, Austin, USA) for 40 min
followed by 30 minutes de-esterification in imaging buffer at pH 7.4
(mM: KClI 3.6, MgSO4 0.5, CaCl, 2.5, NaCl 140, NaHCOs3, NaH,POs3 0.5,
HEPES 5). Imaging was performed with a Polychrome V monochroma-
tor (TILL Photonics, Graefelfing, Germany) on a Nikon Eclipse Ti Micro-
scope (Nikon, Tokyo, Japan) equipped with an ER-BOB-100 trigger, an
iXON3 camera, and iQ2 software (Andor Technology, Belfast, UK). Re-
cordings were performed at one frame per second at 37 °C under perfu-
sion at 1 ml/min. A region was marked around each islet and the ratio of
fluorescence emission intensity per unit area (um?) at 340 nm (expo-
sure 150 ms) and 380 nm (exposure 100 ms) was recorded. Parameters
analyzed are described in Suppl Table 1.

2.6. Isolation and Glucose Uptake in Primary Adipocytes

Primary adipose cells were isolated from epididymal adipose tissue
as previously described (Rodbell, 1964). The isolated cells were
suspended (5% suspension) in Krebs-Ringer (KRH) medium containing
25 mM HEPES pH 7.4, 200 nM adenosine, 2 mM glucose and 3% BSA (w/
v), and glucose uptake measured as previously described (Gliemann et
al., 1984). Briefly, cells were incubated in KRH medium (37 °C, shaking
water bath) in triplicates with or without insulin (28 nM) for 30 min,
followed by addition of p-'C(U)-glucose (2.5 pl/ml, NEC042, Perkin
Elmer), and incubated for 30 min. The uptake was terminated by spin-
ning 300 pl of each cell suspension in microtubes containing 80 pl
dinonylphtalate oil. The cell fraction was collected, dissolved in scintilla-
tion fluid (Optima Gold, Perkin Elmer, Upplands Vasby, Sweden) and
subjected to scintillation counting.

2.7. mRNA Expression Analysis

Pancreatic islets were lysed in Qiazol (Qiagen, Sollentuna, Sweden)
and homogenized by vortexing. Total RNA was extracted using
miRNeasy®Mini Kit protocol (Qiagen) and RNA concentration was
measured on a NanoDrop (Thermo Scientific, Géteborg, Sweden).
High Capacity cDNA Reverse Transcriptase Kit (Life Technologies, Stock-
holm, Sweden) was used to generate RT-PCR according to the
manufacturer’s protocol.

The QuantStudio™ 7 Flex Real-Time PCR System (Life Technologies)
was used to performed qPCR according to the TagMan®Universal PCR
Master Mix I protocol (Life Technologies) using the following primers
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from TagMan®Gene Expression Assays; SERCA2 (Mm01201431_m1),
SERCA3 (Mm00443898_m1), Selll (MmO01326442_m1), CHOP
(MmO01135937_m1), and Calb1 (Mm00486647_m1). Gene expression
was normalized using Hprt (MmO004469_m1) and Ppia
(MmO00478295_m1) as reference genes with the AACt method.
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2.8. Western Blot Analysis

