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Abstract

Recurrent exertional rhabdomyolysis (RER) in Thoroughbred and Standardbred racehorses is 
characterized by episodes of muscle rigidity and cell damage that often recur upon strenuous 
exercise. The objective was to evaluate the importance of genetic factors in RER by obtaining 
an unbiased estimate of heritability in cohorts of unrelated Thoroughbred and Standardbred 
racehorses. Four hundred ninety-one Thoroughbred and 196 Standardbred racehorses were 
genotyped with the 54K or 74K SNP genotyping arrays. Heritability was calculated from genome-
wide SNP data with a mixed linear and Bayesian model, utilizing the standard genetic relationship 
matrix (GRM). Both the mixed linear and Bayesian models estimated heritability of RER in 
Thoroughbreds to be approximately 0.34 and in Standardbred racehorses to be approximately 
0.45 after adjusting for disease prevalence and sex. To account for potential differences in the 
genetic architecture of the underlying causal variants, heritability estimates were adjusted based 
on linkage disequilibrium weighted kinship matrix, minor allele frequency and variant effect size, 
yielding heritability estimates that ranged between 0.41–0.46 (Thoroughbreds) and 0.39–0.49 
(Standardbreds). In conclusion, between 34–46% and 39–49% of the variance in RER susceptibility 
in Thoroughbred and Standardbred racehorses, respectively, can be explained by the SNPs present 
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on these 2 genotyping arrays, indicating that RER is moderately heritable. These data provide 
further rationale for the investigation of genetic mutations associated with RER susceptibility.

Subject areas: Bioinformatics and computational genetics
Key words:  muscle disease, RER, tying-up

Exertional rhabdomyolysis (ER) is a clinical syndrome in horses 
characterized by muscle cell damage, pain, stiffness, and cramp-
ing with exercise (Rossdale et  al. 1985; MacLeay et  al. 1999b). 
Recurrent exertional rhabdomyolysis (RER) is a specific form of ER, 
described in Thoroughbred and Standardbred racehorses, in which 
individuals have more than 1 clinical episode of ER while competing 
at an appropriate fitness level (Lentz et al. 1999; Isgren et al. 2010). 
Diagnosis of RER is primarily based on clinical signs and support-
ive evidence such as detection of elevated serum creatine kinase 
(CK) and aspartate aminotransferase (AST) activities after exercise. 
Muscle biopsy is predominantly utilized to rule-out other potential 
causes of ER, but may show nonspecific myopathic features such as 
centrally located nuclei and variable degrees of necrosis and regen-
eration (Valberg et al. 1993; Valberg et al. 1999). Estimated preva-
lence of RER is 6% in Standardbred racehorses and ranges from 5% 
to 10% in Thoroughbreds (MacLeay et al. 1999b; McGowan et al. 
2002; Isgren et al. 2010). This relatively high prevalence has a signifi-
cant financial impact on the racing industry, with an average of 5.8 
consecutive training days lost per episode of RER in Thoroughbred 
racehorses (Jeffcott et al. 1982).

A number of studies have identified risk factors contributing to 
RER. In Thoroughbred racehorses, epidemiological studies have 
concluded that diet, exercise, sex, age, and stress are risk factors for 
development of clinical disease (MacLeay et al. 1999a; McGowan 
et  al. 2002; Upjohn et  al. 2005). In 2010, Isgren et  al. identified 
similar risk factors in cases of RER in Standardbred racehorses, con-
sistent with the hypothesis that RER in both breeds is phenotypi-
cally similar but also share the same risk factors. Pedigree analysis 
has provided strong evidence of an underlying genetic component 
in Thoroughbreds (MacLeay et  al. 1999b; Dranchak et  al. 2005; 
Oki et al. 2005), thus RER is a complex disease with both genetic 
and environmental risk factors contributing to phenotype. Recent 
genome wide association studies have identified statistically signifi-
cant associations for RER in Thoroughbred racehorses (Tozaki et al. 
2010; Fritz et al. 2012). However, the loci identified differ between 
studies and specific functional alleles and genes contributing suscep-
tibility to RER are unknown.

