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Abstract

All mobile organisms rely on adaptive motivated behavior to overcome the challenges of living in 

an environment in which essential resources may be limited. A variety of influences ranging from 

an organism’s environment, experiential history, and physiological state all influence a cost-benefit 

analysis which allows motivation to energize behavior and direct it toward specific goals. Here we 

review the substantial amount of research aimed at discovering the interconnected neural circuits 

which allow organisms to carry-out the cost-benefit computations which allow them to behave in 

adaptive ways. We specifically focus on how the brain deals with different types of costs, 

including effort requirements, delays to reward and payoff riskiness. An examination of this broad 

literature highlights the importance of the extended neural circuits which enable organisms to 

make decisions about these different types of costs. This involves Cortical Structures, including 

the Anterior Cingulate Cortex (ACC), the Orbital Frontal Cortex (OFC), the Infralimbic Cortex 

(IL), and prelimbic Cortex (PL), as well as the Baso-Lateral Amygdala (BLA), the Nucleus 

Accumbens (Nacc), the Ventral Pallidal (VP), the Sub Thalamic Nucleus (STN) among others. 

Some regions are involved in multiple aspects of cost-benefit computations while the involvement 

of other regions is restricted to information relating to specific types of costs.

1. Introduction

1A. Historical/Background Information

Some of the earliest laboratory studies of motivated behavior led researchers to observe that 

most complex behavior tends to occur in bouts and that specific behaviors such as feeding or 

grooming can be characterized by their frequency, intensity, temporal distribution and 

direction towards or away from a particular stimulus. One of the prominent researchers of 
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the day went so far as to say that identifying the factors responsible for the initiation and 

termination of these specific bouts of behavior would be the central problem for 

experimental psychologists to understand (Richter, 1927). Over the years there have been 

numerous theories of motivation put forth (Bolles & Moot, 1972; Hebb, 1955; Hull, 1943; 

Young, 1961), each of which has been influential in stimulating what has been a continuous 

stream of experiments and research on this topic. There exist excellent reviews of many of 

these theories and concepts (Berridge, 2004).

Almost a century later, researchers from numerous fields including psychology, psychiatry, 

and neurobiology are still actively studying goal-directed motivation, which is the name that 

has been given to the set of biological and psychological processes which guides behavior in 

pursuit of a goal. Research in this realm of behavioral neuroscience has come a long way 

toward understanding the wide array of factors which come together to modulate goal-

directed action. Neurobiologists are uncovering the widely distributed collection of neural 

circuits which underlie the various aspects of goal-directed motivation. This has led to the 

identification of limbic and midbrain regions including the Ventral Tegmental Area (VTA), 

Nucleus Accumbens (NAcc), and Ventral Pallidum (VP) which appear to be critical for 

invigorating effortful behavior. Additionally, cortical regions such as the Anterior Cingulate 

Cortex (ACC) and medial Prefrontal Cortex (mPFC) are crucial for comparing costs and 

benefits which becomes important when one is faced with several potential response 

choices. In addition to the basic work being done in animal models, clinicians and 

psychiatrists using modern brain imaging methods have started to uncover some of the 

neurobiological correlates of impairments in goal-directed motivation commonly seen in 

many forms of psychopathology, including schizophrenia and depression. Currently, the 

unprecedented technical arsenal of neuroscience tools available to researchers makes it an 

extremely exciting and fruitful time to be studying a question which has captivated 

researchers for nearly a century.

1B. Motivation: Energizing and directing behavior toward specific goals

All mobile organisms are faced with the universal challenge of living in a world in which the 

resources needed for survival may be limited in number and unevenly dispersed throughout 

the environment. Obtaining essential resources often requires one to overcome obstacles 

which inherently contain many different kinds of costs to the organism. When seeking food, 

water, or potential mates, one might be faced with any number of these costs, including: a 

physical distance one must traverse, the height of an obstacle one must climb, the number of 
responses one must make, or the commitment of time one must invest. Goal-directed 

motivation represents the set of processes which allows an organism to weigh these costs 

against potential benefits of obtaining a goal. It has been recognized by researcher for a long 

time that motivation serves two important functions, as it provides both a directional 
influence on behavior and also has an activational or energizing effect as well as (Duffy, 

1957; Hebb, 1955); and more recent work has started to describe the underlying 

neurobiological substrates of both the directional processes (Kim, Lee, & Jung, 2013; 

Kimchi & Laubach, 2009) as well as activational processes (Anaclet et al., 2009; Pfaff, 

Martin, & Faber, 2012) and. Whereas the directional component of motivation guides 

behavior toward a specific goal and away from competing actions (Dickinson & Balleine, 

Bailey et al. Page 2

Neurobiol Learn Mem. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1994), the activational component of motivation provides the energy or vigor needed to 

overcome the physical costs standing between the animal and its goal. This activational 

influence on motivation is reflected in the likelihood of initiation, and the speed, vigor and 

persistence of an action (Floresco, 2015; Salamone, 1992; Salamone & Correa, 2002; 

Salamone, Correa, E. J. Nunes, P. A. Randall, & M. Pardo, 2012)

Directional Effects of Motivation—The most general way in which the concept of 

directional motivation is used is to say that animals pursue positive stimuli (e.g. food, water, 

sex, etc.) and avoid negative stimuli (e.g. painful conditions, predators, stress) (Salamone, 

Yohn, López-Cruz, San Miguel, & Correa, 2016). A more specific definition of the concept 

of directional motivation is the processes which cause animals to choose one specific class 

of behavior to engage in at a given time over all others (i.e. Feeding, Drinking, Mating, 

Aggressive Behavior, etc.). This concept proves useful in that it allows researchers to 

attempt to figure out the physiological and environmental variables which influence animals 

to engage in one class of behaviors over another (e.g. feeding as opposed to drinking). This 

usage helps to explain observations such as when animals choose to pursue food following a 

long period of food deprivation it is the directional influence of motivation which leads the 

animal to pursue food while forgoing pursuits of other behaviors. This is unsurprising as 

there are distinct neural circuits which control food seeking as opposed to something like 

thirst (Kelley, Baldo, Pratt, & Will, 2005; Oka, Ye, & Zuker, 2015). There has been an 

extensive amount of research aimed at understanding what circulating hormones and brain 

regions are responsible for directional motivational effects for feeding (Belgardt, Okamura, 

& Brüning, 2009), thirst (Johnson & Thunhorst, 1997), as well as sexual behavior 

(DAVIDSON, 1966), and other social behaviors (Hong, Kim, & Anderson, 2014; F. Wang, 

Kessels, & Hu, 2014). We point readers to recent reviews of this literature (Sternson, 2013), 

as an extensive discussion of these directional effects are beyond the scope of the present 

review. In the present review, we focus on situations in which subjects are food restricted 

and working for food rewards (i.e. experimentally manipulated to be directed towards food), 

and we examine how different types of costs a subject must overcome to obtain the food 

reward alters both activational aspects of behavior and the choice of what specific action to 

take to obtain reward.

Activational Motivation Effects—As animals are deprived of necessary resources their 

behavior changes in a number of ways: (1) there is often an increase in general locomotor 

activity, (b) an increase the likelihood of performing actions known to lead to that deprived 

resource, (c) and an increase in the speed, vigor, and the persistence of these goal directed 

actions. (Floresco, 2015; Salamone & Correa, 2002; Salamone et al., 2012; J. D. Salamone, 

1992). These changes in behavior are thought to reflect changes in the activational or 

energizing effects of motivation. It is this activational or energizing influence of motivation 

which allows animals to overcome the costs standing between them and the goal for which 

they are working. In this review, we focus specifically on what is known about the neural 

substrates that influence how the costs of responding affect the activational aspects of 

motivated behavior. We also examine what is known about the neural machinery involved in 

processing information about different types of costs that enter into the cost-benefit 
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computation that guides choices about how to allocate effort in situations in which there is 

more than one response option that could lead to the desired resource.

1C. Cost-Benefit computations underlying motivated behavior

How does motivation properly guide an organism through the environment to overcome 

obstacles and meet needs necessary for survival? Current theories suggest that animals 

incorporate information from many different levels and perform cost-benefit computations 

which allow for adaptive decision making. A typical laboratory experiment in which a rat 

has learned to press a lever for a food reward serves as an excellent example of how this 

might work. A fully sated rat will make a very small number of lever presses for food. The 

few lever presses it does make will be made slowly with many pauses in between presses, 

and the rat will spend a substantial amount of time engaging in other behaviors such as 

exploring the chamber and grooming itself. The same animal’s behavior will look very 

different when its access to food has been restricted. Both the number of lever presses made 

as well as the rate/vigor of those responses are highly correlated with the percent body 

weight loss induced by the food restriction (Collier, 1969; Collier & Levitsky, 1967; 

Marwine & Collier, 1971). In these two scenarios the cost of responding is constant (i.e. the 

same number of lever presses is required in both situations), but the benefit or value of the 

food differs greatly. The difference between the cost and the benefit of pressing in each 

particular condition determines the direction of behavior (lever pressing and not exploring or 

grooming/etc.) as well as the intensity or vigor (response rate of the lever presses) with 

which the behaviors are executed.

Research over that last 5 decades shows that there are many factors which influence the cost-

benefit decision making processes. These factors include environment factors (such as local 

food availability, time of day, or temperature), an animal’s experiential history (whether it 

was trained on a continuous or intermittent schedule of reinforcement), and their physiology 

(circulating hormone levels) and internal biological clocks (e.g. location in a circadian 

rhythm (Antle & Silver, 2015). Figure 1 illustrates a conceptual model of how all of these 

factors might act in concert in a hierarchical manner to modulate goal-directed motivation by 

influencing the underlying cost-benefit decision making processes and provides examples of 

these different factors influencing motivation (Simpson & Balsam, 2016). As shown in this 

figure, this model posits that the physiological state of the organism, the environment, and 

past history/learning of the organism interact to influence the representation of costs and 

benefits that determine the specific types of behavior at any given time. Moreover, the 

information about the costs and benefits are compared in a cost-benefit computation which 

then influences the selection and vigor of behavior. We present figure 1 to suggest one 

possible model of how goal-directed motivation may work, and to provide a context in 

which to place this review. We do not attempt to state which brain regions are definitively 

involved in specific stages of the Cost/Benefit computation process, rather we examine an 

array of studies which focus on the cost input to this computation. In doing so we compare 3 

different kinds of costs: Effort, Time, and Risk.., Webring together these three separate lines 

of investigation to identify both the overlapping and distinct neurobiological substrates for 

processing these costs.
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1D. Scope and Purpose of the Review

The purpose of this review is to summarize and synthesize a number of varying studies 

which examine different types of motivated behavior through the framework of motivated 

behavior as relying on a cost-benefit computation to give rise to both the direction and vigor 

of behavior. The direction and vigor of behavior represent the final behavioral output which 

one can measure, and a number of studies are reviewed which have been performed to 

understand the neural locations at which manipulations to the region impact either 

directional or activational aspects of behavior. Additionally, we give a primary focus to 

studies which have examined motivated behavior through various forms of cost-benefit 

decision making. In this review, we systematically focus on studies which have manipulated 

one of the factors which goes into the cost-benefit calculation: cost, as this represents one 

critical side of the cost-benefit computations that guide motivated behavior. We first provide 

a summary of the behavioral data that demonstrates animals’ ability to process information 

related to various types of costs. We then discuss the more recent work examining the 

neurobiology of the activational effects of motivation. We finish by reviewing an array of 

studies aimed at understanding the neurobiological underpinnings of cost-benefit decision 

making by specifically focusing on studies which employed manipulations of three types of 

response costs: (1) effort, (2) time, and (3) risk. In doing so we describe studies which have 

employed neural manipulations such as various types of lesions, as well as locally delivered 

pharmacological manipulations. While we also discuss a number of results from systemic 

pharmacology studies, we have limited this to results which further inform our 

understanding of the neural circuits underlying the different behavioral processes discussed 

in the review.

2. Evidence of animals processing and using information about the costs 

going into cost-benefit computations underlying motivation

Motivation activates and directs behavior allowing organisms to overcome response costs to 

obtain specific goals. The decision to continue exerting effort in pursuit of a goal while 

neglecting other available response options is thought to be influenced by an underlying 

cost-benefit decision making process. During this process, the organism is thought to use 

information and knowledge of the costs of the current situation and weighs them against the 

anticipated benefit the effort will ultimately result in. There is a rich history of studies from 

experimental psychology in which various specific parameters of cost and benefit are 

manipulated which generally show that animals can make adaptive decisions in the face of 

changing costs and benefits (Atalayer & Rowland, 2009; Collier & Johnson, 1997). 

Additionally, there is evidence that animals can process and use information related to 

different response costs, including: distance, number, time, height, force and vigor. While an 

extensive literature exists on animals cognition of distance (Gallistel, 1989), and their 

sensitivity to manipulations of force required in a lever press (Ettenberg, 1989; Fowler, 

1999) here, we limit the discussion to number of responses, time, and vigor/rate of 

responding as they are the most commonly used manipulations of cost in the studies covered 

in this review.
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2A. Number of Responses as a Cost

Several elegant experiments demonstrated that animals are aware of the number of responses 

they have made, and that they are not only able to process this information but can also 

dynamically use it to guide behavior. In these experiments subjects were trained to make 

lever presses to earn rewards. In the testing phase of these experiments, subjects made lever 

presses on fixed ratio schedules, but the rewards were delivered without being cued when the 

criterion was reached. In two variants on this procedure, rats then had to either switch from 

Lever A and make 1 response on lever B to check if they received a reward (Mechner, 1958), 

or simply make a head entry to the receptacle when they thought the reward would be 

present (Platt & Johnson, 1971). Rats were not only able to estimate the minimum number 

of responses they needed to emit before checking for the reward, but they were actually able 

to use this information to guide behavior as they were shown to be sensitive to the 

consequences of their errors in either direction (checking after too few or too many presses) 

and were able to adjust their estimates to either overestimate or underestimate when they had 

done enough depending on the contingencies of the given situation (Platt & Johnson, 1971), 

reviewed in (Gallistel & Gelman, 1992).