Intact soleus muscle tissues were homogenized with a polytron
(Omni International TH, Bebensee, Germany) in lysis buffer containing
50 mM Tris/HCl pH 7.5, 1 mM EGTA, 1 mM EDTA, 1 mM sodium
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Fig. 1. In vivo and in vitro parameters from mice on ND and HFD. (A) Blood glucose and (B) insulin in mice after 4 weeks on ND (top) and HFD (bottom). Data presented as mean =4 SEM of
N = 14-25 mice; **p < 0.01 and ***p < 0.001 HFD vs ND using t-test for each time-point. For both glucose and insulin OGTT data: p < 0.001 ND vs HFD using 2 way repeated measures
ANOVA (C) insulin secretion and (D) insulin content in isolated islets from mice on ND with and without rosuvastatin as indicated. Islets were incubated for 1 h in 1 mM, 5.6 mM,
11.1 mM and 16.7 mM glucose in the absence or presence of 50 mM K* or 100 nM GLP-1. N = 4 ain each group ***p < 0.01 ND_Ros vs ND on effects of rosuvastatin (ordinary 2-way
ANOVA). (E) Insulin secretion per insulin content from data in C-D. (F) Expression of Ins2 and Pdx1 in islet from ND and HFD with and without rosuvastatin. Data presented as
mean + SEM of N = 6 biological replicates,*p < 0.05 ND_Ros vs ND using t-test. (G) Ultrastructural images of beta cells from mice on ND (left) and HFD (right). Arrows indicate
docked granules. PM - plasma membrane; g - granule. Scale bar 0.5 pm. (H-I) Histogram of calculated volume density (Nv) and surface density (Ns) from beta cells from mice on ND
and HFD with and without rosuvastatin as indicated. Data are mean of 54-65 cells from N = 3 mice in each group, *p < 0.05 ND_Ros vs ND or HFD_Ros vs HFD using t-test.
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orthovanadate, 10 mM sodium-p-glycerophosphate, 50 mM sodium
fluoride, 5 mM sodium pyrophosphate, 0.27 M sucrose, 1% NP-40,
1 mM dithiothreitol (DTT), and complete protease inhibitor cocktail
(one tablet/50 ml). Lysates were centrifuged for 15 min at 10,000 x g
and protein concentrations were determined by Bradford assay. Adi-
pose tissue lysates were heated at 95 °C for 2 min in SDS sample buffer,
subjected to polyacrylamide gel electrophoresis on pre-cast gradient
gels (Biorad, Sundbyberg, Sweden) followed by electrotransfer to nitro-
cellulose membrane. According to Bradford protein quantification 10 ug
protein was loaded per sample. Membranes were blocked for 30 min in
50 mM Tris/HCl pH 7.6, 137 mM NaCl and 0.1% (w/v) Tween-20 (TBS-T)
containing 10% (w/v) skim milk. The membranes were then probed
with indicated antibodies in TBS-T containing 5% (w/v) milk or 5% (w/
v) BSA, for 16 h at 4 °C. Detection was performed using horseradish per-
oxidase conjugated secondary antibodies and the chemiluminescence
reagent. The signal was visualized using a BioRad Image camera and
band intensities quantified using BioRad Imaging software (Biorad, CA,
USA).

2.9. Calculations and Statistical Analysis

Data from the OGTT measurements was analyzed as described in
(Pacini et al., 2013). In short ISI _Comp, a measure of insulin sensitivity
in rodents adapted from Matsuda's method (Matsuda and DeFronzo,
1999), was calculated as 10,000/(V[Gg x Io X Gmean X Imean]) Where Gg
and Iy are starting values for glucose and insulin, and Gean and Iyean
are average glucose and insulin values during the 120 min. Beta cell
function was estimated as the BCl,, using total AUC for insulin and glu-
cose measured during the 120 min (tAUC_ins/tAUC_gluc) or during the
first 30 min (BCly:4 0-30). Beta cell function was also estimated using
the suprabasal measures of AUC, sAUC, for insulin and glucagon
(SBCloral)-

Data are presented as mean 4 SEM. Statistical significance was de-
termined using two-way ANOVA or two-tailed Student's t-test.

3. Results

3.1. Reduced Insulin Sensitivity and Increased Insulin Secretion in HFD Mice
We were interested in comparing the effect of rosuvastatin under

both normal diet (ND) and high fat diet (HFD) conditions. The ND was

a low-fat diet matched in every way to the HFD composition except

for the fat content. Mice were monitored for 12 weeks and repeated

oral glucose tolerance tests (OGTTs) and cholesterol measurements

Table 1
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were performed (see study design and Suppl Fig. 1 for details). After
4 weeks on ND or HFD, mice were given rosuvastatin (0.2 mg/mice/
day) in the drinking water for the rest of the study period. Total choles-
terol and LDL was significantly reduced after 2 weeks of treatment
(study week 6) and the levels continued to decrease throughout the
study in mice given rosuvastatin as compared to control mice (Suppl
Fig. 2). Weight, food, and water intake was monitored (Suppl Fig. 3).
HFD mice increased body weight gain compared to ND independent of
rosuvastatin.