Previous work estimated RER heritability based on pedigree 
data (Oki et  al. 2005), but such estimates from pedigrees may be 
overestimated as a consequence of 1)  small populations of highly 
related individuals often confounded by a shared environment; 
2) assortative mating; 3) pedigree errors; and 4) ascertainment bias 
(Lee and Pollak 1997). Genotype data allows for a more precise 
estimate of narrow sense heritability by using data from a large 
group of unrelated individuals. Mixed linear models can be used to 
estimate heritability by fitting all SNPs simultaneously as random 
effects to provide an unbiased estimate of the variance explained by 
all SNPs (Yang et al. 2010). In contrast, the Bayesian model views 
all parameters as uncertain, and expresses this uncertainty over nar-
row sense heritability with a posterior distribution (Furlotte et  al. 
2014). The objective of this study was to estimate RER heritability 
in both Thoroughbred and Standardbred racehorses using whole 
genome SNP genotype data with different computational methods 

and parameters: including mixed linear and Bayesian models, utiliz-
ing standard and linkage disequilibrium weighted kinship matrixes.

Materials and Methods

Samples
Signalment, history and management data and whole blood samples 
for DNA isolation were collected from 245 case (174 females and 71 
males) and 246 control (138 females and 108 males) Thoroughbred 
racehorses, and 107 case (63 females and 44 males) and 89 con-
trol (26 females and 63 males) Standardbred racehorses. A  total 
of 72 Standardbreds and 405 Thoroughbred racehorses were from 
Europe, and 124 Standardbred and 86 Thoroughbred racehorses 
were from North America. Within the Thoroughbred cohort, ages 
ranged from 2 to 9 years old (mean 3 years) and in the Standardbred 
cohort ages ranged from 2 to 16 years (mean 5 years). Cases were 
defined as horses that had more than 1 episode of ER as reported 
by either the trainer or referring veterinarian. In 55.97% (197/352) 
of cases, measurement of elevated serum activities of CK and AST 
were available post-ER episode to further support the RER diagno-
sis. Control horses were defined as horses that did not have a history 
of ER observed by the trainer or referral veterinarian and had raced 
for at least 1 full season. Although RER can manifest in horses as 
young as 2 years of age; whenever possible, controls were selected 
from older horses that had been in training with the reporting trainer 
for more than 1 consecutive racing season to avoid a false negative 
diagnosis of RER.

Genotype Data
DNA was isolated from whole blood per manufacturer recommen-
dations (Puregene Blood Core Kit, Qiagen). Thoroughbred horses 
were genotyped with the Illumina iSelect Equine SNP50 bead chip 
that contains 54 602 markers distributed across all 31 autosomes 
and the X-chromosome. Standardbred horses were genotyped with 
either the iSelect Equine SNP50 or the more recent 65 153 SNP 
chip (Illumina iSelect Equine SNP70 bead chip). Genotype impu-
tation with haplotype phasing using BEAGLE software (Browning 
and Browning 2007; McCoy and McCue 2014) was performed to 
generate a uniform set of 73 689 SNP genotypes across the entire 
Standardbred cohort.

Quality control (QC) measures were performed on the genotyp-
ing data using the PLINK software package (Purcell et al. 2007). QC 
measures included tests for Hardy-Weinberg equilibrium, SNP and 
individual missingness and genotyping rates, discordant sex infor-
mation and abnormally high heterozygosity (≥3 standard devia-
tions [SDs] from the mean). All individuals passed QC. Individual 
SNPs that had a genotype success rate <90%, minor allele frequency 
(MAF) <1.0%, or deviated from Hardy-Weinberg equilibrium were 
eliminated from the dataset. After data pruning and exclusion of the 
sex chromosomes, a total of 45 447 SNPs and 61 101 autosomal 
SNPs remained in the dataset for analysis in the Thoroughbreds and 
Standardbreds, respectively.
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The RER phenotype was treated as a binary trait (case/control). 
When pair-wise identity by descent estimations exceeded 0.25 (half 
sibling, grandparent-offspring); 1 individual per pair was randomly 
excluded from the analysis, yielding a total of 404 Thoroughbreds and 
175 Standardbred racehorses for analysis. Sex for both breeds was 
included as a discrete covariate. Based on prior publications, preva-
lence of disease was estimated at 7.5% (published estimates ranged 
from 5% to 10%) for Thoroughbreds and 6% for Standardbreds 
(MacLeay et al. 1999b; McGowan et al. 2002; Isgren et al. 2010).