Given that subjects have an awareness of how many presses they have made since the 

beginning of a bout of responding, it is then perhaps unsurprising that rodents can use this 

information when given a choice between working on two levers paying off after different 

numbers of presses. When given a choice on two different levers with different press 

requirements (whether on a Fixed Ratio or Random Ratio) subjects will allocate their 

responding in a manner which matched the relative payoff between the two levers 

(McDowell, 2013).

2B. Time

Animals are also sensitive to time and the temporal distribution of events (Balsam, Drew, & 

Gallistel, 2010; Balsam & Gallistel, 2009). When rewards are delivered following a response 

occurring after a fixed duration of time, as in a fixed-interval schedule of reinforcement, 

animals are most likely to respond around the time that reward is expected (Dews, 1978). 

Increasing motivation levels by increasing the probability of reinforcement on any given trial 

increases how precisely animals estimate this interval (Roberts, 1981; Ward et al., 2009). 

Additionally, when asked to discriminate between durations many studies have shown that a 

15–20% change in duration is easily discriminated (Gibbon et al., 1984). Thus it is not 

surprising that choice is allocated based on payoff rates (McDowell, 2013) or that the 

relative delay to reward has a strong influence on response selection (Evenden & Ryan, 

1996). Since all action occurs in time it is worth noting that manipulations of response 

number, response duration or distance to obtain a goal generally also involve changes in the 

time to reach that outcome.

2C. Rate or Vigor

Rate or vigor of responding is modulated by motivational factors such as deprivation level 

and reward magnitude, e.g. response speed tends to increase as a function of reward 

magnitude, whereas it decreases with increasing delays to reward, reviewed in (Bitterman & 

Schoel, 1970). Rats are able to process information about how vigorously they are 
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responding and can subsequently modulate their levels of vigor when the magnitude of 

reward is made dependent on response vigor. Rats taking longer to run down a runway when 

reward size is increased contingent on increasing latency to reach the goal box (Logan, 

1966). Similar results have been observed with lever pressing. When reward is contingent on 

response speed the vigor of the action can be both raised (Girolami, Kahng, Hilker, & 

Girolami, 2009; Tanno, Silberberg, & Sakagami, 2012) and lowered (Pizzo, Kirkpatrick, & 

Blundell, 2009; Tanno & Silberberg, 2014).

3. Activational Components of Motivation

3A.1. Activational component of motivation can be observed through measures of 
response vigor/persistence

There are a number of different tasks which have allowed researcher to quantify changes in 

response vigor/persistence. Many of the tasks which have been used involve having animals 

make responses of a single type to obtain the goal (i.e. running down a runway, or 

responding on a single lever). The activational component of motivation is readily observed 

in runway tasks as animals run faster for a food reward as a function of the duration that they 

have been deprived of food, or as a function of the magnitude of food reward/concentration 

of sucrose awaiting them in the goal-box (Bitterman & Schoel, 1970; Bower & Trapold, 

1959; Goodrich, 1960; Kintsch, 1962; Knarr & Collier, 1962). Similar results have been 

observed in rates of lever pressing (Collier, 1969; Collier & Levitsky, 1967; Marwine & 

Collier, 1971), and rates of licking for a varied sucrose concentrations (Beer & Trumble, 

1965; Vogel, Mikulka, & Spear, 1968; Ward et al., 2012). Much of the subsequent work 

which has examined the neurobiology and pharmacology of activational components of 

motivation has been done using a lever pressing tasks in which response cost is manipulated 

by varying the numbers of responses required to produce a reward. One commonly used task 

is called the Progressive Ratio (PR) (Hodos, 1961). In a PR schedule of reinforcement, the 

required number of responses can either be increased within a single session from one 

reinforcer to the next (Hodos, 1961; Hodos & Kalman, 1963) or can be changed between 

sessions over days (Czachowski & Samson, 1999), with the former being the most widely 

used. In PR schedules, subjects make an increasing number of responses until eventually 

they reach a breakpoint, a point at which the number of lever presses is too high for the 

animal to continue making responses (Hodos, 1961; Hodos & Kalman, 1963). The 

breakpoint is directly related to deprivation level and incentive value/reward magnitude 

(Cheeta, Brooks, & Willner, 1995; Covarrubias & Aparicio, 2008; Ferguson & Paule, 1995; 

Hodos, 1961; Rickard, Body, Zhang, Bradshaw, & Szabadi, 2009; Skjoldager, Pierre, & 

Mittleman, 1993). Many variants of PR have been used, demonstrating that the breakpoint is 

influenced by both the absolute response requirement (Aberman & Salamone, 1999; 

Skjoldager et al., 1993) as well as the step size of the ratio increase (Covarrubias & 

Aparicio, 2008).

3A.2. The Challenge of dissociating activational motivation effects from locomotor effects

While PR schedules have been used extensively to study motivated behavior, use of this task 

alone has made it challenging to discern whether increases or decreases in breakpoints 

represent changes in activational motivation OR an increase in non-goal directed general 
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activity. If an animal is more hyperactive and makes all types of motor responses more 

rapidly this may also lead them to make many more lever presses in a similar amount of 

time. Conversely, if a manipulation has caused locomotor slowing and an animal makes all 

types of motor responses more slowly this could lead to making fewer responses purely due 

to a motor deficit. Many of the drug treatments and genetic manipulations which have been 

shown to increase or decrease breakpoints in a PR schedule also lead to a corresponding 

increase or decrease in locomotor activity in an open field test (Aberman & Salamone, 1999; 

Antoniou, 2005; Cagniard, Balsam, Brunner, & Zhuang, 2006; Hall, Stanis, Avila, & Gulley, 

2008; Kellendonk et al., 2006; Mayorga, Popke, Fogle, & Paule, 2000; Randall et al., 2012; 

Sanders, Hussain, Hen, & Zhuang, 2007; Simón et al., 2000; Simpson et al., 2011; Zhuang 

et al., 2001). This correlation between PR performance and locomotor activity points out the 

challenge of being able to distinguish activational motivation effects from locomotor effects 

when using just one measure of motivated behavior. This challenge as one investigator put it 

is making, “The distinction between motor deficits (wants to but cannot) and motivation 

deficits (can but does not want to)” (Wise, 2008). To this, we add the opposite problem of no 

change in motivation (wants the reward to the same degree), but an animal is in a general 

hyperactive state which leads to making all types of behaviors (those which are goal directed 

as well as those which are not) at a faster rate which may make the animal appear to want 

the reward more. While there is no perfect solution to this challenge to date, we attempted to 

address the issue by developing methods for studying motivated behavior by altering the 

type of work requirements making rate of initiation unrelated to the level of wanting the 

reward.

3A.3 A Strategy for Dissociating Changes in Non-Goal Specific Locomotor Output from 
Changes in Activational Motivation and the Willingness to Perform Goal-Directed Work

To address the challenge presented when trying to distinguish motivational changes from 

general locomotor changes in behavior our lab developed a novel task known as the 

progressive hold down (PHD) task (Bailey et al., 2015), which was specifically designed to 

make hyperactive motor behavior incompatible with increased willingness to work. In the 

classic PR task, subjects must make more lever presses in order to earn each subsequent 

reward (Fig 2A). Unlike the classic PR task where the increasing work requirement is an 

increasing number of responses, in the PHD task the increasing work requirement is the 

duration of time a subject is required to maintain the lever in the depressed position during a 

single lever press. Thus, subjects are required to make single lever holds (maintaining the 

lever in the depressed position) for increasing durations of time in the PHD task in order to 

keep earning rewards (Fig 2B). This task intentionally makes increased goal-directed action 

and increased general locomotor arousal incompatible with one another as hyperactive lever 

pressing will continually reset the duration of each rapidly emitted press.

In an examination of this novel method, we first tested the manipulations of food deprivation 

and reward magnitude to see how these variables influenced behavior in the PHD task. 

Hungry mice worked for more rewards and reached higher breakpoints before quitting. The 

increased breakpoints in this task meant that hungry subjects were making lever holds of 

substantially longer durations. In a similar manner, subject’s willingness to work for rewards 

and breakpoints increased as a function of reward magnitude when working for sucrose 
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solutions of increasing concentration. The observation that increasing food deprivation levels 

and increasing reward magnitude led to increases in BP’s in both the classic PR schedules 

(Skjoldager et al., 1993), as well as the BP in our PHD task (Bailey et al., 2015), suggests 

that these manipulations are impacting some central motivational mechanism which makes 

animals more willing to work for rewards regardless of the specific modality of the work 

(i.e. pressing versus holding).

As a test of this strategy of examining behavior in both a classic lever pressing PR alongside 

the lever holding PHD, we tested subjects who had been treated with methamphetamine in 

both tasks. As shown in Figure 2C–E, Meth treated subjects made more lever presses and 

had a higher breakpoint in the classic PR task. The subjects tested following treatment with 

Meth in the PHD task, however, did not show increases in long duration goal-directed 

presses, but showed an increase in rapidly initiated short duration hold attempts which were 

ineffective in the PHD test (Bailey et al., 2015). Unlike manipulations such as food 

deprivation and increasing the reward magnitude, Meth only increased the BP in the classic 

PR. We interpret the increase in ineffective short duration responses in the PHD task as 

reflecting Meth’s ability to enhance hyperactive motor output (which is important for 

initiating repeated numbers of responses). We also interpret the results to mean that Meth is 

not acting on a central motivation mechanism which would increase willingness to perform 

any type of work as is the case when animals are hungry vs sated. Thus, the PR appears to 

be a good measure of arousal, but cannot by itself dissociate goal-directed action from 

arousal or increases in general motor activity. Additional experiments have recently shown 

that selective inactivation of the dopamine D2 receptor expressing neurons in the indirect 

pathway of the striatum results in a similar increase in arousal and activation in the PR and 

overall locomotor activity in an open field, but at the cost of decreased efficiency as a result 

of bursts of short duration rapid responses in the PHD (Carvalho Poyraz et al., 2016).

3B. Neurobiology of Activational Components of Motivation

There have been a large number of studies which have examined different brain regions and 

neurotransmitters involved in vigorous effortful responding in operant lever pressing tasks. 

Many of these have used the PR to assess vigor or persistence in responding (Table 1).

The NAcc and Mesolimbic dopamine—A wealth of evidence implicates mesolimbic 

dopamine pathway, which consists of the dopamine neurons located within the VTA which 

project to the NAcc, in behavioral activation and energy expenditure (J. D. Salamone, 1992; 

J. D. Salamone, M. Correa, E. J. Nunes, P. A. Randall, & M. Pardo, 2012). Specifically, 

reducing dopamine levels in the mesolimbic pathway suppresses general locomotor activity 

(Maldonado-Irizarry & Kelley, 1994; Wu, Brudzynski, & Mogenson, 1993), as well as 

novelty-induced locomotion (Baldo, Sadeghian, Basso, & Kelley, 2002; Michael S. Cousins, 

Sokolowski, & Salamone, 1993; Koob, Riley, Smith, & Robbins, 1978). The effects of 

dopamine antagonist within the NAcc also impacts goal-directed locomotion as intra-NAcc 

dopamine antagonists lead to both increased latency to run down a runway maze and reach a 

goal box containing food reward (slowing of reward approach) as well as reductions in 

spontaneous locomotion in the start box (Ikemoto & Panksepp, 1996). Moreover, the readily 

observed increases in numerous different types of activity which develop following the 
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scheduled presentation of food (excessive drinking, voluntary wheel running, and 

locomotion) are all correlated with increases in mesolimbic dopamine signaling (Louise D. 

McCullough & Salamone, 1992), and NAcc dopamine depletions suppress these behaviors 

(Louise D. McCullough & Salamone, 1992; Robbins & Koob, 1980; Wallace, Singer, Finlay, 

& Gibson, 1983). These observations resulted in the development of a number of different 

genetic models which alter dopamine signaling. A dopamine transporter knockdown mouse 

(DAT KD) shows elevated open field activity (Cagniard et al., 2006), and cell type specific 

loss of D1/D2 receptors have been shown to induce hypoactivity or hyperactivity with 

numerous different manipulations of these cell types (Kreitzer & Berke, 2011).