Mice on HFD for 4 weeks had significantly higher blood glucose and
insulin response in vivo at all time-points measured compared to mice
on ND (Fig. 1A-B) and ISI_Comp, an estimate of insulin sensitivity, was
reduced by ~60% (Table 1). Confirming previous findings (Winzell and
Ahren, 2004) that HFD mice have increased insulin resistance. Blood
glucose (area under the curve for glucose (tAUGg,)) as well as insulin
levels (tAUCj,s) were increased, with beta cell function (BCl,,;) being
enhanced (Table 1). This pattern was persistent throughout the study.

To assess beta cell function in more detail in vitro insulin secretion
was performed on islets isolated at the end of the study (Fig. 1C-E). In
agreement with the in vivo insulin secretion data, HFD mice had in-
creased insulin content. At mRNA level Ins2 was not affected and Pdx1
was reduced by HFD (Fig. 1F). The increased insulin content was in
line with ultrastructural data (Fig. 1G-I) and the total number of insulin
granules was increased in HFD mice as compared to control mice
(p <0.001; Fig. TH). HFD also resulted in reduced number of docked
granules (p < 0.001; Fig. 11). In vitro insulin secretion per se was not dif-
ferent in islets from ND and HFD mice but when compensated for the in-
creased insulin content insulin secretion was significantly decreased.

3.2. Rosuvastatin Reduces Insulin Content and Impairs Ca®* Signaling in
ND Mice

Next we measured the effect of rosuvastatin on glucose homeostasis
in ND mice. In OGTT measurements after 4 weeks of rosuvastatin treat-
ment (study week 8) we observed a decrease in glucose levels during
the first 30 min (Fig. 2A and Table 1) reflecting an increase in insulin
sensitivity (ISI_Comp; Table 1). We did not detect any significant
glucose-induced changes in in vivo insulin secretion by rosuvastatin
(Fig. 2B, D and Table 1).

In vitro, islets from rosuvastatin treated mice had lower response to
all stimulatory secretagogues tested, and the effect of rosuvastatin was
found to be overall significant (Fig. 2E). Insulin content was reduced
by ~25% in islets from rosuvastatin treated mice (Fig. 2F). There was
no significant difference in insulin secretion when compensated for

Measured and calculated values from the OGTT. Values are estimated according to Pacini and co-workers (Pacini et al., 2013). tAUC_gluc - total area under curve for glucose, SAUC_ gluc -
suprabasal area under curve for glucose, tAUC_ins - total area under curve for insulin, SAUC_ ins - suprabasal area under curve for insulin, D_ins_0-15 - Insulin response first 15 min, BCI -
beta cell function based on total area, sBCI - suprabasal beta cell function based, ISI_Comp - insulin resistance. ND - normal diet, HFD - high fat diet, ND_Ros - ND with rosuvastatin,
HFD_Ros - HFD with rosuvastatin. Data are presented as mean 4+ S.E. and the number of mice in each group were for week 0 N = 17-52, week 4 N = 12-25, week 8 N = 7-14 and week
12N = 9-15. *p < 0.05, **p < 0.01 and ***p < 0.001 HFD vs ND or HFD_Ros vs ND_Ros; 7 p < 0.05, T{p < 0.01 and 777p < 0.001 ND_Ros vs ND or HFD_Ros vs HFD.