Analysis With a Mixed Linear Model
The Genome-wide Complex Trait Analysis (GCTA) software pack-
age (Yang et al. 2011) was used to estimate heritability from the SNP 
genotype data with a mixed linear model. A  comprehensive analy-
sis of the GCTA software tools, algorithms, and publications can be 
found online (http://cnsgenomics.com/software/gcta/, last accessed 
Janurary 2016). For a given phenotype, the output of GCTA provides 
an estimate of the genetic variance explained by all SNPs, the standard 
error (SE) of the estimate, and a likelihood ratio test of the alternative 
hypothesis (genetic variance ≠ 0) to that of the null hypothesis (genetic 
variance = 0) and the corresponding P-value (Yang et al. 2013).

Analysis With a Bayesian Model
Heritability was estimated from the SNP genotype data through a 
Bayesian posterior probability and the standard genetic relation-
ship matrix (GRM) using code obtained from Furlotte, et al. (2014). 
A full description of the Bayesian model has previously been pub-
lished (Furlotte et al. 2014). For a given phenotype, the output of 
the Bayesian model is the maximum posterior value for heritability 
and SD of the posterior probability distribution. The heritability 
estimates were then converted to a continuous liability scale using 
an ascertainment-corrected transformation as previously described 
(Lee et al. 2011).

Analysis With a Linkage Disequilibrium Adjusted 
Kinship Matrix
The software program Linkage Disequilibrium Adjusted Kinship 
(LDAK) (Speed et  al. 2012) was used to create a weighted GRM 
(wGRM). LDAK assesses patterns of linkage disequilibrium (LD) 
through local pairwise correlation between SNPs. The extent to 
which a SNP signal is replicated by neighboring SNPs is calcu-
lated by summing the values in each row of the correlation matrix. 
Calculated weights are then determined so that the value of the SNP 
signal multiplied by the weight is equal to 1. The weighted values, 
or relative contribution of each SNP, are then utilized to create the 
wGRM. A comprehensive analysis of the LDAK algorithm can be 

found in Speed et al. (2012). Heritability estimates were then calcu-
lated with the wGRM using both GCTA and the Bayesian model.

Analysis of Sample Size on Heritability Estimates 
and SE
In order to assess the effect of sample size on heritability estimates 
and SE, heritability estimates were calculated using data from 200 
horses from the Thoroughbred cohort to resemble the size of the 
Standardbred cohort, and the Standardbred cohort was reduced to 
85 horses. For each breed, horses were randomly chosen, regard-
less of phenotype, using the software package R’s random number 
generator without replacement (R Core Team 2014). Heritability 
estimates were calculated in GCTA using the standard GRM. This 
process was repeated a total of 100 times, after which the average of 
the heritability estimates and SE were calculated.

Analysis by Partitioning of SNPs
SNPs were partitioned into 5 bins with MAF boundaries of 0.1, 0.2, 
0.3, 0.4, and 0.5, respectively as previously described (Lee et al. 2012). 
Standard GRMs and wGRM were constructed for each bin and herit-
ability estimates were obtained using the –mgrm option in GCTA (Lee 
et al. 2013). SNPs were also partitioned into 2 groups with SNPs from 
autosomes 1 through 15 in the first group and SNPs from autosomes 
16 to 31 in the second group. Heritability estimates were calculated 
for each group separately. The total heritability estimate was obtained 
by summing the estimates from both groups, which was then com-
pared to the heritability estimate obtained from inclusion of all SNPs.

Results

Analysis With a Mixed Linear Model
Analysis of the SNP genotype data using GCTA with the software’s 
default parameters and the standard GRM resulted in estimates 
of the genetic variance on the observed scale of 0.36 (SE = 0.13) 
for the Thoroughbred and 0.49 (SE = 0.30) for the Standardbred 
racehorses. Conversion of the estimates to a liability scale with the 
addition of disease prevalence resulted in heritability estimates of 
0.39 (SE = 0.11) in the Thoroughbreds and 0.44 (SE = 0.27) in the 
Standardbreds. When sex was added to the analysis as a covari-
ate, the heritability estimate decreased to 0.34 (SE  =  0.12) in the 
Thoroughbreds and to 0.45 (SE  =  0.27) in the Standardbreds 
(Table 1). All estimates resulted in statistically significant P-values.