In addition to the studies on the locomotor activating effects of the mesolimbic dopamine 

pathway, there has been a specific focus of the role of this pathway on motivated responding 

in tasks which offer a single response choice and provide a measure of vigor or behavioral 

activation. Dopamine neurons which project to the NAcc have been found to be important 

for effortful responding. Early observations indicated that when a rat was lever pressing for 

food on a fixed ratio -1 (FR-1), levels of dopamine and DOPAC increased within the NAcc 

(L. D. McCullough, Cousins, & Salamone, 1993). Subsequent studies showing lesions of 

dopamine neurons with 6-hydroxydopamine (6-OHDA) projecting to either the NAcc Core 

or NAcc Shell had little impact on a behavior in an FR-1 schedule, a schedule with a low 

effort requirement (Salamone & Correa, 2002; J. D. Salamone, Correa, Mingote, & Weber, 

2005). Furthermore, disruption of dopamine in either the NAcc Core or NAcc Shell also had 

no impact in a VI-30 schedule, which requires subjects to wait an average of 30 seconds 

before making a reinforced press (Sokolowski & Salamone, 1998). However, when the 

response cost was increased to an FR-05 schedule disruption of dopamine signaling to the 

NAcc Core, was found to impair responding, but dopamine depletion in the NAcc Shell did 

not have any effect (Sokolowski & Salamone, 1998). Additionally, there was a correlation 

between the number of presses made and the amount of dopamine present in the NAcc Core, 

but not the shell (Sokolowski & Salamone, 1998).

Subsequent studies further explored the impact of dopamine depletions in the NAcc Core 

across several different fixed ratio schedules (FR-01, 05, 10, 16, 32). In these studies, NAcc 

Core dopamine depletions reduced the amount of responding, and this reduction was greater 

in the higher FR schedules (Aberman & Salamone, 1999). This schedule dependent decrease 

in responding differs from that seen following pre-feeding manipulations, as pre-feeding 

leads to reductions in responding across all schedules, not just the more demanding ones 

(Aberman & Salamone, 1999). Further studies tested the effects of NAcc dopamine 

depletion in a time constrained PR and showed that DA depletions decreased breakpoints at 

both a PR+1 and PR+5, with the impairments being more marked in the more demanding 

schedule (Hamill, Trevitt, Nowend, Carlson, & Salamone, 1999).

Taken together, these studies indicate that dopamine depletion appears to affect an animal’s 

willingness to expend effort to earn a reward. The recognition of the specific involvement of 

dopamine signaling within the NAcc Core spurred lots of research on the dopamine receptor 

subtypes important for effort expenditure in these tasks. Numerous studies demonstrated that 

dopamine D1 or D2 receptor antagonists reduce responding in a PR (Aberman, Ward, & 

Salamone, 1998; Caul & Brindle, 2001; Cheeta et al., 1995; Olarte-Sanchez, Valencia-
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Torres, Cassaday, Bradshaw, & Szabadi, 2013), whereas drugs which can increase synaptic 

dopamine levels, such as amphetamine, increase breakpoints (Bailey et al., 2015; Mayorga et 

al., 2000; Sommer et al., 2014). Local administration of either the D1 antagonist 

(SCH-23390) or D2 antagonist (eticlopride) into the NAcc Core decreased lever presses for 

food in a PR schedule, but neither drug had any impact when infused into the NAcc Shell 

(Bari & Pierce, 2005). Both the dopamine depletion and localized drug infusion studies 

suggest that the activating effects of mesolimbic dopamine signaling appear to be quite 

specific to the NAcc Core.

Greater understanding of the nature of the deficit induced by NAcc Core dopamine 

manipulations has been revealed by more careful examination of the within session data for 

tasks in which dopamine depletion or antagonisms has an impact on behavior. The impact of 

NAcc Core lesions in the FR5 task was primarily seen through slower responding, which 

resulted from longer inter-response-times (IRT’s) in the FR-05 schedule (Sokolowski & 

Salamone, 1998), and slower response rates and longer post reinforcement pauses in a PR 

schedule (Bezzina, Body, Cheung, Hampson, Bradshaw, et al., 2008). Nicola et al., 2010 

conducted a detailed behavioral analysis of the effects of intra-NAcc dopamine antagonism 

on different types of behaviors which further elucidate the nature of the within session 

behavioral changes. In a task which cues rats to make either 1 lever press or 8 lever presses 

for a reward (cued FR1 and cued FR8), it was shown that dopamine D1 and D2 antagonists 

both impair subjects ability to earn rewards, and that the primary influence of the drugs is to 

increase latencies to begin lever pressing when the animals are currently in a non-responding 

state (Nicola, 2010). Additionally, the subjects are more likely to be engaged in non-task 

related behaviors, and the latency to make a lever press (i.e. reengage in task related 

behavior) is independent of the class of responses subjects are engaged in (immobile resting, 

random locomoting, or grooming), which suggests that dopamine disruption in the NAcc 

Core may be impacting motivation by disrupting the initiation of “flexible approach 

behavior”.

Ventral Tegmental Area—Much like the locomotor effects induced by blocking NAcc 

dopamine, more recent studies which have used DREADD (designer receptors exclusively 

activated by designer drugs) methods to inactivate VTA dopamine neurons showed that this 

lead to suppression of general locomotor activity (Marchant et al., 2016). Far fewer studies 

have looked at the influence of the VTA in PR responding to see how this area impacts 

arousal/vigor processes of motivation. It is known, however, that both dopamine D1 and D2 

receptors are important for the VTA’s influence on motivated responding. In one study, it 

was found that localized infusions of the D1 receptor antagonist (SCH 23390) into the VTA 

lead to a decreased breakpoint in a PR (Sharf, Lee, & Ranaldi, 2005). In another study, 

reducing the expression of D2 receptors in the VTA via shRNA knockdown lead to 

increased breakpoints for food in a PR, but did not impact baseline locomotor activity, fixed 

ratio responding, or responding in extinction (de Jong et al., 2015). The observation that 

decreasing D2 receptor levels within the VTA enhances motivation is in line with the finding 

that food deprived rats have lower levels of D2 receptor expression in the VTA relative to ad 

lib fed rats (Skibicka et al., 2013).
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There have also been a number of other receptors on neurons within the VTA which have 

been examined. While an extensive discussion of all of these is beyond the scope of this 

review we highlight the role of ghrelin in the VTA, as it’s effects on motivated responding 

appear to be directly modulated through NAcc dopamine signaling. Ghrelin is a circulating 

hormone which promotes both food intake as well as motivated responding for food. Studies 

have shown that both systemic injections of ghrelin or intra-VTA ghrelin enhance food 

responding in a PR (Naleid, Grace, Cummings, & Levine, 2005; Perello et al., 2010; 

Skibicka, Hansson, Alvarez-Crespo, Friberg, & Dickson, 2011; Skibicka, Shirazi, Hansson, 

& Dickson, 2012). This effect of ghrelin has been shown to act by modulating the VTA’s 

dopamine output to the NAcc. Lesion of VTA dopamine neurons via 6-OHDA, suppresses 

ghrelin’s ability to increase responding on a PR (Weinberg, Nicholson, & Currie, 2011). 

Moreover, pretreatment with either a D1 or D2 receptor antagonist in the NAcc blocks intra 

VTA ghrelin’s ability to increase BP in a PR for food rewards (Skibicka et al., 2013).

The Dorsal Striatum and Nigrostriatal Dopamine—Another dopaminergic pathway 

in the brain, known as the nigrostriatal pathway, consists of dopaminergic neurons in the 

Substantia Nigra (SN) and projects to the dorsal striatum. While the role of the NAcc and 

mesolimbic dopamine signaling in PR schedules has been extensively studied, there has 

been a smaller amount of work examining the dorsal striatum and nigrostriatal pathways. An 

early study lesioned cell bodies within the Dorsomedial (DMS) and Dorsolateral Striatum 

(DLS) via quinolinic acid observed that lesions to both regions failed to alter breakpoints in 

a PR schedule, but destruction of these regions did have some impact on other aspects of 

motor performance in the PR (Eagle, Humby, Dunnett, & Robbins, 1999). There was an 

increase in the number of preservative presses as well as the latency to get to the food 

hopper when a reward was delivered. Worth noting is that these lesions in the dorsal striatum 

destroyed cell bodies via quinolinic acid. We are not aware of any studies which examined 

dopamine specific depletion in the dorsal striatum via 6-OHDA as was done in the studies 

mentioned above that focused on the NAcc.

Investigators have also examined the influence of the Substantia Nigra in motivated 

behavior. One study looked at the effect of inactivating the Substantia Nigra pars reticulata 

(SNr) during FR-05 responding and found that infusions of the GABAA antagonist 

bicuculline resulted in a dose-related decrease in lever pressing. Additionally, GABA levels 

within the region were higher during the lever pressing than during baseline periods before 

the operant responding (Correa, Mingote, Betz, Wisniecki, & Salamone, 2003). Another 

study looked at the Substantia Niagra pars Compacta (SNc) on motivated behavior. This 

study induced partial lesions to the SNc which didn’t disrupt overall locomotor behavior 

resulted in decreased lever pressing in a PR for sucrose rewards, but these same effects were 

not observed with partial lesions of the VTA (Guillaume Drui et al., 2013). Additional 

evidence for the role of the Nigrostriatal DA system in motivated behavior comes from a 

recent study using a novel operant joystick based task. Subjects were head fixed and 

required to move the joystick at a given rate to earn a reward. MitoPark mice, which have 

progressive loss of SN to DA dopamine neurons (Ekstrand et al., 2007), show impairments 

in this task, and optogenetic inhibition of the nigrostriatal pathway induced similar 

impairments such that subjects took longer to complete a criterion number of trials. 
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Electrophysiological recording from the neurons in this region showed that DMS neurons 

appear to be both representing and controlling movement vigor in this task (Panigrahi et al., 

2015). This is in line with another recent study which used a self-paced nose poking 

paradigm to demonstrate that overall reward payoff expectancy as well as response vigor 

appear to be represented in the DS (A. Y. Wang, Miura, & Uchida, 2013).

Genetically induced Dopamine Receptor Manipulations—There have been a 

number of genetically modified mouse lines which have allowed researchers to examine the 

role of specific dopamine receptors in different brain regions. These studies have examined 

the effects of alterations in the levels of expression of dopamine receptors.

It has been shown that developmental overexpression of the dopamine D2 receptor (D2ROE) 

within the striatum (Kellendonk et al., 2006) leads to an impairment in PR responding (Drew 

et al., 2007; Simpson et al., 2011; Ward et al., 2012). This genetic model is developmental 

and D2R overexpression continues into adulthood. In contrast, viral vector mediated 

manipulations were developed which allow D2 receptors to be expressed at much higher 

levels selectively in adulthood (Trifilieff et al., 2013). While viral over-expression of the D2 

receptor in the NAcc led to increased PR responding, this same effect was not observed 

when the over-expression was in the dorsal striatum (Trifilieff et al., 2013). As well as the 

difference in D2R overexpression during development, another important difference between 

the two models is that the viral D2 receptor over-expression is not restricted to the MSN’s 

(as it is in the developmental D2R-OE model). The dopamine D3 receptor also appears to be 

involved in the activational aspects of motivation as a developmental genetic model of 

dopamine D3 receptor overexpression which is restricted to the striatum also showed 

decreases in lever press behavior in a PR (Simpson et al., 2014).

Other Brain Regions Modulating response Vigor in a Progressive Ratio—There 

have been a number of brain regions in addition to the striatum and midbrain which have 

been implicated in motivation (McGinty et al., 2011), and have been investigated to 

determine their contribution to responding in a PR schedule). We briefly describe several of 

these other areas that are also involved in other motivational processes to be discussed later 

in the review.

Ventral Pallidum—Another brain region which is thought to be involved in activational 

aspects of motivation is the Ventral Pallidum (VP), a region which receives GABAergic 

projections from the NAcc (Root, Melendez, Zaborszky, & Napier, 2015). While we are 

unware of any studies which have manipulated the VP and specifically looked at PR 

responding, a number of studies have established the role of the VP in the motivation to eat 

and drink as damage to this region leads to a failure to voluntarily consume food and water, 

reviewed in (Root et al., 2015; Smith, Tindell, Aldridge, & Berridge, 2009).

Cortical Structures—Lesions studies of the prefrontal cortex have demonstrated that 

different sub-regions of the PFC contribute to PR performance. One study lesioned several 

cortical structures and found dissociations between a number of these regions. Lesions to the 

pre-limbic cortex (PL) were shown to decrease breakpoints in a PR schedule, and the same 

was found with lesions of the lateral orbitofrontal cortex (lOFC). Lesions of the medial 
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orbitofrontal cortex (mOFC) lead to increased responding and increased breakpoints in one 

study (Gourley, Lee, Howell, Pittenger, & Taylor, 2010), but not another (Kheramin et al., 

2005). Studies in which dopamine antagonists are locally infused into the mOFC suggests 

that this region is indeed involved in modulating PR performance as infusions of either the 

D1-receptor antagonist (SCH23390) or the DA D2-receptor antagonist (sulpiride) lead to 

reductions in the breakpoint in a PR while leaving food preference and consumption 

unchanged (Cetin, Freudenberg, Fuchtemeier, & Koch, 2004). The ACC is a region which 

also receives dopaminergic projections from the VTA, and has reciprocal connections with 

the NAcc, however an experiment which lesioned the ACC did not find any effect of the 

lesions on the breakpoint in a PR (Judith Schweimer, Saft, & Hauber, 2005).

Hippocampus—The hippocampus is another region which has received a small amount of 

attention for its role in motivated behavior assessed with a PR schedule. Lesions to the 

ventral hippocampus, (an area which projects to the mOFC) was shown to increase BP in the 

PR. In another study, neonatal ventral hippocampal lesions were shown to increase the BP’s 

of rats when tested in a PR in adulthood (Chambers & Self, 2002).

