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ABSTRACT
Perforin, a pore-forming toxin released from secretory granules of NK cells and CTLs, is essential for their
cytotoxic activity against infected or cancerous target cells. Bi-allelic loss-of-function mutations in the
perforin gene are invariably associated with a fatal immunoregulatory disorder, familial haemophagocytic
lymphohistiocytosis type 2 (FHL2), in infants. More recently, it has also been recognized that partial loss of
perforin function can cause disease in later life, including delayed onset FHL2 and haematological
malignancies. Herein, we report a family in which a wide range of systemic inflammatory and neoplastic
manifestations have occurred across three generations. We found that disease was linked to two missense
perforin gene mutations (encoding A91V, R410W) that cause protein misfolding and partial loss of activity.
These cases link the partial loss of perforin function with some solid tumors that are known to be
controlled by the immune system, as well as haematological cancers. Our findings also demonstrate that
perforin gene mutations can contribute to hereditary cancer predisposition.
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Introduction

Perforin (PRF, encoded by the PRF1 gene) is a pore-forming
toxin1 stored in the secretory granules of cytotoxic lympho-
cytes. During an immune response, these “killer” cells form an
immune synapse with a virus-infected or cancer target cell, and
release PRF and granzyme serine proteases into the synaptic
cleft.2 PRF forms membrane pores that are essential for cyto-
toxic lymphocyte pro-apoptotic serine proteases, granzymes, to
enter the target cell cytoplasm, where they trigger apoptosis.3

Bi-allelic mutations in PRF1 that completely abrogate func-
tion are classically associated with the pediatric immunoregula-
tory disorder familial haemophagocytic lymphohistiocytosis
type 2 (FHL2),4 which accounts for 30–60% of all FHL cases.5

However, it is possible that FHL2 represents one extreme of a
spectrum of diseases caused by PRF deficiency.6 Thus, missense
mutations causing partial loss of expression or function of PRF
are more often associated with later atypical onset FHL27 and/
or haematological malignancy.8-12 It is unknown whether PRF
deficiency can predispose to solid tumors, nor has a possible
contribution of PRF1 mutations to familial cancer ever been
explored.

Herein, we describe a UK family of Italian origin, in which
adult onset FHL2, haematological and various solid tumors
have affected three generations. We show that these diseases
are consistently associated with PRF1 missense mutations, with
defective protein folding causing partial loss of PRF expression.

These findings highlight a novel hereditary cancer predisposi-
tion syndrome associated with PRF1mutations.

Methods

DNA sequencing

Oligonucleotide primers used for PRF1 sequencing are available
on request.

PRF expression

PBMNCs were surface stained using anti-CD56-PE, CD4C-
PerCP, CD8C-APC, then fixed, permeabilized, and stained with
cytofix/cytoperm and anti-human PRF-FITC or isotype control
(BD Biosciences). 1,00,000 lymphocytes were acquired on
FACs Calibur and analyzed by sequential gating using Cell-
Quest Pro (BD Biosciences).

Assessment of R410W function

Primary murine Prf1¡/¡ CD8C T cells transgenic for the OT1
TCR were transiently transfected with either WT or mutant
R410W PRF cDNA, as described previously.11,13 Cells were
then used in 4-h 51Cr release assays against OVA257 (SIIN-
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FEKL peptide) labeled EL-4 thymoma target cells.11,13 Percent-
age-specific 51Cr release was estimated as described.11

Study approval

All clinical investigation was conducted according to Declara-
tion of Helsinki principles. All participants gave full informed
consent for analysis of PRF expression and PRF1 mutation
screening, and for the results to be reported in this study.

Results and discussion

A family pedigree showing members in whom PRF1 was ana-
lyzed is shown in Fig. 1. Further details, including PRF1 muta-
tional analysis and NK cell PRF expression are summarised in
Table 1.

The index case, a 43 y-old woman (II-1), presented with
lethargy, pyrexia, and moderate splenomegaly. She was found
to have pancytopenia, hyperferritinaemia, hypertriglyceridae-
mia, and extensive haemophagocytosis in her bone marrow,
leading to a diagnosis of HLH, based on the HLH-2004 diag-
nostic criteria. Despite extensive investigation, no acquired
cause for HLH could be found; rather, the diagnosis of late
onset FHL2 was supported by mutations in PRF1 and reduced
intracellular PRF expression (Fig. 2). Treatment was according
to the HLH-1994 protocol, but the patient developed progres-
sive multi-organ failure and died.