Analysis With a Bayesian Model
Heritability estimates using the Bayesian model and the standard 
GRM resulted in a posterior probability of 0.36 (SD = 0.12) in the 

Table 1.  Heritability estimates using both mixed linear model (GCTA) and Bayesian model (Bayes) with the standard GRM and the weighted 
GRM (wGRM) when both disease prevalence and sex were taken into account, and for GCTA when using an adjusted scale parameter (S=0) 
to account for the uncertainty around minor allele frequency and variant effect size

GCTA GRM Bayes GRM GCTA wGRM Bayes wGRM S=0 GRM S=0 wGRM

TB cohort
  h2 0.34 0.34 0.42 0.42 0.41 0.46
  SE/SD 0.12 0.11 0.12 0.11 0.12 0.14
  P-value 2.320e-04 1.010e-05 3.111e-05 4.320e-05
STDB cohort
  h2 0.45 0.45 0.39 0.39 0.45 0.41
  SE/SD 0.27 0.20 0.26 0.20 0.27 0.27
  P-value 3.563e-03 1.786e-02 3.530e-03 1.801e-02
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Thoroughbreds and 0.49 (SD = 0.22) in the Standardbreds. Addition 
of sex as a covariate did not greatly alter the heritability estimates, 
with 0.36 (SD = 0.12) and 0.50 (SD = 0.22) in the Thoroughbreds 
and Standardbreds, respectively. Transformation of the data from 
the observed scale to a liability scale via the addition of disease prev-
alence resulted in a heritability estimate of 0.34 (SD = 0.11) in the 
Thoroughbreds and 0.45 (SD = 0.20) in the Standardbreds (Table 1).

Analysis With an LDAK
Analysis using GCTA with the substitution of the wGRM obtained 
from LDAK, adjusting for both disease prevalence and sex, resulted 
in a heritability estimate of 0.42 (SE = 0.12) in the Thoroughbred 
and 0.39 (SE = 0.26) in the Standardbred cohort (Table 1). Analysis 
with the Bayesian model using the wGRM resulted in a heritabil-
ity estimate of 0.42 (SD  =  0.11) in the Thoroughbreds and 0.39 
(SD = 0.20) in the Standardbreds (Table 1).

Analysis of Sample Size on Heritability Estimates 
and SE
In order to assess the effect of sample size on the heritability esti-
mates and SEs, GCTA analysis with the inclusion of sex and dis-
ease prevalence was repeated 100 times in randomly selected groups 
of 200 horses from the Thoroughbred cohort and 85 horses from 
the Standardbred cohort. The mean heritability estimate from the 
resultant 100 analyses was 0.43 with a mean SE of 0.24 in the 
Thoroughbreds as compared to the original estimate of 0.34 with a 
SE: 0.12. The mean heritability estimate for the Standardbred data 
was 0.43 with a mean SE of 0.39, as compared to the original esti-
mate of 0.45 with a SE of 0.27; however, 60% of the estimates in the 
Standardbreds resulted in nonsignificant P-values.

Analysis of MAF and Variant Effect Size
Heritability estimates from dense genotyping data may be overesti-
mated when the assumed relationship between the causal variant’s 
MAF and effect size, represented by a scale parameter, does not reflect 
the data’s genotypic architecture (Speed et al. 2012; Lee et al. 2013). 
Heritability estimates were repeated with an adjusted scale parameter 
by using the –grm-adj function in GCTA, resulting in an estimate of 
0.41 (SE = 0.12) in the Thoroughbreds and 0.45 (SE = 0.27) in the 
Standardbreds (Table 1), as compared to 0.34 and 0.45 observed in 
the original analysis. Using the wGRM and adjusted scale param-
eter resulted in heritability estimates of 0.46 (SE  =  0.14) for the 
Thoroughbreds and 0.41 (SE = 0.27) for the Standardbreds (Table 1), 
as compared to 0.42 and 0.39 in the original analysis.

A MAF-stratification approach has also been recommended to 
account for the uncertainty around the underlying genetic architec-
ture (Lee et al. 2012; Lee et al. 2013). Using this approach, the sum 

of the heritability estimates from the standard GRMs were 0.46 in 
the Thoroughbreds and 0.49 in the Standardbreds. Notably, SE was 
markedly higher per bin in the Standardbred cohort (Table 2).

Analysis of Population Stratification and Cryptic 
Relatedness
To evaluate the presence of population stratification, the total herit-
ability estimate obtained from summing the results from partitioning 
across chromosomal groups was compared to the estimate obtained 
from inclusion of all SNPs (Speed et al. 2012). For the Thoroughbred 
cohort, the total variance explained was 0.49 when the chromo-
somes were fitted separately in groups compared to a total of 0.34 
when the chromosomes were fitted together, yielding a difference of 
0.15. For the Standardbred cohort, the total variance explained was 
0.60 when the chromosomes were fitted separately by groups com-
pared to a total of 0.45 when the chromosomes were fitted together, 
yielding a difference of 0.15.