Sub Thalamic Nucleus—The sub thalamic nucleus (STN) is a basal ganglia nucleus 

which sends glutamate projections most densely to the pallidal complex and the SNr, and 

less dense connections to the striatum and SNc (Parent & Hazrati, 1995). Rats with lesions 

to the STN showed higher breakpoints in a PR (Baunez, Amalric, & Robbins, 2002; 

Bezzina, Body, Cheung, Hampson, Bradshaw, et al., 2008)), and another study found that 

discrete lesions of the STN increased responding for liquid sucrose rewards in a PR, but 

greatly decreased the motivation of rats for cocaine (Baunez, Dias, Cador, & Amalric, 2005).

Summary—There are a number of different structures which regulate behavioral activation 

and locomotor output in goal-directed responding in a progressive ratio task (Fig 3A). The 

mesoaccumbal dopamine system (VTA and NAcc), the nigrostrial dopamine system (SN and 

DS), as well as the subthalamic nucleus, ventral hippocampus, and a number of prefrontal 

cortical regions (PL and mOFC), all modulate behavior in a PR schedule. It is also clear that 

the NAcc core, innervated by dopaminergic neurons from the VTA, plays an important role 

in the activational aspects of motivation (Bari & Pierce, 2005; Bezzina, Body, Cheung, 

Hampson, Deakin, et al., 2008; Hamill et al., 1999). The NAcc shell, however, does not 

appear to be important for this activational process (Bari & Pierce, 2005; Sokolowski & 

Salamone, 1998). Additionally, the SN, and DS also appear to be involved in some aspects 

of this activational component of motivated behavior (G. Drui et al., 2014). Specifically, 

recent experiments which monitor in vivo activity within the dorsal striatum in awake 

behaving animals performing motivated operant behavioral tasks have demonstrated that this 

region appears to be important for representing and modulating response vigor (Panigrahi et 

al., 2015; A. Y. Wang et al., 2013). Finally, the role of, various PFC structures (Cetin et al., 

2004; Gourley et al., 2010), the hippocampus (Chambers & Self, 2002; Gourley et al., 

2010), and the STN (Baunez et al., 2002; Bezzina, den Boon, et al., 2008) appear to 

contribute to the activational aspects of motivated responding.
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4. Neurobiology of Cost-Benefit Decision Making: Manipulations of 

Different Costs

Over the last several decades a substantial amount of progress has been made toward 

understanding of the neural circuits involved in various aspects of cost-benefit decision 

making (Table 2). Many of the studies involved tasks which require subjects to make a 

choice between different response options. In these paradigms, animals have been faced with 

alternatives associated with different costs - differences in the effort requirements, the time 

delay from response choice to reward delivery, and the probability of reward of each option. 

As will be described in more detail below, what has emerged as a result of this work is an 

increasing understanding of the key neural structures and neurotransmitters involved in 

different forms of cost-benefit decision making. Within this distributed neural circuitry, 

several neurotransmitters have been found to be involved in the modulation of different types 

of decision making. Below, we discuss the specific brain regions and neurotransmitters 

involved in the cost-benefit decision making process in studies that manipulate effort 

requirements, time delays, and/or probability of reward associated with different choice 

alternatives.

4A. The Choice Between Two Effort Options

There have been a number of tasks which have been developed to study effort based decision 

making which give animals a choice between 2 effort alternatives (high vs low) for 2 

different types or amount of reward (high vs low). The development of these tasks has been 

important because it allows researchers to determine whether the critical functioning of 

dopamine in the NAcc Core and associated circuits are involved in processes related to effort 

expenditure and not the result of a dopamine related motor effects which enhance or impair 

an animal’s capacity to make a particular response. Below, we provide a summary of the 

different tasks employed and the findings which each have allowed researchers to make.

4A1. Concurrent Lever Pressing/Chow Feeding Task—One behavioral task which 

was developed to study effort based decision making is an operant lever pressing task often 

referred to as either a Concurrent Lever Pressing/Chow Feeding task or Effort-Based Choice 

Task (EBCT) (J. D. Salamone, 1991). We will hereafter refer to the task as the EBCT. In the 

EBCT testing sessions, subjects make a choice between lever pressing on a given schedule 

to earn a preferred reward (i.e. sucrose pellets or evaporated milk) or consume a freely 

available, but less preferred home cage chow. Rats and mice will earn most of their food in 

the task by lever pressing for the preferred reward (J. D. Salamone, 1991). As the effort to 

earn the preferred reward is increased subjects choose to press the lever less frequently and 

consume more of the freely available chow. This task has been useful in assessing 

willingness to expend effort for a preferred reward because pre-feeding subjects or giving 

them appetite suppressants leads to decreases in both lever pressing and chow consumptions 

(Randall et al., 2014; Randall et al., 2012; J. D. Salamone, 1991; J. D. Salamone, Arizzi, 

Sandoval, Cervone, & Aberman, 2002; Sink, Vemuri, Olszewska, Makriyannis, & Salamone, 

2008), whereas a reduction in willingness to work is reflected in less lever pressing and 

more consumption of the freely available choice.
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NAcc Dopamine and Extended Circuitry: Dopamine signaling in the NAcc is important in 

the EBCT, as 6-OHDA lesions in the NAcc Core decreased the number of lever presses 

made in the EBCT and lead to an increase in chow consumption, whereas the same lesions 

in the NAcc shell had a smaller impact (J. D. Salamone, 1991; Sokolowski & Salamone, 

1998). Subsequent work has shown that both dopamine D1 (SCH 23390, SKF83566, and 

Ecopipam) and D2 (Haloperidol, cis-flupenthixol, raclopride, eticlopride) receptor 

antagonists produce similar shifts from lever pressing to consuming the less preferred freely 

available chow when injected systemically, or directly into the NAcc Core or Shell (M. S. 

Cousins & Salamone, 1994; Farrar et al., 2010; Koch, Schmid, & Schnitzler, 2000; Nowend, 

Arizzi, Carlson, & Salamone, 2001; J. D. Salamone, 1991; J. D. Salamone et al., 2002; Sink 

et al., 2008; Worden et al., 2009).

A series of experiments subsequently demonstrated the importance of the connection 

between the NAcc Core and Ventral Pallidum (VP) in regulating effort-based choice. 

Injections of the GABAA receptor agonist muscimol into the VP decreases lever pressing 

and increases consumption of the freely available chow in the same manner as NAcc Core 

dopamine depletion (Farrar et al., 2008). Retrograde tracers injected into the same region of 

the VP in which muscimol caused a shift in effort-based choice behavior confirmed that 

NAcc Core was an input to the VP. While the VP also received input from the DS, it was 

previously shown that dopamine depletion in this region did not impact lever pressing or 

chow consumption (Farrar et al., 2008). Further studies revealed that both systemic 

treatment and intra-NAcc infusions of the Adenosine 2A receptor (A2aR) agonist (CGS 

2168) could produce a decrease in lever pressing and increase in free chow consumption 

(Font et al., 2008). The effect of the A2aR agonist drug occurs through the GABA-ergic 

pathway between the NAcc and VP as CSG 2168 leads to an increase in GABA release in 

the VP (Mingote et al., 2008). Finally, the importance of the NAcc-VP projection was 

demonstrated in a circuit disruption experiment in which CSG 2168 was infused unilaterally 

into the NAcc and muscimol infused into the contralateral VP and resulted in decrease in 

lever pressing and an increase in chow consumption (Mingote et al., 2008) though ipsilateral 

infusions did not.

Following up on the observation that the A2aR agonist CSG 2168 could reduce lever 

pressing and increase chow consumption, it was later found that systemic treatment with an 

A2aR antagonist rescued a D1/D2R antagonist induced decrease in the choice of an effortful 

response (J. D. Salamone & Correa, 2009). Moreover, this effect appears to be selective to 

the A2A receptor as opposed to the A1a receptor as both A2a selective antagonists and 

Caffeine (a nonspecific A2a and A1a antagonist) rescue the dopamine antagonist 

impairment, whereas an A1A selective antagonist does not (J. D. Salamone & Correa, 2009; 

Worden et al., 2009).

4A2. Operant Effort Discounting—[Abbreviations in this section: Low Effort/Low 

Reward (LR); High Effort/High Reward (HR)]

Another task used to assess effort-based choice is known as the Effort Discounting task 

(Floresco, Tse, & Ghods-Sharifi, 2008). In this task, subjects have the option to make lever 

press responses on a Low-Effort/Low-Reward lever (LR) (e.g.1 press leads to 2 pellets or a 
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High-Effort/High-Reward lever (HR) (e.g. 5, 10, 20, or 40 presses leads to 3 pellets). The 

requirement on the HR lever is increased over the course of a session. In this paradigm, well 

trained rats tend to earn all of their rewards on the HR lever when the requirement is 5 

presses, and make fewer of the higher effort lever choices as the cost requirement is 

increased throughout the session.

NAcc Dopamine, the Basolateral Amygdala, and the Anterior Cingulate Cortex: A 

number of systemic pharmacology studies have implicated dopamine’s involvement in the 

Effort-Discounting task, similar to that which is seen in the EBCT. The non-selective 

dopamine receptor antagonist flupenthixol reduced choice on the HR lever in an Effort-

Discounting task (Floresco et al., 2008). Moreover, the D1 (SCH23390) and D2 

(Eticlopride) receptor antagonists were also shown to decrease the number of choices of the 

HR lever (Jay G. Hosking, Floresco, & Winstanley, 2015; Randall et al., 2014; Randall et al., 

2012). Using a variant of this procedure in which rats could lever press on a high effort lever 

(FR12) for high reward (4 pellets) vs a low effort lever (FR4) for low reward (2 pellets), it 

was shown that the D2 receptor antagonists (haloperidol), caused rats to shift to the low 

effort lever (Walton et al., 2009).

Whereas dopamine antagonists reliably cause subjects to shift to make more responses on 

the low effort/low reward lever, amphetamine was found to exert a bi-phasic dose dependent 

effect on effort choice. At low doses subjects made more responses on the high effort large 

reward lever, whereas at high doses subjects made fewer responses on the high effort large 

reward compared to vehicle treated subjects (Floresco et al., 2008). These effects of 

dopaminergic drugs appear to be mediated via the NAcc Core sub region as local blockade 

of GABA A and B receptors decreases the selection of the HR lever under both standard and 

equivalent delay conditions, whereas the same effect was not seen when the blockade 

occurred in the NAcc Shell (Ghods-Sharifi & Floresco, 2010). A control experiment 

demonstrated that the inactivation of the NAcc Core did not alter the preference for 4 vs 2 

pellets when the press requirement for each is equivalent.

Interestingly, dopamine’s impact on effort appear to be specific to physical as compared to 

cognitive effort, as Eticlopride and SCH23390 decreased willingness to expend physical 

effort, but had no effect on cognitive effort in a novel rodent cognitive effort task which 

allowed subjects to choose between an easy and difficult discrimination for small vs larger 

rewards (Jay G. Hosking et al., 2015).

Basolateral Amygdala: Using the operant effort-discounting paradigm, it has also been 

shown that the BLA is also involved in effort based decision making. Infusions of the 

GABAB agonist baclofen and the GABAA agonist muscimol combined into the BLA 

increased effort discounting, reducing the preference for the HR lever, even in conditions in 

which the delays to reward delivery were equalized across response conditions (Ghods-

Sharifi, Onge, & Floresco, 2009). Additional evidence of the BLA’s involvement in effortful 

behavior comes from a study by Simmons et al. (2009) which showed that bilateral 

inactivation of the BLA with muscimol reduced lever pressing on an FR15 schedule while 

leaving consumption of food in a separate free consumption test unchanged (Simmons & 

Neill, 2009). This study found that the connection between the BLA and the NAcc Core 
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appears to be important as inactivation of the NAcc Core as well as a contralateral 

inactivation procedure of the BLA and NAcc Core reduced lever pressing and left food 

consumption unaltered in a separate chow consumption test (Simmons & Neill, 2009).

Anterior Cingulate Cortex: The ACC was lesioned and subjects were tested in the EBCT, 

but lesioning of ACC had no effect on either the number of lever presses made or the amount 

of chow consumed (J. Schweimer & Hauber, 2005). In a different experiment, when rats 

were given the choice to lever press on a high effort lever (FR12) for high reward (4 pellets) 

vs a low effort lever (FR4) for low reward (2 pellets) lesions to the ACC caused a shift in 

responding from the high effort lever to the low effort lever (Walton et al., 2009). Moreover, 

lesions to the ACC were also shown to decrease willingness to expend cognitive effort in the 

variant of the task which allowed subjects to choose between an easy and difficult 

discrimination for small vs larger rewards (J. G. Hosking, Cocker, & Winstanley, 2014).

4A3. T-Arm Barrier Maze—The effort based choice paradigms which have been 

discussed so far have both involved continuous availability of choices in which at least one 

alternative involved operant lever pressing. Consequently, there is a specific motor element 

to these tasks as subjects must be able to repeatedly initiate responses for the high effort 

option and the exact times at which the options are being compared is unknown. To evaluate 

cost-benefit decision making with a different motor response in a task which isolated the 

decision point to a single action, a task was developed known as the T-Arm barrier maze (J. 

D. Salamone, Cousins, & Bucher, 1994). In this task, subjects are required to navigate down 

a T Maze, and choose to go either to the right arm or left arm in order to obtain a reward. In 

this paradigm, there is a high reward and low reward arm (e.g. 2 pellets vs 4 pellets; 

respectively). In the absence of any barriers, subjects will choose the high reward arm almost 

all of the time. When there is a barrier placed in the high reward arm that requires additional 

effort to reach the reward, subjects will still choose this high reward arm about 80% of the 

time.