Subsequently, two family members also carrying PRF1
mutations and with reduced intracellular PRF presented with
de novo leukemia. The index case’s niece (III-1) was diagnosed
with acute lymphoblastic leukemia (ALL), and her uncle (I-3)
with chronic myelomonocytic leukemia (CMML), which subse-
quently transformed to acute myeloid leukemia (AML)
(Table 1). A link between PRF1mutations and lymphoid malig-
nancies has been reported,8,10,11 but to our knowledge this is the
first case of CMML in association with PRF deficiency.

Further investigation of the family’s medical history revealed
that the father of the index case (I-1), who carried the same
mutations as his daughter (II-1), had developed multiple pri-
mary malignancies as an adult, including renal cell carcinoma
at 54 y of age, but had never been affected by HLH (Table 1).
No other predisposing environmental or genetic cancer risk
had been identified. A brother of the index case (II-2) devel-
oped intracranial glioma, which was rapidly fatal despite radia-
tion therapy. Genotyping was not performed, but it could be
deduced from his parents’ genotype that he would have carried
at least one PRF1 mutation, with a 50% probability of two
mutations. To our knowledge, this is the first report of an asso-
ciation between human PRF1 mutations and solid tumors,
some of which have previously been described to be under the
control of the immune system.14,15

The A91V allele identified in this family is by far the com-
monest hypomorphic PRF1 variant, being found in »8% of
Caucasians.5 A91V adversely affects PRF folding and this is
typically thought to markedly reduce PRF levels and the cyto-
toxicity of CTL/NK cells.16,17 Although misfolded A91V PRF is
detectable by standard methodologies in healthy A91V hetero-
zygotes,17 earlier reports suggested that A91V homozygote
patients (or those who co-inherited A91V together with a null
mutation) have severely reduced or absent PRF levels.16,18 In
analyzing patient II-3, who had bi-allelic A91V mutations but
has remained healthy, we demonstrated, for the first time, that
A91V homozygosity is indeed compatible with reduced, but
still detectable PRF levels (Fig. 2). This discrepancy may be
related to PRF levels being assessed at times when a patient is
extremely ill.

In contrast, the R410W mutation, that also affects this fam-
ily, has not been previously investigated. We found that
R410W causes near-total loss of function, as the activity of
Prf1¡/¡ mouse CTLs transfected with the mutant was <5% of
the CTLs reconstituted with wild-type PRF (Fig. 3A). As with
other cancer-associated PRF1mutations,11 when R410W-trans-
fected T cells were cultured at reduced temperature (30�C),

Figure 1. Characterization of PRF1 defects within the family. Family pedigree showing the relationship between family members in which PRF1 analysis was performed.
An arrow indicates the index case. Each family member’s cancer history is also indicated (H D haematological malignancy; S D solid cancer; DF D disease free; U D
unknown cancer history).
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their activity was restored to wild-type level (Fig. 3B). The fact
that the loss of activity of R410W is temperature-dependent
strongly suggests that protein misfolding is responsible for its
functional impairment.11

A91V and R410W both lead to PRF misfolding, which
reduces but does not abolish PRF activity. Such in vitro studies
on PRF mutants have previously been shown to be strong pre-
dictors of their behavior in vivo in carriers of these muta-
tions.11,17 Whereas, the complete loss of PRF function typically
presents in early childhood as FHL2, the subtotal loss of PRF
activity causes systemic inflammatory disease that is delayed
beyond infancy (as in the index case II-1) or may present as a
different immunopathology.6 In these instances, consistent
with Burnet’s hypothesis of tumor immune surveillance,19

reduced cytotoxic lymphocyte activity caused by partial loss of
PRF may be expected to predispose to neoplasia, and this is
indeed supported by previous studies.9-12 It is not clear, how-
ever, why these malignancies thus far reported in humans in
association with PRF deficiency are predominantly haemato-
logical. It is possible that PRF defects lead to a reactive prolifer-
ation of the lymphoid and histiocytic pools, as typically
observed in FHL, causing genomic instability and a predisposi-
tion to neoplasia in one of these lineages. Alternatively, haema-
tological malignancies may be more susceptible to immune
control than solid tumors and may thus arise more frequently
in the absence of a fully functional immune system. This report
supports the strong link between partial PRF deficiency and
haematological malignancy. Critically, it also shows for the first

Table 1. Summary of PRF defects and associated disease in family members. Analysis of PRF included PRF1 genotype (assessed by Sanger sequencing) and PRF expression
in NK cells (assessed by intracellular FACS). The penetrance of PRF mutations was found to be over 50% with five out of nine carriers affected by disease, including solid
tumors.