To evaluate the effect of cryptic relatedness on the heritability 
estimates, 10% of the population was randomly removed from 
the dataset 100 times and heritability estimates were recalculated 
using GCTA with both the standard GRM and the wGRM. For the 
Thoroughbred cohort, the mean heritability estimate was 0.36 for 
the standard GRM and 0.46 for the wGRM. For the Standardbred 
cohort, the mean heritability estimate was 0.43 for the standard 
GRM and 0.42 for the wGRM. All estimates were consistent with 
the estimates obtained from their respective analyses using the full 
dataset.

Discussion

Traditionally, heritability estimates have been obtained using infor-
mation from pedigree data. However, the recent availability of SNP 
arrays for many species now allows heritability to be estimated from 
SNP genotype data obtained from unrelated or distantly related indi-
viduals. In this report we calculated heritability of RER in popu-
lations of 404 Thoroughbred and 175 Standardbred horses using 
more than 45 000 (Thoroughbreds) and 61 000 (Standardbreds) 
SNPs with 2 different computational methods (mixed linear and 
Bayesian models) whilst accounting for genetic relatedness. Both 
computational models estimate heritability based on a comparison 
of overall similarities in phenotype between pairs of individuals 
with their total SNP similarities, providing an overall estimate of the 
genetic influence on a trait (Viding et al. 2013). After accounting for 
disease prevalence and potential confounding factors such as sex and 
cryptic relatedness, heritability estimates for RER ranged between 
0.34–0.46 in Thoroughbred and 0.39–0.49 in Standardbred race-
horses. Heritability estimates obtained using either the mixed linear 
model or the Bayesian model were not remarkably different.

Table 2.  Heritability estimates using GCTA and a MAF stratification approach with the standard GRM when both disease prevalence and 
sex were taken into account

Bin1: MAF < 0.1 Bin 2: MAF 0.1–0.2 Bin 3: MAF 0.2–0.3 Bin 4: MAF 0.3–0.4 Bin 5: MAF 0.4–0.5 Sum

TB cohort GRM
  Heritability 0.02 0.04 0.00 0.40 0.00 0.46
  SE 0.01 0.16 0.18 0.20 0.16
STDB cohort GRM
  Heritability 0.27 0.00 0.00 0.00 0.22 0.49
  SE 0.25 0.38 0.39 0.40 0.39

SNPs were divided into bins based on MAF.
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Heritability estimates are highly dependent on the represented 
population since the effects of environmental variance and addi-
tive and non-additive genetic variances are population-specific. 
Furthermore, the accuracy of heritability estimates is dependent 
on the pedigree structure and introduction of unaccounted-for 
bias. Limited information or pedigree errors within a highly inbred 
population, assortative mating, and ascertainment bias (selection of 
pedigrees that have a high proportion of affected individuals) can all 
lead to overestimation of heritability with larger SEs (Lee and Pollak 
1997). Furthermore, to achieve an unbiased estimate of genetic vari-
ance, the data must be representative of the general population and 
include all potential confounders (Visscher et al. 2008).

Our estimates of heritability address these biases by 1)  using 
SNP-genotype based approaches which do not depend on pedigree 
data; 2) including a large population of individuals with wide range 
of genetic backgrounds and across multiple farms; and 3) account-
ing for known confounders. Sex was included as a confounder based 
on results of studies in both Thoroughbred and Standardbred race-
horses indicating that females are at a higher risk of developing RER 
(MacLeay et al. 1999a; McGowan et al. 2002; Upjohn et al. 2005; 
Isgren et  al. 2010). The addition of sex decreased the heritability 
estimates in both breeds, indicating that at least a portion of the phe-
notypic variance between the cases and controls could be explained 
by sex. Age has also been determined to be a risk factor for RER 
in Thoroughbred racehorses but was not determined to be a risk 
factor in Standardbred racehorses by Isgren et al. (2010). The differ-
ence in age as a risk factor between these breeds may be a reflection 
of the average career length of Thoroughbred versus Standardbred 
racehorses (Isgren et  al. 2010). In our dataset, age at the time of 
sampling was available for all horses; however, the age of RER onset 
was not available for most cases. Age was included as a quantita-
tive covariate in both the mixed linear and Bayesian model and had 
minimal effect on the overall heritability estimates (data not shown). 
However, we did not include age in the final reported heritability 
estimate models since age at sampling was not considered a true fac-
tor affecting disease risk.