Nucleus Accumbens Dopamine: Much like the studies of effort based choice in the operant 

lever pressing paradigms, dopamine appears to be involved in the processes underlying 

effort based decision making in the T-Arm Barrier Maze as well. Dopamine depletion in the 

NAcc via 6-OHDA and dopamine receptor blockade via systemic treatment with dopamine 

D1 and D2 antagonists decrease the likelihood of choosing the high-effort/high-reward arm 

(Bardgett, Depenbrock, Downs, Points, & Green, 2009; M. S. Cousins, Atherton, Turner, & 

Salamone, 1996; Mott et al., 2009; J. D. Salamone et al., 1994). In contrast, increasing 

dopamine levels with systemic treatment of amphetamine increase the likelihood of 

choosing the high-effort/high-reward arm (Bardgett et al., 2009). This effect seems to be 

specific to the effort requirement of climbing over the barrier in the high reward arm and not 

due to a change in the relative value of the high and low rewards, as subjects will choose the 

high reward arm in the absence of any barrier (J. D. Salamone et al., 1994), and subjects will 

choose the high reward arm with the barrier present when the other arm contains no pellets 

(M. S. Cousins et al., 1996). Just as with the NAcc dopamine depletion and dopamine 

receptor antagonism impairment seen in the EBCT, the impairments caused in the T-arm 

barrier maze can be reversed by systemic administration of A2a antagonists (Mott et al., 
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2009). Again, as in the operant effort based choice task, this rescue is receptor subtype 

specific, as the A1a receptor does not rescue the impaired behavior (Mott et al., 2009).

While the NAcc dopamine depletion effect on the T-arm barrier maze demonstrates that 

dopamine in the NAcc influences the effort based decisions, systemic dopamine 

manipulations may be acting in multiple sites. The ACC receives dopaminergic projections 

from the VTA (Hoover & Vertes, 2007; Lindvall, Björklund, & Divac, 1978). Two initial 

studies which lesioned dopamine neurons within the ACC via 6-OHDA showed mixed 

results as impairments in choosing the high-effort/high-reward arm were observed following 

dopamine depletions in one study (J. Schweimer & Hauber, 2005), but did not impair the 

behavior in another (Walton, Croxson, Rushworth, & Bannerman, 2005). Support for the 

hypothesis that dopamine does act in the ACC for effort based decision making in the T-Arm 

Barrier Maze comes from finding that localized infusions of the D1-Antagonists into the 

ACC disrupt high-effort/high-reward arm choices, whereas D2-Antagonists administered 

here do not (J. Schweimer & Hauber, 2006). The studies of dopamine which implicate the 

ACC as being involved in effort-based decisions fits with a number of other studies 

examining the requirement of ACC function choice in the T-arm barrier maze described in 

the next section.

The Prefrontal Cortex and Basolateral Amygdala: One of the early studies examining the 

role of the prefrontal cortex in effort based decision making using the T-Arm Barrier Maze 

looked at the effects of a broad, non-region specific lesion of the medial-prefrontal cortex 

(mPFC), encompassing several sub-regions of the mPFC including: the Infra-Limbic Cortex 

(IL), the Prelimbic Cortex (PL), and the Anterior Cingulate Cortex (ACC). These non-

specific lesions which damaged all 3 sub-regions impaired effort based decision making, as 

subjects chose the low effort-low reward arm a higher percentage of the time (Walton, 

Bannerman, & Rushworth, 2002). Subsequent work revealed a functional specialization 

within the sub-regions of the mPFC as lesions to the ACC alone were sufficient to produce 

the impaired effort based decision making behavior, whereas lesions to the both the IL and 

PL were no different from the sham lesioned control group (Walton, Bannerman, Alterescu, 

& Rushworth, 2003).

Later studies went on to show that while bilateral destruction of the ACC was sufficient to 

impair effort based decision making, this same impairment could also be produced by 

damaging brain regions which directly project to the ACC. It was shown that bilateral 

inactivation of the Basao-Lateral Amygdala (BLA) with Bupivacaine lead to impairments in 

choosing the high-effort/high-reward arm (Floresco & Ghods-Sharifi, 2007). In a similar 

manner, bilateral lesions of the NAcc Core impaired choices of the high-effort/high-reward 

arm (Hauber & Sommer, 2009). Importantly, however, the common denominator between 

these two studies appears to be the connection between these nuclei and the ACC. It was 

shown that a functional connection between the BLA and ACC is involved in cost benefit 

decision making in the T-arm barrier maze as bilateral inactivation of this circuit leads to 

impaired responding identical to bilateral inactivation of either the ACC or BLA alone 

(Floresco, 2007). Similarly, bilateral inactivation of the NAcc – ACC circuit also disrupts the 

choices of the high-effort/high-reward arm (Hauber & Sommer, 2009).
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Convergent evidence for an important role for ACC in effort based decision making comes 

from in vivo electrophysiological recording studies in behaving animals. Hillman & Bilkey 

(2010) employed a spatial cost benefit decision making paradigm, similar to the T-arm 

Barrier Maze task. Rats could choose to navigate to earn 6 rewards vs 2 rewards depending 

on which arm they chose. When a barrier was present in front of the 6 pellet arm, a 

substantial portion of ACC neurons (63%) exhibited significantly higher firing for one goal 

trajectory versus the other; for 94% of these cells, higher firing was associated with the arm 

with a barrier and 6 pellets. In intersession and intra-session manipulations involving at least 

one barrier, ACC activity rapidly adapted to the changing conditions and was consistently 

biased toward the low effort option relative to the configuration. Interestingly, when no 

barrier was present and the only difference between the 2 arms was the reward magnitude, 

the high reward arm was chosen on 84% of trials and ACC activity was minimal and 

nonbiased (Hillman & Bilkey, 2010). Together, these observations demonstrated that the 

High effort/HR bias was not simply attributable to the larger reward, the barrier, or 

behavioral preference.

Summary: The results from these three different effort based choice tasks reveals some 

converging observations implicating certain brain regions which appear to be involved in 

making decisions about effortful choice across different types of tasks (Fig 3B). These 

include the NAcc Core, VP, BLA, and the ACC. The NAcc core appears to be critical for 

effortful choice behavior, as it is was shown to be involved in all three tasks. The 

GABAergic connection between the NAcc Core and the VP has been shown to be important 

in the EBCT (Farrar et al., 2008; Font et al., 2008; Mingote et al., 2008; John D. Salamone 

et al., 2015), but to our knowledge has yet to be examined in other effort based choice 

paradigms, but such studies may be fruitful for future investigators as the VP is thought to be 

implicated in motivational processes (McGinty et al., 2011).

Brain targets which have direct connections with the NAcc Core are also important in effort 

based decision making. Specifically, the ACC, as well as its connection with the NAcc 

appear to modulate effort based choice behavior, as lesions/inactivation of the ACC and 

disconnection of the ACC - NAcc decreases willingness to choose the high effort option in 

the operant effort discounting task and the T-arm barrier maze task (Hauber & Sommer, 

2009). Worth consideration, however, is the notion that while the ACC is involved in some 

types of effort-based decision making, this structure may not be universally involved in all 

situations requiring effort based decision making as there are some tasks in which lesions of 

this structure do not impact effortful choice behavior (J. Schweimer & Hauber, 2005). 

Moreover, some studies report that the deficits observed in effort based choice following 

lesions to the ACC are only transient which may suggest that other brain regions can 

compensate for the loss of this region in these situations.

The BLA is another region which is connected to the NAcc Core and has a role in effort 

based choice processes. In both the operant effort discounting procedure and the T-arm 

barrier maze, lesions of the BLA decreased the willingness to choose the high effort option 

for larger rewards (Floresco & Ghods-Sharifi, 2007; Ghods-Sharifi et al., 2009). While we 

are unaware of any studies which have specifically examined the BLA in the EBCT, the 
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observation that BLA inactivation decreases responding in an FR-16 (Simmons & Neill, 

2009) suggests the BLA may be involved in this behavior as well.

4B. Choice between two reward delays

Yet another cost which one can incur in a decision making task is the cost of waiting for a 

reward. The investigators who have studied behavior by systematically manipulating delay 

to reward have conceptualized this paradigm as reflecting one’s level of impulsive choice 

(summarized in Table 3). The central idea behind such tasks is as follows: how do subjects 

choose between a small reward delivered immediately versus a larger reward delivered after 

some delay, as a function of increasing durations of delay. Of note, is that these tasks are all 

similarly controlling effort by having equal physical effort requirements to initiate delays to 

the next reward.

Operant Delay Discounting—There have been a few different variants of paradigms 

developed to study delay-discounting. In an operant delay-discounting task, subjects have a 

choice between pressing a lever which will deliver a small reward (2 pellets) immediately or 

pressing a different lever which will result in a larger reward (4 pellets) which is delivered 

after some delay. The delay is usually increased over the course of a session. Under baseline 

conditions, subjects will make more choices on the long delay/high reward when the delays 

are relatively short and decrease their percent of long delay choices as a function of the 

reward delay (Floresco et al., 2008).

A number of studies have examined the impact of systemic administration of dopaminergic 

drugs on delay-discounting. The results of treatment with amphetamine on delay based 

choice have been mixed, and appear to depend on a variety of procedural factors. On the one 

hand, there have been numerous studies which have shown that amphetamine increases the 

number of large reward- long delay choices, which is interpreted as a decrease in impulsive 

choice (Barbelivien, Billy, Lazarus, Kelche, & Majchrzak, 2008; Floresco et al., 2008; van 

Gaalen, van Koten, Schoffelmeer, & Vanderschuren, 2006; Wade, de Wit, & Richards, 2000; 

Winstanley, Dalley, Theobald, & Robbins, 2003; Winstanley, Theobald, Dalley, & Robbins, 

2005). In these studies, amphetamine appears to increase subject’s indifferent point for 

delay, meaning subjects are willing to wait longer to get the larger reward (Wade et al., 

2000). Amphetamine treatment also leads to decreases in choice latency and increases the 

number of trials subjects will complete. Treatment with methylphenidate produces the same 

effect on indifference point as amphetamine (van Gaalen et al., 2006). These effects are 

mediated by the increases in extracellular dopamine levels as the increased choice of the 

large-delayed reward were mimicked by the selective dopamine reuptake inhibitor GBR 

12909 but not by the noradrenaline reuptake inhibitor desipramine (van Gaalen et al., 2006). 

As previously alluded to, however, there have also been some studies which have shown 

either no influence of amphetamine on delay based choice, or a decrease in preference for 

the delayed but larger reward (Koffarnus, Newman, Grundt, Rice, & Woods, 2011; Slezak & 

Anderson, 2009; Stanis, Marquez Avila, White, & Gulley, 2008; Tanno, Maguire, Henson, & 

France, 2014). The existence of these mixed results suggests that drugs like amphetamine do 

not uniformly increase preference for larger, long delay rewards in all situations.
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A number of studies have found that dopamine antagonists increase the number of small 

reward immediate choices associated with more impulsive choice (Floresco et al., 2008; van 

Gaalen et al., 2006; Wade et al., 2000). Specifically, the non-selective dopamine receptor 

antagonist flupenthixol (25, 50, and 100 μg/kg) and the D2 antagonist raclopride (40, 80, 

and 120 μg/kg), both decreased subject’s indifference point of delays suggesting subjects 

treat a shorter delay as being equivalent to the immediate reward delivery option as 

compared to vehicle treated subjects (Wade et al., 2000). The D1R antagonist SCH 23390 

(5, 10, and 20 μg/kg), however, did not affect the indifference point.

Furthermore, treatment with the adenosine A2aR agonist (clonidine) was also shown to 

increase the selection of the low reward-low delayed option, whereas the A1aR agonist 

phenylephrine did not affect behavior in the delay-discounting task (van Gaalen et al. 2006). 

Interestingly, this is a similar pattern of results observed in the EBCT – A2aR, but not A1aR 

agonists acting like D1/D2R antagonists.

It does not appear as though these dopamine drugs are acting within the NAcc, as dopamine 

depletions via intra-NAcc 6-OHDA injections, which decreases DA and NA levels by 70–

75%, had no impact on delay-discounting behavior alone (Winstanley, Theobald, et al., 

2005), although this did transiently potentiate the d-amphetamine-induced decrease in 

impulsive choice of large reward- delayed choices (Winstanley, Theobald, et al., 2005). 

Dopamine signaling to the OFC appears to be important as lesioning dopamine neurons with 

6- OHDA led to an increased indifference point (Kheramin et al., 2004). Further studies 

showed that levels of the dopamine metabolite DOPAC increased in the OFC when animals 

were performing the delayed discounting task compared to a yoked control condition 

(Winstanley, Theobald, Dalley, Cardinal, & Robbins, 2006).