Patient
Relationship to
index case

Age at
testing

PRF1
genotype

PRF expression
in NK cells Disease (age at presentation)

I-1 Father 76 y A91V/R410W 58% Renal carcinoma (54 y) Prostate carcinoma
(71 y) Gastric carcinoma (77 y) AML (81 y)

I-2 Mother 76 y A91V/WT 86% Disease free
I-3 Uncle 70 y R410W/WT 70% CMML (70 y)
II-1 Index case 43 y A91V/R410W 65% FHLH (43 y)
II-2 Brother Not tested Not tested Not tested Glioma (40 y)
II-3 Brother 49 y A91V/A91V 72% Disease free
II-4 Bother 40 y R410W/WT 88% Disease free
II-5 Sister 35 y A91V/R410W 47% Disease free
II-6 Brother-in-law 49 y WT/WT 89% Disease free
III-1 Niece 8 y A91V/WT 65% ALL (8 y)

Figure 2. Intracellular PRF expression in selected family members. Intracellular PRF expression in CD56CCD8¡ NK cells in patients I-1, II-3, II-5, and II-6 (serving as WT per-
forin control); in parenthesis is the median fluorescence intensity. Of note, patient II-3, who is homozygous for the A91V mutation but has remained healthy, demonstrates
reduced, but appreciable PRF levels.
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time that multiple solid tumors, some known to be controlled
by immune system,14,15 can occur in humans in this context,
thus validating earlier investigations in murine models, where
many types of solid tumor, including prostate, mammary, and
lung carcinoma, were controlled by PRF-dependent cytotoxic-
ity.20,21 Overall, in the current study, the penetrance of PRF1
mutations was over 50% with five out of nine carriers affected
by disease (Table 1). Excluding patient II-2 (where genetic anal-
ysis was not performed), a similar penetrance was observed in
both carriers of mono-allelic PRF1 mutations (two out of four
carriers affected) and family members with bi-allelic mutations
(two out of four carriers affected).

Of particular note, the cases discussed in this report involve
many family members and several generations. This is highly
suggestive of a hereditary cancer predisposition syndrome,22

and we believe this is the first association of PRF1 mutations
with such a disorder. Such findings align closely with a recent
report highlighting increased incidence of cancer in relatives of
patients with FHL.23

Although hereditary cancer syndromes are typically autoso-
mal dominant with incomplete penetrance, the pattern of
inheritance is less clear in this family, with both mono-allelic
and bi-allelic carriers of PRF1 mutations developing disease.
One explanation for this variable pattern in inheritance is that
PRF mutants such as A91V have been previously shown to
exhibit dominant negative activity,17,24 and thus may cause
pathology when only present on one allele. Furthermore,
although PRF1 mutations may be acting alone, it is possible
that another undetected mutation may be present in this fam-
ily. For example, it has recently been shown that patients with
FHL may co-inherit mutations in two different genes-regulat-
ing lymphocyte cytotoxicity, although this is a rare event lead-
ing to FHL mostly at a younger age.25 Besides, in the context of
the family described here, co-inheritance of three pathological
mutations would be required, with one leading to defective per-
forin secretion (UNC13D or STX11 or STXBP2). While this is
theoretically possible, the probability of such an event is

exceedingly small. Alternatively, PRF deficiency may be acting
in concert with classical cancer predisposition genes unrelated
to cytotoxic lymphocyte function. The latter possibility poten-
tially opens up a new paradigm, which we believe warrants fur-
ther investigation: that deficiency of an extrinsic tumor
suppressor such as PRF may co-operate with an intrinsic
genetic defect to predispose to familial cancer syndromes.
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