Week 0 Week 4 Week 8 Week 12

All ND HFD ND ND_Ros HFD HFD_Ros ND ND_Ros  HFD HFD_Ros
Basal glucose (t=0) 81+05 79+02 96+03" 76403 64+06 80+09 100+ 04™" 64+02 59+02 86403 89+03™
tAUC_gluc (+10?) 1714£06 1764+10 239+ 12" 154401 124+£05 248+16"" 2294+ 17" 149412 122+£07 198+09" 197409
tAUC_gluc_0-30 (+10%) 44+0.1 46+02 56+£02" 47+02 33+£037 49106 47 +06" 44403 39402 55+017 54102
SAUC_gluc (+10?) 74407 81+09 123+12" 63+10 41+04 138+15" 11.0+19" 73+14 51407 95+1.0 9.0 +£0.8"
SAUC gluc 0-30 (x10%) 19401 23402 27+02" 24402 15+027 28404 25403 24403 21+£01 29+0.1 28 +£02°
D_ins_0-15 16+ 3 91425 198438 186+34 152+29 156+38 208+43 145+25 140+26 282+27" 124+ 39"
tAUC_ins (+10°) 160+16 120+09 2954377 148407 169+06 33.1+£32"" 363+32"™ 132+09 143+09 47.7 +42"" 468 +6.0""
tAUC_ins_0-30 (+10°) 64+08 43+07 98+13" 68+05 57+£06 102+06" 1264+07" 58+06 58+06 17.1+£05 156+05™"
SAUC_ins 67+14 374+05 97+32 46+10 49+09 78440 56+ 1.9 314+£10 454+11 81+34 —38+£54"
sAUC_ins_0-30 41408 23+05 50+10° 43+10 35+£05 3917 49 +1.7 32+06 34+06 73+05" 28+05
BCl_oral 11.0+10 70+09 126+16" 109+ 06 108+05 144428 165+ 23" 100407 108+ 0.7 252426 250+ 417
BCI_oral_0-30 169419 97+16 187+£24" 161+16 154+15 190+37 219434 142+14 144+£13 31.0+£35" 297 4+ 43"
sBCI_oral 168+39 51+09 101+30 135+44 127+25 88+65 80+55 65+20 86+23 101+43 —33+58"
sBCI_oral_0-30 387+£90 119430 322+110 222444 219+41 161+74 193476 157425 161 +£28 266+367 83+ 40
ISI_Comp 98+08 105+£09 434+04™ 94405 113+£067 36+08" 29405 109+£07 107+£05 25+£03" 27+£05
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Fig. 2. In vivo blood glucose levels and insulin during OGTT and in vitro insulin secretion in ND mice. (A) Blood glucose and (B) insulin at study week 8 in ND mice with and without
rosuvastatin for 4 weeks. Data presented as mean #+ SEM of N = 11-14 mice; for glucose OGTT data: p < 0.01 ND vs HFD using 2 way repeated measures ANOVA (C-D). As in A-B, but
at study week 12. Data presented as mean 4+ SEM of N = 9-14 mice; for glucose OGTT data: p < 0.071 ND vs HFD using 2 way repeated measures ANOVA (E) Insulin secretion and (F)
insulin content in isolated islets from mice on ND with and without rosuvastatin. Islets were incubated for 1 h in 1 mM, 5.6 mM, 11.1 mM and 16.7 mM glucose in the absence or
presence of 50 mM K™ or 100 nM GLP-1 as indicated. (G) Insulin secretion per insulin content from data in E-F. Data are mean from N = 4 mice, **p < 0.01 ND_Ros vs ND on effects of

rosuvastatin (2-way ANOVA).

the reduced insulin content (Fig. 2G). Expression of Ins2 was not affect-
ed by rosuvastatin, but Pdx1 mRNA was significantly increased (Fig. 1F
middle panel). However, the ultrastructural analysis did not reveal any
effect by rosuvastatin on the total number of insulin granules (Fig. 1H).
In agreement with a reduced insulin secretion the density of docked
granules was significantly increased (Fig. 1I; ND vs ND_Ros). This accu-
mulation of granules at the plasma membrane, suggests defects in the
fusion process. Confocal analysis confirmed that the ultrastructure of
the islet remained intact after rosuvastatin treatment (Suppl Fig. 4).
Insulin secretion is Ca* dependent and uptake of glucose generates
oscillations consisting of a first rapid Ca> ™ peak followed by a nadir and
subsequent consistent oscillations, and impaired Ca® * response thus di-
rectly affects insulin secretion. We measured Ca®* oscillations in islets

from ND mice with and without rosuvastatin (Fig. 3A) and indeed sev-
eral parameters in the Ca?™ response were changed in islets from
rosuvastatin treated mice (Fig. 3B). Normally, glucose-stimulation
(16.7 mM) reduces the beta cell Ca®>* concentration transiently
reflecting Ca®>™ uptake into ER (Aq). This dip was reduced in the
rosuvastatin treated mice. Moreover, there was a significant increase
in total Ca® " influx (AUC_tot). The frequency of oscillations did not
change with rosuvastatin, but the reduction in Ca®* after the first
peak (C;) was significantly smaller (Suppl Table 1; p < 0.001).