The prefrontal cortex: importance of the OFC: A number of studies have examined 

different prefrontal structures involvement in delay discounting. The results on the 

involvement of the OFC were initially mixed, as it was shown that bilateral lesions for the 

OFC led to a decrease in the number of choices of larger-delayed reward in one study 

(Mobini et al., 2002), but another study found that it increased the choices of the larger 

delayed rewards (Catharine A. Winstanley, David E. H. Theobald, Rudolf N. Cardinal, & 

Trevor W. Robbins, 2004). Subsequent studies went on to discover that the role of the OFC 

in delay-discounting appears to be dependent both, on whether the delays are cued or not, as 

well as the baseline levels of impulsivity shown in subjects, which explains the discrepancy 

in the results between Mobini et al,. (2002) and Winstanley et al., (2004). Inactivation of the 

OFC was shown to increase impulsive choice of the small reward-small delay lever when the 

delay was cued, but only in rats low in baseline impulsivity, whereas the same OFC lesion 

decreases the number of small reward – small delay choices in an un-cued condition, but 

only in highly impulsive rats (Zeeb, Floresco, & Winstanley, 2010).

Several lines of evidence implicate dopamine signaling within the prefrontal cortex in delay 

based decision making. Results from a gene expression study found a positive correlation 

between baseline levels of impulsive choice and the transcript levels of the dopamine D1 and 

D5 receptor as well as the D1 receptor interacting protein Calcyon (Loos et al., 2010). 

Moreover, local mPFC infusions of the D1/D5 receptor antagonist SCH 23390 and the 
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D1/D5 partial agonist SKF 38393 increased impulsive choice, which supports the notion that 

endogenous receptor D1/D5 signaling in the mPFC is involved in making choices about 

delayed rewards (Loos et al., 2010). As was observed with studies employing lesions in the 

OFC, whether or not the delayed duration was cued or not also appears to be important for 

dopaminergic manipulations in the OFC. Specifically, intra-OFC infusions of D2 antagonist 

(eticlopride) and D1 antagonist (SCH23390) do not alter delayed discounting in a delay-

discounting procedure which does not cue the beginning of the delay duration, but both D2 

antagonist (eticlopride) and D1 antagonist (SCH23390) decrease choice of large rewards 

with long delays when the delay duration is cued at the beginning of the delay (Zeeb et al., 

2010).

The Basolateral Amygdala: One study looked at the role of the BLA and found that 

inactivation of the BLA leads to an increased the number of small immediate reward choices 

(C. A. Winstanley, D. E. H. Theobald, R. N. Cardinal, & T. W. Robbins, 2004).

The Sub Thalamic Nucleus: There have been a small number of studies which have 

investigated the influence of the STN on delay based decision making. In one study, it was 

found that lesions to the STN decrease impulsive choice, leading to a higher percent of 

choices on the large reward lever with a long delay (Winstanley, Baunez, Theobald, & 

Robbins, 2005), a result which was replicated in another study (Uslaner & Robinson, 2006). 

In a third study which manipulated both the duration of the large delay as well as the small 

delay, this same pattern of results was not observed (Bezzina et al., 2009). One key 

difference between the studies which found that STN lesions lead to more choices of the 

large reward lever with long delay (Uslaner & Robinson, 2006; Winstanley, Baunez, et al., 

2005) and the (Bezzina et al., 2009) was that the former studies produced the lesions after 

the subjects were already trained to baseline on the task, whereas the later induced the 

lesions before any training. This is likely important as the effect of STN lesions on delay 

discounting appear to be most marked immediately after the lesion is made, and animals 

seems to compensate in some way after more time passes, a pattern of results which fits with 

observations made by Uslaner et al., (2006).

T-Arm Delay Maze—Another paradigm which has been used to study decision making 

with delays to reward is the T-Arm maze with delay. In this task, subjects can choose to 

either go left or right to choose either a high or low reward. In the low reward arm subjects 

were able to get access to 1 pellet immediately. In the high reward arm subjects were 

enclosed into a gated waiting area for 15 seconds, after which the gate to the reward area 

opened and the subject had access to 15 food pellets. In a study using this T-Arm Delay 

maze version of delay discounting, both the ACC and OFC were lesioned. Subjects which 

received OFC lesions chose the low reward arm far more often than the sham control group. 

In the group with lesions to the ACC, delay based decision making was unaffected as 

subjects didn’t differ from the sham control group (Rudebeck, Walton, Smyth, Bannerman, 

& Rushworth, 2006). Another study investigated the involvement of the OFC, mPFC and 

BLA in delay based choice using a T-arm delay procedure. In this study, bilateral 

inactivation of the OFC did not impact delay based choice, whereas bilateral inactivation of 

both the mPFC and BLA both lead to a decreased preference for the larger delayed reward 
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(Churchwell, Morris, Heurtelou, & Kesner, 2009). In this study, it was demonstrated that 

contralateral disconnection of the mPFC – BLA circuit also reduced preference for the larger 

but delayed reward.

Summary: There appear to be some consistent findings in the literature on the brain regions 

and pharmacological manipulations which influence delay based decision making across 

behavioral paradigms (Fig 4A). The brain region which has been most reliably implicated in 

delay based decision making is the OFC. Both studies using an operant delay discounting 

procedure and a T-Arm Delay task have found that lesions to the OFC decrease the number 

of choices of the large reward lever with long delays (Mobini et al., 2002; Rudebeck et al., 

2006; Zeeb et al., 2010). In one study inactivation of OFC did not change delay based choice 

behavior (Churchwell et al., 2009), though both the mPFC and BLA were found to be 

involved in delay based choice as manipulations of these regions as well as the connection 

between them can alter delay based choice behavior. While there is a large amount of 

converging evidence implicating the OFC in delay based choice, a comprehensive 

understanding of its involvement and the involvement of other regions has yet to be fully 

worked out.

Systemic treatment with drugs acting on the dopamine system produce consistent patterns of 

results across a number of studies. Drugs which increase synaptic levels of dopamine, like 

amphetamine, lead to an increase in choices of the large reward lever with long delays, 

whereas antagonists of the D1 and D2 receptor both lead to increased choices of the low 

reward lever with no delay. Systemic treatment with drugs altering dopamine signaling are 

not likely acting within the NAcc to impact delay discounting, however, as NAcc dopamine 

depletion does not alter delay based decision making. Dopamine does appear to be acting 

within the OFC, however, as D1 and D2 antagonists decrease the number of choices of the 

large reward lever with long delays (Loos et al., 2010; Zeeb et al., 2010). Finally, lesions to 

the STN have been found to lead to an increase in this type of choice (Uslaner & Robinson, 

2006; Winstanley, Baunez, et al., 2005).

4C. Choice between two probabilities

The studies of choice between two costs up until this point have all been studies which 

systematically manipulated the effort requirements of the tasks (e.g. amount of work or 

length of delay to reward) to see what brain regions and neurotransmitter systems are 

involved in guiding behavior in the face of different costs. Another type of cost that can 

influence the choice between two options is the likelihood of each option paying off. This 

type of task is thought to represent risky decision making as when one chooses an option 

with a lower probability of paying off, but with the possibility of obtaining a larger reward 

they are taking a risk. There have been a number of studies examining the role of different 

brain regions in this risk based decision making behavior (Summarized in Table 4).

4C.1 Operant Risk Discounting—A variant of the Effort-Discounting task was 

developed to study Risk-Discounting. In this paradigm, the response cost remains fixed at 1 

response, but the probability that the response will be rewarded is systematically 

manipulated. These risk-discounting paradigms give subjects a choice between a high-
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reward (4 pellets) low probability lever or a low reward (2 pellet) high probability lever 

which pays off 100 percent of the time. The probability of the high-reward low probability 

lever is varied over the course of the session in ten trial blocks (i.e. 4 pellets delivered with 

probability of- 100, 50, 25, 12.5%), and can be performed with either decreasing or 

increasing probabilities as the session progresses. When both levers have equal payoff 

probabilities, rats will choose the high reward lever most of the time and these high response 

choices become less likely as a function of the decreasing probability.

Dopaminergic Influence on Risk Based Choice: Numerous studies have found that 

administration of amphetamine increases the preference for the large risky reward, whereas 

dopamine antagonists such as Flupenthixol decreased preference for the large risky option 

(St. Onge, Chiu, & Floresco, 2010). Interestingly, the effects of systemic amphetamine are 

seen through an increased preference for the large risky options, but this is only observed 

when the probability decreased over the session, whereas the preference is actually reduced 

when the probabilities start low and get larger throughout the session (St. Onge et al., 2010). 

The effects of amphetamine can be blocked or attenuated with either systemic D1R 

(SCH23390) or D2R (SKF81297) antagonists, and are therefore not mediated by specific 

receptor type (St Onge & Floresco, 2009). Additionally, blockade of D1 or D2 receptors 

alone induced risk aversion (St Onge & Floresco, 2009). Other studies have examined the 

involvement of the Dopamine D3 receptors and have found that the D3 antagonist (PD 

128,907) reduced the number of choices on the large/risky lever, whereas the D3 antagonist 

(nafadotride) potentiated the amphetamine-induced risky choice, but didn’t alter risk-based 
choice when administered alone (St Onge & Floresco, 2009). Finally, blockade (L745) or 

stimulation (PD168) of D4 receptors did not alter behavior (St Onge & Floresco, 2009).

Having found that systemic dopamine manipulations impact risk based decision making, 

subsequent studies then went on to more specifically examine the role of the NAcc and 

NAcc dopamine on risky behavior. Inactivation of the entire NAcc with a mixture of the 

GABAA and B agonists mucsimol and baclofen, lead to a decreased preference for the high 

reward - risky option (Colin M. Stopper & Floresco, 2011). Moreover, the sub regions of the 

NAcc appear to be differentially involved in aspects of risk-based decision making, as 

inactivation of the NAcc Shell impacted the percent of choices on the high reward – risky 

lever, but did not have any impact on the latency to make the choice (C. M. Stopper, 

Khayambashi, Kelly, & Floresco, 2010). Inactivation of the NAcc Core, on the other hand, 

impacted the latency to respond, but did not affect the percentage of high reward – risky 

choices.

Studies examining the role of the NAcc in risky choice also looked at the impact of 

dopaminergic drugs infused directly into the NAcc. NAcc infusions of the D1 receptor 

antagonist (SCH 23390) found that this NAcc D1 blockade decreased preference for the 

large/uncertain rewards, which occurred because of an enhanced negative-feedback 

sensitivity - reflected in the increased tendency to choose the smaller but more certain option 

immediately after an unsuccessful attempt on the large reward-high risk lever (Colin M. 

Stopper, Khayambashi, & Floresco, 2013). In contrast, NAcc infusion of the D1 receptor 

agonist (SKF 81297) had the opposite effect, increasing choice of high risky option when 

the risky lever probability was high and decreased preference when the risky lever had lower 

Bailey et al. Page 25

Neurobiol Learn Mem. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probabilities, suggesting an increased sensitivity to the probability of payoff (Colin M. 

Stopper et al., 2013). In contrast to the bidirectional effects of the D1 receptors on risk-based 

decision making, neither D2 antagonists (eticlopride) nor agonists (quinpirole or 

bromocriptine) in the NAcc influenced risky choice (Colin M. Stopper et al., 2013). Finally, 

the D3-preffering agonist (PD 128 907) decreased risky choice and subjects were more 

likely to shift to the low risk lever after a successful high risk outcome (Colin M. Stopper et 

al., 2013).

In a manner similar to the results observed with Effort-Discounting in the T-arm Barrier 

maze, dopamine appears to be acting to influence risk based decision making not only 

within the NAcc but also within the prefrontal cortex. Studies which locally administered the 

D1 antagonist (SCH23390) into the medial PFC found a decreased preference for the large/

risky option, whereas infusion of the D1 agonist (SKF81297) caused a slight, nonsignificant 

increased in preference for the large risky lever (St. Onge, Abhari, & Floresco, 2011). 

Dopamine D2 receptor antagonists (eticlopride) infused into the mPFC reduced risk 

discounting and increased the percent of risky choices, whereas D2 agonist (quinpirole) 

induced an impairment in risk based decision making, as subjects were less likely to choose 

the high risk option, showing a flattening of the discounting function overall (St. Onge et al., 

2011).

Prefrontal Cortex and Basolateral Amygdala: Within the Pre Frontal Cortex, inactivation 

of the PL cortex of the mPFC through infusions of the GABAA and B agonists (muscimol 

and baclofen) increased risky choice when the probability on the risky lever was decreased 

over the course of the session, but this same inactivation lead to decreases in risky choice 

when the large/risky reward probability increases over a session (St. Onge & Floresco, 

2009). Control experiments demonstrated that the results following PL cortex inactivation 

could not be explained by a more general disruptions in flexible behavior (reversal learning) 

or judgments about the relative value of probabilistic rewards (St. Onge & Floresco, 2009).

In contrast to the results of inactivation of the PL cortex, inactivation of the OFC through 

infusions of muscimol and baclofen increased response latencies, but did not have any effect 

on risky choice (St. Onge & Floresco, 2009). Further studies demonstrated that inactivation 

of the medial OFC increased risky choice on risk-discounting task in either ascending or 

descending probability conditions (Colin M. Stopper, Green, & Floresco, 2014). This 

increased risky choice was associated with enhancement in win-stay behavior as rats showed 

a tendency to choose the risky option again following a rewarded risky trial. In contrast to 

the PL cortex and OFC, inactivation of the ACC via infusions of muscimo/baclofen did not 

affect risky choice or latency to respond (St. Onge & Floresco, 2009).