The large SEs for the Standardbred heritability estimates likely 
reflect the relatively small number of horses in the Standardbred 
cohort compared to the Thoroughbred cohort. To test this theory, 
200 horses were randomly chosen 100 times from the Thoroughbred 
dataset for GCTA analysis using the standard GRM. The mean her-
itability estimate for the data was 0.43 with a mean SE of 0.24, 
as compared to the original estimate of 0.34 with a SE of 0.12. 
Therefore, it is likely that the addition of more Standardbred horses 
would decrease the SE and result in a more precise estimate of her-
itability in this breed. This is similar to findings from Yang et  al. 
who estimated the heritability of height in humans using GCTA. 
In that study, the investigators determined that the average herit-
ability estimates across all SNPs were not dependent on sample size 
but that sampling error increased as the population size decreased 
(Yang et al. 2010). Similarly, 85 horses were randomly chosen 100 
times from the Standardbred cohort and heritability was estimated 
using GCTA with the standard GRM. The mean heritability estimate 
for the data was 0.43 with a mean SE of 0.39, as compared to the 
original estimate of 0.45 with a SE of 0.27. However, 60% of these 
estimates resulted in nonsignificant P-values, indicating that reduc-
ing the Standardbred cohort by half would have insufficient power 
to estimate heritability.

A pedigree-based estimate of RER heritability in a cohort of 
Japanese Thoroughbred racehorses trained and stabled at 1 of 2 
facilities was approximately 0.42 (Oki et al. 2005). This heritability 

was higher than the 0.34 estimated in our Thoroughbred cohort 
when taking into account sex and disease prevalence but not tak-
ing into account potential differences in genetic architecture. It is 
perhaps not surprising that the estimates in the current study using 
Thoroughbred racehorses across multiple environments were for 
the most part lower than those in the Japanese study, as heritabil-
ity estimates from a single population residing on the same farm 
might be overestimated due to shared genetics and shared environ-
ment. However, the most precise estimates of heritability should be 
obtained when accounting for the genetic architecture of the under-
lying causal variants (Speed et al. 2012; Lee et al. 2013; Speed et al. 
2013).

Without prior knowledge of the causal variants for RER, it is 
impossible to determine which genetic architecture would be the 
most appropriate model. Therefore, 3 approaches were used to 
adjust heritability estimates based on LD, MAF, and variant effect 
size. It has been proposed that heritability estimates using genotype 
data are sensitive to blocks of SNPs in LD, where SNPs in high LD 
with a causal variant are overrepresented leading to inflated esti-
mates of heritability (Speed et al. 2012). The tagging of causal SNPs 
in blocks of uneven LD might account for the difference in heritabil-
ity estimates obtained using the standard GRM versus the wGRM. 
By adjusting for LD through a wGRM, causal SNPs are theoreti-
cally more evenly weighed. In our dataset, the heritability estimate 
decreased in the Standardbred cohort to 0.39 and increased in the 
Thoroughbred cohort to 0.42 (both GCTA and Bayesian models). 
In the Standardbred cohort, causal SNPs within blocks of high LD 
might have been overrepresented, leading to inflation of the herit-
ability estimate; whereas in the Thoroughbred cohort casual SNPs 
within areas of low LD may have been underrepresented decreasing 
the heritability estimate (Speed et al. 2012; Lee et al. 2013).

By default, GCTA scales the heritability estimate based on hete-
rozygosity across the genome (Lee et al 2013). However, Speed et al. 
(2012) proposed varying the scale parameter to assume independ-
ence between effect size and MAF. In our study population, altera-
tion of the scale parameter resulted in similar estimates of heritability 
in the Standardbred cohort but higher estimates of heritability in the 
Thoroughbred cohort. Alternatively, Lee et al. (2013) recommended 
accounting for the relationship between MAF and variant effect 
size with a MAF-stratification approach. In this approach, SNPs are 
partitioned into bins based on MAF and heritability estimates are 
calculated for each bin. For the Standardbred cohort, the largest esti-
mates were obtained for the bin with SNPs at the lowest MAF (bin 
1: MAF < 0.1) and highest MAF (bin 5: MAF 0.4–0.5); whereas, 
for the Thoroughbred cohort the bin with the largest estimate was 
bin 4 (MAF 0.3–0.4). This may explain the difference in heritability 
estimates between varying the scale parameter and using the MAF 
binning approach.