The impaired Ca?* response and particularly the reduced re-uptake
of Ca?™ to ER in rosuvastatin treated mice prompted us to investigate
the expression of ER-related genes; SERCA2, SERCA3, Sel1l and CHOP
(Chen et al., 2014; Francisco et al., 2011; Ravier et al., 2011) together
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Fig. 3. Ca?" measurements on islets on ND with and without rosuvastatin. (A) Calcium measurements on islets from mice on ND (left) and ND with rosuvastatin (right). Oscillations were
stimulated by addition of 16.7 mM glucose as indicated. (B) Histogram of analysis of the Ca®* trace in A. AUCygjp, — area of initial dip in Ca®™ before the first Ca> peak (below baseline);
AUC,, - total area under the graph; Dy - delay response to 16.7 mM glucose; D; - delay response to 2.8 mM glucose as indicated in A. Data are presented as of N = 20-22 islets, *p < 0.05,
**p<0.01 and ***p<0.001 ND vs ND_Ros using students t-test. (C) Expression of SERCA2, SERCA3, Sel1l, CHOP and Calb1 in islet from ND mice with and without rosuvastatin. Data presented

as mean 4 SEM of N = 6 biological replicates; *p < 0.05 ND vs ND_Ros using students t-test.

with Calb1, a gene we previously suggested to be involved in Ca®* buff-
ering (Christensen et al.,, 2015). Rosuvastatin reduced the expression of
CHOP in mice on ND, but had no effect on the expression of the other
genes investigated (Fig. 3C).

3.3. Rosuvastatin Improves Glucose Uptake and Reduces Insulin Secretion in
HFD Mice

We next investigated effects of rosuvastatin on HFD mice. OGTTs re-
vealed no further effect on either blood glucose or the insulin response
by rosuvastatin after 4 weeks of rosuvastatin (study week 8; Fig. 4A-B).
However, after 8 weeks on rosuvastatin (study week 12; Fig. 4C-D) the
acute insulin response was significantly lower (Fig. 4D, Table 1). The in-
sulin response to glucose was highly variable in the HFD mice treated
with rosuvastatin (Suppl Fig. 6), and 4 out of 13 mice had no insulin re-
sponse at all. Since HFD increased both insulin and glucose levels, we
also analyzed the suprabasal AUC for insulin and glucose (SAUCgjyc

and sAUC;ys), both indicators of the response to glucose stimulation
above basal levels. sAUC;,s was reduced in the rosuvastatin treated
mice on HFD, and sBCl,, was significantly decreased. The effects were
even more pronounced if values were measured during the first
30 min (SAUCjns(0-30) and BCly4(0-30); Table 1).

Insulin secretion in vitro was not reduced by rosuvastatin in any con-
dition investigated in the HFD mice (Fig. 4E), but insulin content was
slightly reduced (Fig. 4F). Therefore, insulin secretion per insulin con-
tent (Fig. 4G) was increased. Even though insulin content was reduced
the density of insulin granules was the same in HFD and HFD
rosuvastatin treated mice (Fig. 1h). However, the number of docked
granules was significantly increased (Fig. 1i).

We also investigated the expression of ER-related genes and Calb1 in
mice on HED with or without rosuvastatin treatment (Suppl Fig. 5). HFD
diet reduced expression of SERCA3, Sel1l, CHOP and Calb1 compared to
ND mice (Suppl Fig. 5A). Rosuvastatin did not have any further effect
in the HFD mice (Suppl Fig. 5B).
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Fig. 4. In vivo blood glucose levels and insulin during OGTT and in vitro insulin secretion in HFD mice with and without rosuvastatin. (A) Blood glucose and (B) insulin at study week 8 in
HFD mice with and without rosuvastatin for 4 weeks. Data presented as mean 4+ SEM of N = 9-13 mice (C-D). As in A-B, but at study week 12. Data presented as mean 4+ SEM of N = 9-14
mice (E). Insulin secretion and (F) insulin content in isolated islets from mice on HFD with and without rosuvastatin. Islets were incubated for 1 hin 1 mM, 5.6 mM, 11.1 mM and 16.7 mM
glucose in the absence or presence of 50 mM K* or 100 nM GLP-1 as indicated. (G) Insulin secretion per insulin content from data in E-F. Data are presented as mean + SEM of N = 4 mice,

*p < 0.05 HFD vs HFD_Ros on effects of rosuvastatin using 2-way ANOVA.