Finally, infusions of the GABAA and B agonists (muscimol and/baclofen) into the BLA 

disrupted risk discounting, inducing a risk averse pattern of choice, as there were observed 

increases in response latencies as well as trial omissions, with these effects appearing most 

prominently in cases with the greatest amounts of uncertainty (Ghods-Sharifi et al., 2009). A 

set of studies was performed which assessed the role of the functional connection between 

the BLA and mPFC, as both of these areas were shown to alter risk based choice when 

bilaterally inactivated. It was shown that functional disconnection of the BLA- mPFC 
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connection altered risk based choice behavior such that subjects chose the risky option more 

often, which resulted from decreased sensitivity to negative feedback following an 

unsuccessful risky choice (St Onge, Stopper, Zahm, & Floresco, 2012). Moreover, it is 

specifically the top-down pathway by which the mPFC – BLA connection is involved in 

risky choice, as specific disconnection of the mPFC to BLA circuit altered risk based choice, 

whereas inactivation of the BLA to mPFC connection did not (St Onge et al., 2012).

Summary: There have been a number of consistent findings from studies which have looked 

at choice behavior involving different probability of payoff (Fig 4B). Drugs which increase 

synaptic levels of dopamine such as amphetamine increase the number of choices of the 

risky large reward, dopamine antagonists decrease these choices leading to more selections 

of smaller more certain rewards (St Onge & Floresco, 2009). Inactivation of the NAcc Shell 

and the BLA both decrease the number of choices of the high reward lever /lower 

probabilities (Ghods-Sharifi et al., 2009; Colin M. Stopper & Floresco, 2011). The effects of 

inactivation of the PL cortex of the mPFC appear to be dependent on whether the 

probabilities increase or decrease over the course of the session (St Onge & Floresco, 

2010b). Inactivation of this region decreases risky choice when the probabilities decrease 

over the course of the session, but increase risky choice when the probabilities increase over 

the course of the session. Finally, inactivation of the NAcc Core, the OFC, and the ACC do 

not specifically impact risk based choice (St Onge & Floresco, 2010b; Colin M. Stopper & 

Floresco, 2011).

5. Summary and Future Directions

We have summarized a wide range of studies which address the question: how does the brain 

process and use information related to different types of response costs underlying motivated 

behavior? We focused on cost manipulations of effort, time delays, and risk/probability and 

found that a number of brain regions seem to appear to be important in many different types 

of tasks, whereas others appear to be highly specific to some tasks but not others.

5A. Dopamine influences response vigor, as well as cost, delay, and risk based decision 
making

Systemic dopamine treatments influenced performance in all of the different types of tasks 

covered in the review. Systemic treatment with drugs which increased synaptic dopamine 

levels, like amphetamine, leads to increased activation in a PR schedule (Bailey et al., 2015; 

Mayorga et al., 2000; Sommer et al., 2014), increases in high effort/high reward choice 

(Bardgett et al., 2009; Floresco et al., 2008), increases in long delay/large reward choice 

(Barbelivien et al. 2008; de Wit et al. 2002; Floresco et al. 2008; Monterosso et al. 2007; van 

Gaalen et al. 2006; Wade et al. 2000), and increases in risky choice for large rewards (St. 

Onge, Chiu, & Floresco, 2010). Systemic treatment with dopamine antagonists drugs 

decreased these behaviors in a PR (Aberman & Salamone, 1999; Caul & Brindle, 2001; 

Cheeta et al., 1995; Olarte-Sanchez et al., 2013), effort choice tasks (Cousins & Salamone, 

1994; Farrar et al., 2010; Koch, Schmid, & Schnitzler, 2000; Nowend, Arizzi, Carlson, & 

Salamone, 2001; Salamone, 1991; Salamone et al., 2002; Sink et al., 2008; Worden et al., 

2009), delay choice tasks (Floresco et al. 2008; van Gaalen et al. 2006; Wade et al. 2000), 
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and risk choice tasks (St. Onge, Chiu, & Floresco, 2010). The site of action of these 

dopaminergic drugs differs for different behavioral processes. The NAcc Core is the 

important site of action of dopaminergic drugs for modulating behavior in the PR task (). 

Both the NAcc Core and Shell are sites of action of dopamine antagonists in two different 

effort based choice tasks (EBCT and T-Arm barrier maze) (Sokolowski et al., 1998), but 

only the NAcc Core was important in an operant effort discounting task (Ghods-Sharifi and 

Floresco 2010). In tasks which require subjects to make choices about delays to reward, both 

the OFC and the mPFC (PL and IL) are sites where dopamine acts, whereas NAcc dopamine 

has no impact on delay based decision making (Winstanley et al., 2005). For risk based 

choice, both the IL and PL cortex as well as the NAcc appear to be sites of action of 

dopamine (St Onge et al., 2011), but only the NAcc shell appears to be modulating risk 

based decision making (Stopper et al., 2011).

5B. Neural Substrates involved in effort, delay, and risk costs

There appear to be a number of different brain regions which are involved in multiple types 

of response cost related behaviors, but there are also some regions in which there appears to 

be selectivity in the types of costs they are required for making decisions about (Fig 5).

ACC—The ACC is a region which appears to be specifically involved in decisions about 

effort based choice. Lesions to the ACC did not impact PR responding (Schweimer and 

Hauber 2005), which suggests the region by itself cannot influence activational aspects of 

motivation. This is supported by a study which found that lesioning the ACC did not alter 

locomotor activity in an open field (Li et al., 2012). In decision making situations involving 

manipulations of delay to reward and risk/probability, lesions to the ACC also do not seem 

to have any effect (Rudebeck et al., 2006; St Onge et al., 2010). On the other hand, the ACC 

is involved in effort based decisions as lesions to the ACC lead to more choices of low effort 

options (Walton et al., 2009; Walton et al., 2003). While the majority of the studies done on 

the ACC’s involvement in effort based choice utilized the T-arm barrier maze (which all 

found the region is required for normal decision making), one study using the EBCT found 

that lesions to the ACC did not have any effect (Schweimer and Hauber 2005), whereas a 

study employing a variant of the operant effort discounting (FR-14 for 4 pellets vs FR-4 for 

2 pellets), found that lesions to the ACC lead to a decreased selection of the high effort lever 

(Walton, Groves et al. 2009). Together, these results suggest that the ACC plays a specific 

role in the computation of whether the value of an outcome offsets the effort needed to 

obtain it.

OFC—Lesions to the OFC were shown to increase subject’s BP in a PR task (Gourley et al., 

2010), which suggests that the region may be modulating vigor via activational influences of 

motivation. In line with this idea is the observation that lesions to the OFC in rats leads to 

increased locomotor activity in an open field test (De Bruin et al., 1983). Worth noting is the 

fact that in a PR schedule two things are systemically increasing together: the number of 

responses required for the next reward and the time the required bout of work will require to 

obtaining that reward. Thus, both the effort required and delay to reward are simultaneously 

manipulated in this task. While there have been many studies done which have found the 
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OFC is involved in delay based choice behavior there has only been one study done to our 

knowledge which has looked at effort based choice (Rudebeck et al., 2006).

Of the numerous studies which have been done examine the influence of the OFC on delay 

based choice, a consensus is that lesioning or inactivation of the OFC leads to altered delay 

based choices such that subjects prefer smaller more immediate rewards and are averse to 

delays (Mobini et al. 2002; Rudebeck et al., 2006; Zeeb et al., 2010). Whereas many of the 

early studies did not specifically distinguish between sub regions within the OFC, recently 

the important functional distinctions between the medial OFC (mOFC) and lateral OFC 

(lOFC) has been recognized. Specifically, lesions or inactivation of the lateral OFC induces 

an impairment in delay based choice (Rudebeck et al., 2006; Catharine A. Winstanley et al., 

2004), whereas inactivation restricted to the mOFC does not (Colin M. Stopper et al., 2014).

Finally, while initial studies seemed to suggest that the OFC is not involved in decision 

making about risk or probabilities (St Onge et al., 2010), these studies did not specifically 

disentangle the contribution of the medial and lateral OFC. Specific inactivation of the 

medial OFC leads to alterations in risk based choice (Colin M. Stopper et al., 2014), whereas 

inactivation of the lateral OFC does not (St Onge & Floresco, 2010a). The apparent lack of 

an effect of the OFC in the effort based choice behaviors, along with the regional 

specification of involvement in delay and risk based choice seems to suggests that the sub 

regions of the OFC may play a specific role in processing certain types of information going 

into the computation of whether the benefit of a specific outcome is worth the cost of 

obtaining that outcome. Future studies will be needed to further understand the regional 

distinctions of this structure as well as whether differential input and output targets can be 

identified based on their connectivity within the sub regions of the OFC.

The IL and PL cortex—Many of the studies which have made lesions to the mPFC have 

targeted the IL and PL cortex. The PL cortex appears to be involved in activational 

influences of motivation as lesions to this region decrease BP’s in a PR (Gourley et al., 

2010), though in the one study to examine this it is likely that the IL was also damaged 

based on the reported histology. While damage to the PL can enhance response vigor in a 

PR, neither the IL nor PL appear to be involved in effort based choice (Walton et al., 2002). 

The PL and IL both appear to be involved in delay based choice, as local dopamine 

antagonist infusions into this region can lead to decrease selection of larger rewards with 

longer delays (Loos et al., 2010). Finally, the PL cortex appears to be involved in risk based 

decision making (St Onge et al., 2010). Thus these regions of mPFC seem to play a role in 

assessing the costs of both delays and risks but not effort. It is possible that an assessment of 

delay mediates all these results as the average delay to risky outcomes is greater than the 

delay of less risky outcomes in the studies reviewed here.

NAcc Core—The NAcc Core appears to be involved in activational aspects of motivation. 

Cell body lesions to this region enhance BP’s in a PR, whereas dopamine depletion and 

dopamine antagonist drugs lead to reductions in BP’s (Hamill et al., 1999; Bezzina et al., 

2008; Bari et al., 2005). The NAcc Core is also involved in effort based choice, as dopamine 

depletion and dopamine antagonist drugs in this region leads to reduction of choosing high 

effort options in all three of the discussed measures of effort choice: EBCT, operant effort 
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discounting, and the T-arm barrier maze (Salamone et al., 1991; Ghods-Sharifi and Floresco 

2010; Hauber, Sommer, 2009). The NAcc Core is also involved in delay based choice as 

lesions of the NAcc Core lead to increased selection of the smaller more immediate reward 

(Cardinal, Pennicott, Sugathapala, Robbins, & Everitt, 2001; Cardinal, Robbins, et al., 2003; 

Cardinal, Parkinson, et al., 2003). This is different from the effects of dopamine depletion to 

the region, however, as this has been shown to not have any effect on delay based choice 

(Winstanley, Theobald, Dalley, & Robbins, 2005), and intra NAcc Core D1 and D2 receptor 

antagonists do not impair the ability to wait for reward in a cued progressive delay procedure 

(Wakabayashi, Fields, & Nicola, 2004).

Excitotoxic lesions of the NAcc lead to a risk averse pattern of responding in risk based 

choice task (Cardinal & Howes, 2005), but this does not seem to be specific to the NAcc 

Core because inactivation of the NAcc Core alone doesn’t alter risk based choice (Stopper et 

al., 2011). Thus the NAcc Core appears to process information about the effort and risk costs 

of an alternative but not be involved in processing delay costs.

NAcc Shell—The NAcc Shell is distinct from the NAcc Core in a number of ways. First, 

whereas cell body lesions within the NAcc Shell can increase responding in a PR (), 

dopaminergic depletion within the shell and D1 and D2R antagonists within the shell do not 

increase response vigor in this task (Bari et al., 2005). Additionally, while all 3 of the effort 

based choice tasks found the NAcc Core to be important for effort based choice, only the 

EBCT found that DA depletion and D1 and D2 antagonists could alter this behavior 

(Sokolowski et al., 1998), although to a lesser extent that within the Core. A study which 

examined NAcc DA involvement in delay based choice found that intra-accumbal infusions 

of 6-OHDA did not have any impact on delay based choice (Winstanley et al., 2005), but did 

impact risk based choice as inactivation of this region decreased risky choice behavior 

(Stopper et al., 2011). In sum, it appears that the NAcc Shell may play a very similar 

computational role to that played by the core, but it is not directly responsible for 

activational effects of dopamine as measured in a PR and is involved in risky choice.

VP—To our knowledge, the effect of lesioning the VP has not been examined in PR tasks, 

delay choice tasks, or risk based choice tasks. There is however, evidence that the VP is 

involved in effort based choice tasks as inactivation of this region lead to a decrease in 

willingness to choose high effort options in the EBCT (Farrar et., al. 2008). Given the direct 

connection with the NAcc Core, it seems like the VP may likely be involved in other 

behaviors which the NAcc Core is involved in and future studies may benefit from 

examining this region more closely.

STN—The STN also appears to be involved in activational aspects of motivation as lesions 

to this region increase BP’s in a PR (Baunez et al., 2002; Bezzina et al., 2008), and it also 

appears to be involved in delay based choice as lesions to the STN alter delay based choice 

behavior as subjects choose more of the large rewards with long delays (Winstanley et al. 

2005; Uslaner et al., 2006). We are unaware of studies which have examined the impact of 

lesioning the STN in either effort based or risk based choice. Interestingly, the pattern of 

results observed with STN lesions are highly similar to those of OFC lesions (increased BP, 

increased delay based choice).
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BLA—The BLA is another brain region which appears to be involved in many aspects of 

behavior covered in the review, as it influences behavior effort based choice (Floresco et al., 

2007; Ghods-Sharifi et al., 2009), delay based choice (Winstanley et al. 2004), and risk 

based choice (Ghods-Sharifi et al., 2009). While we could not a find a specific study which 

used a PR, one which used a FR-16 found that inactivation of the BLA decreased responding 

(Simmons & Neill, 2009). Thus we hypothesize that the BLA may be processing 

information about the net costs and benefits of different behavioral options.