In both cohorts, manipulation of the data either increased or 
decreased the heritability estimates from what was obtained when 
using the default parameters for the mixed linear or Bayesian model. 
However, without knowing the causal variants for RER, it is impossi-
ble to determine which model is the most appropriate. Nevertheless, 
all estimates were consistent with a trait of moderate heritability.

The presence of population stratification, genetically distinct 
groups, or cryptic relatedness, within a dataset may confound her-
itability estimates. To assess the presence of population stratifica-
tion, SNPs can be partitioned into groups based on chromosome 
and the total summed across groups. Summed values will be greater 
than heritability estimates obtained from inclusion of all SNPs when 
SNPs on different chromosomes are correlated more than expected 
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by chance, indicating population substructure (Yang et al. 2013). In 
our analysis, the difference in total variance for all 31 autosomes 
analyzed individually versus jointly was 0.15 higher in both the 
Thoroughbred and Standardbred cohorts, indicating some influence 
from population stratification. To assess the effect of cryptic related-
ness, or a few related individuals influencing the heritability estimate, 
10% of the population was randomly removed from the analysis for 
each cohort and heritability estimates repeated. The mean heritabil-
ity across all 100 replicates was similar to that obtained from the 
whole population for both the Thoroughbreds and Standardbreds, 
indicating little evidence that cryptic relatedness is biasing the herit-
ability estimates in this analysis.

SNP-based heritability estimates are limited to the genetic vari-
ability that can be explained by the common SNPs present on the 
genotyping arrays, but cannot account for causal variants that are 
not inherited together (in LD) with these SNPs; nor can it include 
other genetic variations contributing to the disease phenotype such 
as insertions, deletions or copy number variants (Manolio et  al. 
2009; Lee et al. 2011; Yang et al. 2011; Lee et al. 2012). Completely 
unbiased estimates of heritability can only be obtained if all of the 
causal genetic variants are represented. Therefore, SNP based her-
itability estimates may provide a lower-limit estimate for narrow 
sense heritability (Manolio et al. 2009; Lee et al. 2011; Yang et al. 
2011; Lee et al. 2012). The unequal number of SNPs used for the 
Thoroughbred and Standardbred analyses (45 447 and 61 101 SNPs, 
respectively) prevents direct comparison of the estimates between 
breeds as the additional 15 000 SNPs in the Standardbred cohort 
may capture a larger proportion of the genetic variance leading to a 
higher heritability estimate. However, based on long blocks of LD in 
both breeds, we do not suspect that the heritability estimates would 
vary significantly with this relatively small change in SNP density 
(McCue et al. 2012).

Nonetheless, the results indicate that 34–46% of the heritability 
of RER in Thoroughbred racehorses and 39–49% of the heritabil-
ity in Standardbred racehorses can be explained by their respective 
SNP data, supporting the conclusion that RER is moderately herit-
able. Previous studies have attempted to identify RER susceptibility 
loci through whole genome scanning methods with microsatellites 
(Tozaki et al. 2010) or SNPs (Fritz et al. 2012). However, those stud-
ies identified different potential risk loci, with moderate or ambigu-
ous statistical support, and our current heritability data suggests 
that larger sample sizes and higher SNP marker density than were 
available in these previous studies will be necessary to identify RER 
susceptibility loci.

In conclusion, SNP based heritability estimates for RER in 
Thoroughbred and Standardbred racehorses indicate that 34–46% 
and 39–49%, respectively, of genetic variance for RER can be 
explained by the common SNPs present on the current genotyping 
arrays. It is important to note that heritability estimates do not pro-
vide information on the number of genes involved, the interaction 
or penetrance of these genes, nor the mode by which these genes 
are inherited. Heritability estimates are also sensitive to small data-
sets, population substructure, and the data’s genotypic architecture. 
However, heritability estimates do provide valuable insight into the 
genetic contribution of a complex disease. The results presented here 
supports the conclusion that RER is moderately heritable in both 
Standardbred and Thoroughbred racehorses. This has important 
implications for the racing industries, as it is likely that RER affected 
horses of both breeds and sexes are capable of passing susceptibility 
genes on to their offspring.
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