3.4. Rosuvastatin Improves Insulin Sensitivity and Increases Glucose Uptake

We followed the calculated insulin sensitivity estimated as ISI_Comp
(Table 1) over time for the four different conditions investigated
(Fig. 5A), confirming previous observations that HFD reduce insulin
sensitivity. This impairment in insulin sensitivity was confirmed in
isolated adipocytes where both basal and insulin stimulated glucose
uptake was reduced in HFD mice (Fig. 5B).

In ND mice, insulin sensitivity was improved by rosuvastatin treat-
ment (study week 8; 4 weeks with rosuvastatin) while in HFD mice
there was a tendency towards improved insulin sensitivity after
8 weeks of rosuvastatin treatment although the difference had only bor-
derline significance. The improved insulin sensitivity could be verified
in vitro in isolated adipocytes, where rosuvastatin increased basal
(none insulin-stimulated) glucose uptake in ND mice (Fig. 5C). Most im-
portantly, both basal and insulin stimulated glucose uptake was in-
creased in the rosuvastatin treated HFD group (Fig. 5D). Most blood
glucose is disposed in skeletal muscle tissue, and in the soleus muscle,
we observed increased protein levels of GLUT4 after rosuvastatin treat-
ment in ND mice, whereas the levels were decreased by rosuvastatin in

HFD mice (Fig. 5E-F). In addition, phosphorylated AMPK was signifi-
cantly reduced in the HFD mice on rosuvastatin (Fig. 5E, G).

4. Discussion

Several studies propose an association between new on-set diabetes
and statin treatment (Cederberg et al., 2015; Mora et al., 2010; Preiss
and Sattar, 2012; Ridker et al., 2008; Ruscica et al., 2014; Sattar et al.,
2010), but the precise mechanisms remain unknown. To obtain a better
understanding of the possible cellular mechanisms by which statins in-
fluence glucose homeostasis we performed detailed analysis in mice on
ND and HFD treated with rosuvastatin. Our data suggests dual effects on
glucose homeostasis with improved insulin sensitivity and reduced in-
sulin secretion.

Current literature is conflicting concerning the effects of rosuvastatin
on insulin sensitivity. Some studies speak in favor of statins and suggest
that it improves insulin sensitivity (Guclu et al., 2004; Okada et al.,
2005; Paolisso et al., 1991; Sonmez et al., 2003), whereas others report
that statin treatment leads to increased insulin resistance (Cederberg et
al., 2015; Jula et al., 2002; Ohmura et al., 2005), and some that statins
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Fig. 5. Insulin sensitivity and glucose uptake in ND and HFD mice with or without rosuvastatin. (A) Insulin sensitivity (ISI_Comp) in ND and HFD mice treated with and without
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have no effects on insulin sensitivity (Gannage-Yared et al., 2005; Koh et
al,, 2005). Our data show that rosuvastatin improves insulin sensitiv-
ity. In our in vivo experiments this was most obvious in mice on ND,
but we could observe a tendency also in the HFD mice. The effect
could be dose dependent, since mice on ND, where the effect on insulin
sensitivity was most pronounced, had slightly higher water intake. Our
HFD mice became insulin resistant, and the effect of HFD seems to

override any effect of rosuvastatin. Our in vivo data is supported by in
vitro measurements showing increased adipose glucose uptake in
both ND and HFD mice treated with rosuvastatin. Interestingly,
rosuvastatin raised primarily basal but also insulin-dependent glucose
uptake. Hence, our data are in agreement with improved insulin sensi-
tivity. In adipose and muscle cells, glucose uptake is facilitated through
insulin-regulated glucose-transporter GLUT4, some situated in clusters