VTA—As discussed in the earlier section on the effects of dopamine in the various 

behaviors, the VTA appears to be involved in all of the behaviors discussed: PR, effort 

choice, delay choice, and risk choice. This is due to the fact that the VTA sends 

dopaminergic neurons to other brain regions for which dopamine is important for 

modulating these behaviors: including NAcc, OFC, BLA, IL, PL, and the ACC. D1 

antagonists injected directly into the VTA leads to a decrease in BP, whereas over expression 

of D2 receptors in this region leads to increases in BP (Sharf et al., 2005). That VTA is 

involved in activational aspects of motivation is well known, and studies have shown that the 

area can modulate general locomotor activity, as injections of the GABAA antagonist 

picrotoxin into the VTA increase locomotor activity in an open field (Mogenson and 

Manchanda, 1979). This set of data reflect the key role that dopamine plays in modulating 

the widely distributed network involved in these cost-benefit computations.

Hippocampus—While lesions to the ventral hippocampus were shown increase BP’s in a 

PR task (Gourley et al., 2010; Chambers et al., 2002), we are unaware of any studies which 

have specifically looked at the role of the ventral hippocampus in effort, delay, or risk based 

choice procedures. Given the direct connection between the OFC and the ventral 

hippocampus, it may be interesting to see if delay based choice requires ventral hippocampal 

functioning.

Conclusion/Future directions

The studies covered in this review suggest that there is a widely distributed network engaged 

during motivated action. Some of that network seems to energize behavior while other 

structures in the network are involved in more specific computations about different kinds of 

costs. It also seems likely that this network is involved in computing different kinds of 

benefits as well. When examining the summary of studies which have been done in Figure 

5E, it becomes apparent that there are a number of different brain areas which have yet to be 

studied for certain types of processes. It may be helpful in developing a more complete 

picture of this distributed circuit to more fully understand what each region does with 

relation to each other. We believe that to understand motivation the field must continue to 

dissecting this network and map it to specific behavioral functions. The arsenal of new 

techniques which exist for cell type specific manipulation of circuits with high levels of 

temporal control should aid this continued quest to better understand the neural circuits 

guiding and directing behavior to overcome obstacles in the environment.
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Abbreviations

6-OHDA 6-hydroxydopamine

A2A Adenosine 2A receptor

BP Breakpoint

DA Dopamine

D2R Dopamine D2 receptor

D2R-OE Dopamine D2 receptor over-expression

DAT Dopamine transporter

DAT KD Dopamine transporter knockdown

DREADD Designer receptors exclusively activated by designer drugs

EBCT Effort-Based Choice Task

FR Fixed ratio

HR lever High-Effort/High-Reward lever

LR lever Low-Effort/Low-Reward lever

PHD Progressive hold down

PR Progressive Ratio

VI Variable Interval

ACC Anterior Cingulate Cortex

BLA Baso-Lateral Amygdala

DLS Dorsolateral Striatum

DMS Dorsomedial

IL Infra-Limbic Cortex

lOFC Lateral orbitofrontal cortex

MD Mediodorsal Thalamus

mOFC Medial orbitofrontal cortex

mPFC Medial Prefrontal Cortex
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NAcc Nucleus Accumbens

OFC Orbital Frontal Cortex

PFC Prefrontal Cortex

PL Pre-limbic cortex

STN Sub thalamic nucleus

SNc Substantia Niagra pars Compact

SNr Substantia Niagra pars reticulata

VP Ventral Pallidum

VTA Ventral Tegmental Area
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Figure 1. Hypothetical Model of Factors Influencing Motivational Cost-Benefit Decision Making 
Processes
Shows a hypothetical model of how motivation is influenced by physiological state, 

environment, and past history to modulate an underlying cost-benefit decision making 

computation which gives direction and vigor to goal-directed behavior
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Figure 2. Effects of Methamphetamine in a PR and PHD Task
(A–B). Shows a schematic representation of the Progressive Ratio Task (A) and the 

Progressive Hold Down Task (B). The yellow bars represent lever presses in (A), and lever 

holds in (B). The red arrows signify rewards. (C). IP administration of 1.0mg/kg of 

methamphetamine leads to significant increases in lever pressing and breakpoint in a 

progressive ratio schedule of reinforcement. (D). IP administration of 1.0mg/kg of 

methamphetamine leads to significant increase in the number of hold attempts in a PHD 

task, but does not lead to a significant increase in the highest duration requirement 
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completed (BP). (E). Data from a single subject treated with methamphetamine or vehicle in 

the PHD task demonstrates the increased number of responses which occur while on the 

drug, but the responses are inefficient and of shorted durations that required by the schedule. 

Data in (C – E) from Bailey et al., 2015.
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Figure 3. Brain Regions Which Impact Performance on a Progressive Ratio and Effort Based 
Choice
A. Shows brain regions which have been studied to examine their involvement in PR 

performance through lesion, inactivation, or localized drug infusion studies which have been 

shown to modulate PR behavior (Orange), have no effect on PR behavior (Grey), or have yet 

to be examined (White). Areas which have been shown to modulate PR behavior include: 

the VTA, the Ventral hippocampus, the SN pars reticulata and SN par compata, the NAcc 

Core, the OFC, and the PR/IL cortex. Areas which have been studies, but damage or 
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inactivation had no impact on PR performance include: ACC, and NAcc Shell. All other 

areas have not been studied with a PR task: VP, DS. IL, Hipp

B. Shows brain regions which have been studied to examine their involvement in effort 

based choice performance through lesion, inactivation, or localized drug infusion studies 

which have been shown to modulate effort choice behavior (Green), have no effect (Grey), 

or have yet to be examined (White). Areas which have been shown to modulate effort based 

choice include: the VTA (Reference), NAcc Core, NAcc Shell, VP, ACC. Areas which have 

been studies, but damage or inactivation had no impact include: OFC, PL, IL. Areas which 

have yet to be studied include: DS, STN, SN, Hipp, vSyb
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Figure 4. Brain Regions involved in Delay and Risky Choice
A. Shows brain regions which have been studied to examine their involvement in delay 

based choice through lesions, inactivation, or localized drug infusions which have been 

shown to modulate delay based choice (Blue), have no effect on delay based choice (Grey), 

or have not yet been examine (White). Areas which influence delay based choice include: 

the PL, IL, OFC, NAcc Core, BLA, STN, and VTA. Areas which do not influence delay 

based choice include: the ACC, and NAcc Shell. Areas which have not been studied include: 

VP, DS, Hipp, SN, vSub.
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B. Shows brain regions which have been studied to examine their involvement in risk based 

choice through lesions, inactivation, or localized drug infusions which have been shown to 

modulate delay based choice (Red), have no effect on delay based choice (Grey), or have not 

yet been examine (White). Areas which influence delay based choice include: the PL, NAcc 

Shell, BLA, and VTA. Areas which do not influence delay based choice include: the ACC, 

OFC, and NAcc Core. Areas which have not been studied include: IL, VP, DS, Hipp, STN, 

SN, vSub.
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Figure 5. Summary Brain Regions and Types of Costs
Shows an overall summary of the brain regions which have been shown to modulate 

different aspects of motivated behavior and overcoming response costs through lesion 

studies, chemical inactivation, and pharmacological manipulations. (A) Shows brain regions 

which have been shown to be modulate vigor in a PR (orange) have no effect on PR (grey), 
and have not been studied (white). (B) Shows brain regions which have been shown to be 

involved in effort based choice behavior (green), have no effect on effort based choice 

(grey), and have not be studied (white). (C) Shows brain regions which have been shown to 
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be involved in delay based choice behavior (blue), have no effect on delay based choice 

(grey), and have not been studied (white). (D) Shows brain regions which have been shown 

to be involved in risk based choice behavior (red), have no effect on risk based choice (grey), 

and have not been studied (white). (E) Provides an overall summary of the different types of 

behavioral tasks each of the different brain regions has been shown to be involved in.
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Table 1

Regional Brain Manipulations that Modulate PR behavior

Brain Region Manipulation Method/Drug Result Reference

NAcc Core DA lesion 6-OHDA ↓ Hamill et al., 1999

NAcc Core DA lesion Quinolinic acid ↓ Bezzina et al., 2008

NAcc Core Local D1/D2 antagonism SCH-23390 (D1)
Eticlopride (D2)

↓ Bari et al., 2005

NAcc Shell DA lesion 6-OHDA No Effect Sokolowski et al., 1998

NAcc Shell Local D1/D2 antagonism SCH-23390 (D1)
Eticlopride (D2)

No Effect Bari et al., 2005

VTA D1 antagonism SCH-23390 (D1) ↓ Sharf et al., 2005

VTA D2 receptor KD shRNA KD ↑ de Jong et al., 2015

VTA Partial DA Lesion 6-OHDA No Effect Drui, Carnicella et al. 2013

VTA Local GHS-R1A agonism Ghrelin ↑ Skibicka et al., 2011

DMS Lesion Quinolinic acid No Effect* Eagle et al., 1999

DLS Lesion Quinolinic acid No Effect* Eagle et al., 1999

SNc Partial DA Lesion 6-OHDA ↓ Drui, Carnicella et al. 2013

STN Lesion Ibotenic acid ↑ Baunez et al., 2002

STN Lesion Quinolinic acid ↑ Bezzina et al., 2008

Ventral Hipp Lesion NMDA ↑ Gourley et al., 2010

Ventral Hipp Lesion Ibotenic acid ↑ Chambers et al., 2002

Prelimbic Lesion NMDA ↓ Gourley et al., 2010

mOFC Lesion NMDA ↑ Gourley et al., 2010

mOFC Local D1/D2 antagonism SCH-23390 (D1)
Sulpiride (D2)

↓ Cetin et al., 2004

ACC Lesion Quinolinic acid No effect Schweimer and Hauber 2005

*
Indicates observed motor effects
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Table 3

Brain Regions Which Modulate Delay Based Choice Behavior

Brain Region Manipulation Method/Drug Result Reference

mPFC D1/D5 antagonism SCH-23390 (D1) ↓ delayed choice Loos et al., 2010

mPFC D1/D5 agonism SKF 38393 ↓ delayed choice Loos et al., 2010

mOFC Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

No effect Stopper et al., 2014

OFC Lesion Quinolinic acid ↓ delayed choice Mobini et al. 2002

OFC Lesion ↑ delayed choice Winstanley et al. 2004

OFC Lesion Quinolinic acid ↓ delayed choice Rudebeck et al., 2006

OFC Lesion Muscimol (GABA A)
Baclofen (GABA B)

Dependent on Cue/baseline behavior Zeeb et al., 2010

OFC DA Lesion 6-OHDA ↑ delayed choice Kheramin et al. 2004

OFC D2 antagonism - No cue Eticlopride (D2) No effect Zeeb et al., 2010

OFC D1 antagonism -No cue SCH-23390 (D1) No effect Zeeb et al., 2010

OFC D2 antagonism- Cue Eticlopride (D2) ↓ delayed choice Zeeb et al., 2010

OFC D1 antagonism -Cue SCH-23390 (D1) ↓ delayed choice Zeeb et al., 2010

BLA Bilateral Inactivation Quinolinic acid ↓ delayed choice Winstanley et al. 2004

STN Lesion Ibotenic acid ↑ delayed choice Winstanley et al. 2005

STN Lesion Ibotenic acid ↑ delayed choice Uslaner et al., 2006

STN Lesion Quinolinic acid ↓ delayed choice Bezzina et al., 2009

NAcc DA Lesion 6-OHDA No effect Winstanley et al., 2005
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Table 4

Brain Regions Which Modulate Risk Based Choice

Brain Region Manipulation Method Result Reference

mPFC Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

Procedural-dependent effects St Onge et al., 2010

mPFC D1 antagonism SCH-23390 (D1) ↓ Risky choice St Onge et al., 2011

mPFC D1 agonism SKF81297 (D1) No effect St Onge et al., 2011

mPFC D2 antagonism Eticlopride (D2) ↑ Risky choice St Onge et al., 2011

mPFC D2 agonism Quinpirole (D2) ↓ Risky choice St Onge et al., 2011

ACC Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

No effect St Onge et al., 2010

mOFC Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

↑ Risky choice Stopper et al., 2014

OFC Bilateral Inactivation d-amphetamine ()
Flupenthixol (D1/D2)

No effect St Onge et al., 2010

NAcc Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

↓ Risky choice Stopper et al., 2011

NAcc D1 agonism SCH-23390 (D1) ↓ Risky choice Stopper et al., 2013

NAcc D1 agonism SKF 81297 (D1) ↑ Risky choice (high prob)
↓ Risky choice (low prob)

Stopper et al., 2013

NAcc D2 antagonism Eticlopride (D2) No effect Stopper et al., 2013

NAcc D2 agonism Quinpirole (D2)
Bromocriptine (D2)

No effect Stopper et al., 2013

NAcc D3 agonism PD 128 907 (D3) ↓ Risky Choice Stopper et al., 2013

NAcc Core Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

No effect Stopper et al., 2011

NAcc Shell Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

↓ Risky choice Stopper et al., 2011

BLA Bilateral Inactivation Muscimol (GABA A)
Baclofen (GABA B)

↓ Risky choice Ghods-Sharifi et al., 2009
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