V.A. Salunkhe et al. / EBioMedicine 10 (2016) 185-194 193

at the plasma membrane (Stenkula et al., 2010). In the basal state, only a
few GLUTA4 transporters are present at the membrane (Stenkula et al.,
2010). Thus, it can be suggested that rosuvastatin either increases the
basal GLUT4 translocation, possibly through membrane alteration, or
affects mechanisms downstream of the insulin receptor. We observed
that rosuvastatin increased GLUT4 protein levels in the soleus muscle
of ND mice, whereas in HFD mice it decreased GLUT4 levels. This
might explain the larger improvement of insulin sensitivity in
rosuvastatin treated mice on ND as compared to HFD, since the majority
of glucose uptake in vivo is through muscle (Thiebaud et al., 1982).
Insulin stimulation increases the number of GLUT4 in the plasma
membrane, but muscle contraction also stimulates translocation of
GLUTA4 to the plasma membrane independent of insulin (Fushiki et al.,
1989).

How could the reported increased incidence of new on-set diabetes
with statins be explained? Knowledge regarding statin effects on beta
cell function is scarce, except for a recent study suggesting impaired in-
sulin secretion with statins (Cederberg et al., 2015). We therefore also
investigated beta cell function in more detail in vivo and in vitro. Our
data confirms a rosuvastatin-induced impairment of beta cell function
and reduced insulin secretion in vitro, but not in vivo. The observed dif-
ferences might be explained by absence of the complex integrated re-
sponse from e.g. incretins and neuronal input in the in vitro insulin
secretion measurements on isolated islets. In vivo the most pronounced
effect was observed in HFD mice, and the increase in insulin secretion by
HFD was counteracted by rosuvastatin. The in vitro insulin secretion
measurements were presented both as per islet and per insulin content
and insulin content data is also given. The data obtained when measur-
ing insulin secretion per islet is the summed effect by changes in insulin
content and effects on the insulin secretion process. When insulin is
expressed as per insulin content this factor is taken into account and
the changes measured are due to direct effects on the insulin secretion
process. In the three different scenarios measured here this suggests
that 1) HFD increases insulin content and inhibits the insulin secretion
process; 2) rosuvastatin treatment in ND mice mainly reduces insulin
content; and 3) rosuvastatin treatment in HFD mice reduces insulin
content and amplifies the insulin secretion process.

How does then rosuvastatin disturb beta cell function? Our investi-
gation shows a profound reduction of insulin content although the
total number of granules remains unchanged. This is in agreement
with experiments in MING6 cells showing reduced insulin-synthesis via
a disturbed metabolism (Zhou et al., 2014). We could not detect any
changes in Ins2 mRNA, but still protein processing could be disturbed.
The reduced insulin content together with the increased number of
docked granules and disturbed Ca?* signaling shows that rosuvastatin
has multiple cellular effects that contribute to the impaired insulin se-
cretion. Disturbed Ca?™ signaling can be due to impaired influx of
Ca?™ through voltage-dependent Ca?™ channels. Indeed we have re-
cently shown reduced Ca?™ current in INS-1832/13 treated with
rosuvastatin (Salunkhe et al., 2016) and simvastatin has in other beta
cell lines been demonstrated to reduce the Ca?>* current (Yada et al.,
1999; Zhou et al., 2014). Our Ca?>* measurements show changes in
the transient Ca® ™ response to glucose. The observed reduction in the
Ca®* dip suggests an incipient ER-stress. In consonance, CHOP was re-
duced in ND mice suggesting a protective mechanism counteracting
ER-stress. Atorvastatin has also been shown to reduce the expression
of CHOP and other ER-stress markers (Chen et al., 2014).

In conclusion, we have demonstrated that rosuvastatin reduces
blood glucose through improved insulin sensitivity. Therefore,
rosuvastatin has an overall positive effect on glucose homeostasis. How-
ever, we observed deleterious effects on the beta cells in vitro which
may be detrimental in the long run. More specifically, from a long
term perspective an impaired beta cell function, with reduced insulin
content and disturbed Ca? ™ signaling, will accelerate the risk of devel-
oping hyperglycemia. Hence, individuals susceptible to diabetes devel-
opment are likely to be more sensitive to the negative effect of

rosuvastatin treatment on beta cells, which could explain the associa-
tion between increased risk of new-onset diabetes and statin treatment.
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